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SUMMARY

This paper compares several statistical methods for analyzing neural feature selectivity with natural stimuli.
Despite the non-Gaussian character of correlations in natural stimuli, several relevant stimulus dimensions
can be found by maximizing either information or, as is demonstrated here, variance. In the case of
information, the relevance of each dimension is quantified by a Kullback–Leibler divergence between the
full input probability distribution and that across inputs associated with positive neural responses, both
projected onto that dimension. We demonstrate that least-square matching of the nonlinear prediction
based on several dimensions relevant to the recorded spike trains yields an optimization scheme similar
to information maximization. The relevant dimensions are found as those that capture the most variance
in neural response. The variance along a stimulus dimension is given by a Rényi divergence of order 2
instead of the Kullback–Leibler divergence used for maximizing information. Statistical errors expected
for the two schemes are shown to be similar through both analytical and numerical calculations. However,
in the asymptotic limit of large spike numbers, maximizing information results in smaller errors than
variance optimization. Numerical simulations for model cells with different noise levels show that this
trend persists, and possibly increases, when the number of spikes decreases. This makes the problem of
finding relevant dimensions one of the examples where information-theoretic approaches are no more data
limited than the variance-based measures. Variance and information optimization also outperform methods
based on the spike-triggered average for all numbers of spikes and neural noise levels. Copyright q 2007
John Wiley & Sons, Ltd.
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T. O. SHARPEE

INTRODUCTION

The concept of neural feature selectivity is based on the observation that, even though input
signals might be of high dimension, quite often only a small number of dimensions in the input
space influence neural response. This model has been very successful in elucidating neural coding
at various levels of visual [1–8], auditory [9–14], and motor [15, 16] processing. Formally, the
assumption of the linear–nonlinear model specifies that the probability of a spike P(spike|s)
given a stimulus s depends only on stimulus projections si = êi · s on a set of K relevant vectors
{ê1, ê2, . . . , êK } [1, 5, 9, 17–20]:

P(spike|s) = P(spike)g(s1, s2, . . . , sK ) (1)

where P(spike) is the average firing rate, and g is a potentially strongly nonlinear function of
stimulus projections si— for example, a threshold or a sigmoid. For the sake of focus, we chose
here, and in what follows, a single spike as the response of interest. All of the above arguments,
as well as the optimization schemes described below, can be carried out with respect to particular
patterns of spikes in time and/or across neurons [21].

The goal is then to find (i) the number K of relevant features; (ii) the features themselves; and
(iii) then estimate the nonlinear gain function g. The approach is useful only if the relevant number
of stimulus dimensions K will turn out to be much smaller than the overall dimensionality D of
the stimulus space. In some sense, the most difficult part is to find the relevant dimensions. This
is because, once they are known, the probability P(spike|s) becomes a function of only a few
parameters, and it becomes feasible to map this function experimentally, inverting the probability
distributions according to Bayes’ rule [1, 2, 5]:

g(s1, s2, . . . , sK ) = P(s1, s2, . . . , sK |spike)
P(s1, s2, . . . , sK )

(2)

Note that this does not mean that nonlinearity can be discarded when determining relevant dimen-
sions. Only under special circumstances, such as with Gaussian inputs, can the correct features be
found even if our first assumptions about the shape of nonlinearity g were wrong [5, 20, 22, 23].

All of the three tasks (finding the number of filters, the filters themselves, and the corresponding
nonlinearity g) can be accomplished using the spike-triggered covariance method as long as inputs
can be described by a multivariate Gaussian [1, 3–6, 20, 24]. If we assume, or are interested in,
finding only one relevant dimension, then finding the relevant dimension and its corresponding
nonlinearity can be accomplished by the classic reverse-correlation or spike-triggered average
(STA) technique. The use of the STA technique with Gaussian inputs is possibly the single most
important example, where the relevant dimension can be found by presuming that the system is
fully linear and still be correct for a linear–nonlinear model (1) [9, 25, 26].

