Anders Lansner (invited speaker)

Large-Scale Models of Spinal and Brainstem Locomotor Circuits

Royal Institute of Technology

The fictive swimming preparation of the lamprey spinal cord is used as an experimental model for vertebrate locomotion. It has allowed detailed studies of the cellular and synaptic properties of the spinal rhythm generating circuitry. This system has also been subject to a series of modeling studies. Previous sub-sampled simulation models have been able to explain a number of experimental findings and have generated several experimentally testable hypotheses. However, despite the use of biophysically detailed compartmental model neurons, individual simulated cells typically show a too high frequency and too regular spiking patterns. We have recently investigated to what extent this effect can be overcome by the use of a larger network and distribution of cell properties. Instead of just one cell of each type we study a full-scale model of a piece of lamprey spinal cord with about hundred cells per segment and a realistic density of synapses. Such a simulated spinal cord piece produces robust rhythmic activity within the physiological frequency range. Intracellular traces and the synthesized EMG look much like what is actually recorded in vitro. When activated asymmetrically, turning activity including a rebound ipsi-lateral burst can be qualitatively reproduced. In sufficiently long spinal cord pieces inter-segmental coordination patterns can be studied. We further compare with the bursting activity produced by a reduced connectionist type model where graded output units represent local populations of neurons. Such reduced models are currently subject to analysis with regard to their different activity modes. The swimming movements generated by the simulated spinal pattern generator have been studied by means of a neuro-mechanical model where the lamprey body and surrounding water are also included in the simulation.

This work illustrates that it may be useful to describe the same system by a range of models at different levels of abstraction, while making careful transformations between them.
Monday, June 5, 2023
About the Swartz Foundation...
The Swartz Foundation was established by Jerry Swartz (bio) in 1994 . . .
Follow us...
The Swartz Foundation is on Twitter: SwartzCompNeuro
2013 Stony Brook Mind/Brain Lecture - Michael Wigler, PhD
2012 Stony Brook Mind/Brain Lecture - John Donoghue
Sloan-Swartz Centers Annual Meeting 2011
2011 Stony Brook Mind/Brain Lecture - Allison J. Doupe
2011 Banbury Workshop
Sloan-Swartz Centers Annual Meeting 2010
2010 Stony Brook Mind/Brain Lecture
Sloan-Swartz Centers Annual Meeting 2009
Conference on Neural Dynamics
2009 Stony Brook Mind/Brain Lecture
Canonical Neural Computation, April 2009
2009 Banbury Workshop
Sloan-Swartz Centers Annual Meeting 2008
Theoretical and Experimental Approaches to Auditory and Visual Attention - Banbury 2008
Stony Brook Mind/Brain 2008: Patricia Smith Churchland, B. Phil. D
Sloan-Swartz Centers Annual Meeting 2007
New Frontiers In Studies Of Nonconscious Processing - Banbury 2007
Stony Brook Mind/Brain 2007: Professor Michael Shadlen, MD, PhD
Multi-level Brain Modeling Workshop 2006
Sloan Swartz Centers Annual Meeting 2006
Banbury 2006: Computational Approaches to Cortical Functions
Stony Brook Mind/Brain 2006: Helen Fisher -- Lecture Videos
Sloan-Swartz Centers for Theoretical Neurobiology
Swartz Center for Computational Neuroscience
Banbury Center Workshop Series
Other Events                           Copyright © The Swartz Foundation 2023