But what if input signals deviate strongly from a multivariate Gaussian distribution? This is the
case for most of the signals derived from real-world stimuli, whether they are visual [27], auditory
[28], or olfactory [18]. According to the method of maximally informative dimensions [22], the
set of relevant dimensions can be found iteratively by maximizing Shannon information between
neural response and stimuli projected onto a set of trial dimensions [22]. The relevance of each
dimension is quantified by the Kullback–Leibler divergence between the probability distribution
of all inputs projected onto the relevant dimension and its version computed for all inputs that
elicited the neural response [22]. The use of other measures of divergence [29, 30] between these
two probability distributions has also been proposed [23]. Here, we will show that optimizing one
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NEURAL FEATURE SELECTIVITY

of them, a Rényi divergence [31] of order 2, corresponds to ‘fitting’ the (nonlinear) model (1) in
the least-square sense to neural data.

Close parallels can be made between the strategies of optimizing information (via Kullback–
Leibler divergence) and variance (via Rényi divergence). In either case, no a priori assumptions
on the shape of nonlinearity function g are made. In particular, it does not need to be monotonic
or invertible, which is an improvement over previous methods of fitting the linear–nonlinear
models as defined by equation (1) to neural data [17, 32–34]. When maximizing information, the
information carried by the arrival of single spikes [21] provides the maximal amount that can
be accounted for by reconstruction with a fixed number of relevant filters. It can therefore be
used to judge the quality of the reconstruction of model (1). A similar quantity can be derived for
variance maximization scheme, cf. equation (16) below. Algorithmically, the numerical schemes of
maximizing information and variance can be identical. For example, the gradient can be computed in
both cases. However, we find that maximizing information allows for more accurate reconstructions
of relevant dimensions than maximizing variance.

FINDING A SINGLE RELEVANT DIMENSION

Let us first tackle the case where the neuron under study generates spikes based on just one relevant
dimension. Our goal is to find this relevant dimension without making any assumptions about the
probability distribution of input signals, as long as these signals are diverse enough to span the
space over which we will be looking for the relevant dimension. Without the Gaussian assumption,
we cannot use any methods that are based on correlation functions. An advantage of those methods
is that they can be reduced to linear algebra problems, which usually are efficient computationally
and can be carried out as the data are being collected. Unfortunately, with non-Gaussian stimuli,
our options are likely to be limited to formulating various optimization problems based on different
cost functions.

Shannon information as an objective function

In the method of maximally informative dimensions, the relevance of possible dimensions is
characterized by the Shannon information between spikes and stimuli [35]. In that framework,
our goal is to try to find dimension v in the input space such that information in the reduced
model (after projecting inputs onto v) and spikes will be equal to the Shannon information of the
full, unprojected stimuli and spikes (more accurately, information carried by the arrival time of
one spike about the input stimuli) [21]. The latter information provides the maximal amount of
information any reduced model can achieve and is formally given by [21]

Ispike =
∫

dsP(s|spike) log2
[
P(s|spike)

P(s)

]
(3)

where ds denotes integration over the full D-dimensional stimulus space. A careful reader might
notice that probability distribution P(s|no spike) does not contribute to the information Ispike.
A detailed explanation can be found in Reference [21], where it is argued that the contribution
from these terms tends to 0 with increasing temporal resolution. In short, fine temporal resolution is
necessary for the proper treatment of binary responses such as absence or presence of a spike. Given
time bins of width �t , P(s|no spike)/P(s) = P(no spike|s)/P(no spike) = (1 − r(t)�t)(1 − r̄�t)
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tends to 1 in the limit when the bin size �t → 0. Alternatively, as is also discussed in [21], Ispike
can be viewed as information about the stimulus carried by the arrival times of single spikes, which
explains the absence of terms based on ‘no-spike’ events.

In practice, stimuli are often presented during physiological recordings at relatively low rates,
for example, 30–60Hz. If spike trains are binned at the same time resolution, multiple spikes can
occur within the same bin. However, stimulus history can always be re-binned at sufficiently fine
temporal resolution (e.g. 1ms) such that multiple spikes do not occur. While this procedure is the
most valid way to apply methods for finding relevant dimensions discussed in this paper, it also
offers clues as to how to deal with the case of coarse time binning. Suppose that, with coarse
time binning, some stimuli elicited multiple ns>1 spikes. If re-binned at fine temporal resolution,
these stimuli would contribute to the spike-conditional stimulus ensemble exactly the number of
times as the number of spikes ns they elicited. Returning to the case of coarse time binning, each
stimulus should thus be counted in the spike-conditional ensemble P(s|spike) as many times as
the number of spikes it elicited, and should be counted once toward the a priori stimulus ensemble
P(s). This argument also underlies the procedure of computing the classic method of STA in the
situation where multiple spikes are elicited.

Let us not be discouraged by the fact that the probability distribution P(s|spike) appearing in
equation (3) is never well sampled. In practice, it will not be needed because it can be inverted
using Bayes’ rule to P(spike|s)/P(spike)P(s):

Ispike =
∫

dsP(s)
P(spike|s)
P(spike)

log2

[
P(spike|s)
P(spike)

]
(4)

The integral over all inputs weighted by their probability distribution P(s) can now be replaced
with a time average [21]:

Ispike = 1

T

∫
dt
r(t)

r̄
log2

r(t)

r̄
(5)

where the time-dependent spike rate r(t) = P(spike|s)/�t is measured in time bins of width �t
using multiple repetitions of the same stimulus sequence. The average firing rate r̄ = P(spike)/�t
is obtained by averaging r(t) in time.

The Shannon information between stimuli and spikes computed according to assumption (1),
with some dimension v as the candidate-relevant stimulus dimension, is given by the Kullback–
Leibler divergence:

I [v] =
∫

dx Pv(x |spike) log2
[
Pv(x |spike)

Pv(x)

]
(6)

where the integral is taken over all projection values, x = s · v, of stimuli s onto dimension v.
In equation (6), the probability distribution Pv(x) describes projection values x in the a priori
stimulus ensemble, and is an average over all inputs varying in all dimensions except for v:

Pv(x)=
∫

dsP(s)�(x − s · v) (7)

where �(x) is a delta-function. Similarly, the probability distribution Pv(x |spike) describes pro-
jection values x for stimuli that lead to spike:

Pv(x |spike) =
∫

dsP(s|spike)�(x − s · v) (8)
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According to (2), the ratio Pv(x |spike)/Pv(x) describes the ‘effective’ input–output function g(x)
along the dimension v. In practice, both of the averages (7) and (8) are calculated by binning the
range of projection values x and computing histograms normalized to sum to 1. (Considerations
for selecting the optimal bin size are discussed below, together with finite data set size effects.)

Obviously, information in the reduced model I [v] cannot be greater than the information between
spikes and unprojected stimuli, Ispike. But is it possible for some other dimension v other than the
true relevant dimension ê1 to provide more information between spikes and projected stimuli? To
understand why this cannot be the case, note that our assumptions of the linear–nonlinear model
(1) also mean that stimuli s, their projections s1 onto the relevant dimension, and spikes form a
Markov chain [23]: s.s1-spike. A data-processing inequality [35] then states that the information
between two variables that are stochastically related to each other (e.g. s1 and ‘spike’) can decrease
only when another variable is added to the chain, remaining constant only if the added variable
can be deterministically obtained from its neighbors in the chain. Thus, I (s, spike) = I (s1, spike),
because s1 is deterministically obtained from s. On the contrary, information along the Markov
chain s · v.s1-spike will be less than the full amount [20, 22, 23, 36]:

I (s · v, spike)<I (s1, spike) = Ispike (9)

because stimulus projections s · v and s1 are related to each other only probabilistically and
solely due to the correlations in the input ensemble. For example, if signals are uncorrelated,
I (s ·v, spike) = 0 for all dimensions v that are orthogonal to the relevant dimension. If v has some
component along the relevant dimension, it is this component that will determine the correlation
between s · v and s1 leading to a nonzero value of I (s · v, spike). For correlated inputs, this is
also the reason for possible positive values of information I [v] even when v is orthogonal to the
relevant dimension [22].

Within this framework, the relevant dimension ê1 is found by maximizing information I [v]
as a function of all components vi of the dimension v. The possible algorithms for numerical
optimization of this function have been described [22, 23, 37] and include a combination of gradient
ascent and simulated annealing.

Variance as an objective function

One alternative to maximizing information is to find dimension v that minimizes a �2 difference
between measured and predicted spike probabilities averaged across all of the inputs:

�2[v]=
∫

dsP(s)
[
P(spike|s)
P(spike)

− P(spike|s · v)
P(spike)

]2
(10)

which can be rewritten using Bayes’ rule as:

�2[v]=
∫

dsP(s)
[
P(s|spike)

P(s)
− P(s · v|spike)

P(s · v)
]2

(11)

If neural spikes are indeed based on one relevant dimension, then this dimension will explain all
the variances, so that �2 = 0. For all other dimensions v, �2[v]>0.
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We can expand the square in (11) and average where possible over all input components, except
for component x = s · v along the trial direction v, to find

�2[v]=
∫

ds
[P(s|spike)]2

P(s)
−

∫
dx

[Pv(x |spike)]2
Pv(x)

(12)

where probability distributions Pv(x) and Pv(x |spike) were defined in equations (7) and (8). Based
on equation (12), in order to minimize �2, we need to maximize

F[v]=
∫

dx

[
Pv(x |spike)

]2
Pv(x)

(13)

which is a Rényi divergence of order 2 between probability distributions Pv(x |spike) and Pv(x).
Rényi divergences of order � between two probability distributions p(x) and q(x)I�[p||q] are
defined as [30, 31]

I�[p||q]= 1

� − 1

∫
dxq(x)

[
p(x)

q(x)

]�

(14)

and are part of a family of f -divergence measures that are based on a convex function of the ratio
p(x)/q(x) (instead of a power �) [29, 30].
The maximal value for F[v] that can be achieved by any dimension v is:

Fmax =
∫

dsP(s|spike)
[
P(s|spike)

P(s)

]
(15)

As in the case of Ispike above, we need not worry about being able to accurately measure P(s|spike).
Similar to the transition from equation (3) to equation (5), we can use Bayes’ rule and the ergodic
assumption to compute Fmax as a time average:

Fmax = 1

T

∫
dt

[
r(t)

r̄

]2
(16)

The fact that F[v]<Fmax can be seen either by simply noting that �2[v]�0 or from the data-
processing inequality applies not only to Kullback–Leibler divergence but also to Rényi divergences
[23, 29, 30]. The same logic leads to a conclusion that information in a given dimension I [v] cannot
be greater than the overall information Ispike between spikes and full, unprojected inputs applies
in this case to variance. In other words, the variance in the firing rate explained by a given
dimension F[v] cannot be greater than the overall variance in the firing rate Fmax. This is because
in computing F[v] we average over all variations in the firing rate that correspond to inputs
with the same projection value on the dimension v and that differ only in projections onto other
dimensions.

Comparing equations (6) and (5) that describe the information-based optimization with
equations (13) and (16) that describe the variance-based optimization strategies for finding rele-
vant dimensions, one may notice that they differ only by the application of logarithm to the ratio
P(x|spike)/P(x). Because the logarithm is a monotonic function, it is not surprising that both
strategies produce the same relevant dimension.
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Furthermore, the numerical algorithms that are good for optimizing I [v] will also work with
F[v]. Most notably, the gradient can be computed for both information [22] and variance
functional:

∇v I =
∫

dx Pv(x |spike)[〈s|x, spike〉 − 〈s|x〉] ·
[
d

dx
log2

Pv(x |spike)
Pv(x)

]
(17)

∇vF = 2
∫

dx Pv(x |spike)[〈s|x, spike〉 − 〈s|x〉] ·
[
d

dx

Pv(x |spike)
Pv(x)

]
(18)

where

〈s|x, spike〉 =
∫
ds s�(x − s · v)P(s|spike)

P(x |spike) (19)

and similarly for 〈s|x〉. The two gradients have a similar form: they are just differently weighted
sums of STAs conditional on the projection values of stimuli onto the dimension v for which the
gradient of information is being evaluated.

Both information I [v] and variance F[v] do not change with the length of the vector. Therefore,
v · ∇v I = v · ∇vF = 0, as can also be seen directly from equations (17) and (18). Also, both of
the two gradients are 0 when evaluated along the true receptive field. This is because, for the true
relevant dimension according to which spikes were generated, 〈s|s1, spike〉 = 〈s|s1〉, a consequence
of Markov chain s–s1-spike property alluded to earlier. The fact that the gradients are zero for the
true receptive field ê1 agrees with the earlier statements that v= ê1 maximizes both information
I [v] and variance F[v].

Illustration

As an illustration of both schemes, let us consider a model visual neuron that responds to stimuli
derived from natural scenes. Visual stimuli were derived from movies of walks through a wooded
area [37], converted to an 8-bit gray scale. Our goal is to demonstrate that even though the
correlations present in the ensemble are non-Gaussian, they can be removed successfully from the
estimate of relevant dimensions. The example model neuron is taken to mimic the properties of
simple cells found in the primary visual cortex. It has a single relevant dimension ê1, which is
phase and orientation sensitive and is shown in Plate 1(a). A given stimulus s leads to a spike if
the projection s1 = s · ê1 reaches a threshold value � in the presence of noise:

P(spike|s)
P(spike)

≡ f (s1) = 〈H(s1 − � + �)〉 (20)

where a Gaussian random variable � of variance �2 models additive noise, and the function
H(x) = 1 for x>0, and zero otherwise. Together with the relevant dimension ê1, the parameters
� for threshold and the noise variance �2 determine the input–output function. In what follows,
we will always measure � in units of standard deviation of stimulus projections onto the relevant
dimensions and use it as a measure of signal to noise.

Plate 1 shows that it is possible to obtain a good estimate of the relevant dimension ê1 by
maximizing information, as shown in panel (b), or variance, as shown in panel (c). The final
value of projection depends on the size of the data set, as discussed below. In the example shown
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in Plate 1, there were ≈ 50 000 spikes with average probability of spike ≈ 0.05 per frame, and
the reconstructed vector has a projection v̂max · ê1 = 0.98 when maximizing either information
or variance. Having estimated the relevant dimension, one can proceed to sample the nonlinear
input–output function. This is done by constructing histograms for P(s · v̂max) and P(s · v̂max|spike)
of projections onto vector v̂max found by maximizing either information or variance, and taking
their ratio, as in equation (2). In Plate 1(d), the spike probability for the reconstructed neuron
P(spike|s · v̂max) (crosses and circles) is compared with the probability P(spike|s1) used in the
model (solid line). A good match is obtained.

In actuality, reconstructing even just one relevant dimension from neural responses to correlated
non-Gaussian inputs, such as those derived from real world, is not an easy problem. This fact can
be appreciated by considering the estimates of relevant dimension obtained from the STA, shown
in panel (e). Correcting the STA by second-order correlations of the input ensemble through a
multiplication by the inverse covariance matrix results in a very noisy estimate, shown in panel (f).
It has a projection value of 0.25. Attempt to regularize the inverse of covariance matrix results
in a closer match to the true relevant dimension [7, 10–12, 38] and has a projection value of 0.8,
as shown in panel (g). In these simulations, the regularization was performed by setting aside 1

4
of the data as a test data set, and choosing a cutoff on the eigenvalues of the input covariances
matrix that would give the maximal information value on the test data set [7, 12, 39]. Despite
the less noisy appearance of the regularized decorrelated STA and its closer match to the true
relevant dimension compared to decorrelated STA, it is also known [7, 22, 37, 40, 41] to have
systematic deviations. These deviations stem from two separate causes: neural noise and non-
Gaussian stimulus correlations (for nonlinear neurons) [22]. Regularization aims to compensate
for effects due to neural noise. Because regularization is done with respect to just one parameter—
the overall smoothness in the relevant dimension—the result is often biased toward lower spatial
frequencies, and can eliminate some of the genuine structure of the relevant dimensions, cf. Plates 1
and 2. Incorporating more adjustable parameters makes the algorithm closer to the full optimization
using information or variance. In Plate 2, we show the spatial frequency tuning along the preferred
orientation for the receptive fields of Plate 1. Despite the relatively large number of spikes used in
these simulations (50 000), the spatial frequency tuning remains altered in the decorrelated STA
before and after regularization.

In the absence of neural noise, there is no justification for the regularization. Even in this case,
the decorrelated STA will differ from the true relevant dimensions, as has been demonstrated
analytically [22, 40, 41] and with numerical simulations [22].

MULTIPLE RELEVANT DIMENSIONS

So far we have considered how to find a single relevant dimension. Typically, neural spiking depends
on more than one relevant dimension. If that is the case, the maximal information accounted for by
the single most informative dimension will be smaller than the overall value Ispike, and similarly
the variance F[v] accounted for by this dimension will be smaller than the maximal value Fmax.
Both measures would then indicate that we need to look for more relevant dimensions.

In the previous section, we considered how the relevance of single dimensions in the input
space can be quantified by the amount of Shannon information (6) or variance (13) they account
for. By analogy, the relevance of several dimensions {v1, . . . , vn} can be computed based on the
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following two multi-point probability distributions of projection values x1, x2, . . . , xn along them:

Pv1,...,vn ({xi }|spike) =
∫

ds
n∏

i=1
�(xi − s · vi )P(s|spike)

Pv1,...,vn ({xi }) =
∫

ds
n∏

i=1
�(xi − s · vi )P(s)

(21)

For example, in the case of two dimensions, the information along the two dimensions v1 and
v2 considered simultaneously is given by [22]

I [v1, v2] =
∫

dx1 dx2P(x1, x2|spike) log2
P(x1, x2|spike)

P(x1, x2)
(22)

Contribution to the variance by these two dimensions can be written in terms of the same two
multi-point probability distributions Pv1,v2(x1, x2) and Pv1,v2(x1, x2|spike) given by equation (21):

F[v1, v2] =
∫

dx1 dx2P(x1, x2|spike) P(x1, x2|spike)
P(x1, x2)

(23)

For a neuron whose spikes are based on two relevant dimensions ê1 and ê2, these dimensions
can be recovered by maximizing either the Shannon information (22) or variance (23) as a function
of two dimensions v1 and v2. The data-processing inequality in this case states that the overall
information between (unprojected) stimuli s and spikes equals information between spikes and
stimuli projected onto the plane of relevant dimensions ê1 and ê2, I (s; spike) = I (s1, s2; spike).
Information will be smaller for all pairs of dimensions {v1, v2} that deviate from the relevant
plane, because projections onto such dimensions will not be deterministically related to stimulus
projections onto the relevant plane. The choice of basis is not restricted in this formulation, any
two nondegenerate linear combinations of relevant dimensions will account for the same amount
of information or variance. Information or variance will not increase if more dimensions are added
to the relevant ones. This can be used as a criterion for determining the number of relevant
dimensions. If either Ispike or Fmax is known, then the number of relevant dimensions could be
determined by iteratively adding the relevant dimensions until these maximal values are reached
within experimental uncertainty.

To find, for example, two most relevant dimensions, one would optimize either I (v1, v2) or
F(v1, v2) with respect to both components describing dimension v1 and dimension v2. In practice,
this could be done by searching for one dimension while keeping the second one fixed, and then
alternating the dimensions being optimized and the one being held fixed [22, 37]. If stimuli are
uncorrelated, then the first most relevant dimension can be found separately, i.e. assuming that no
other dimensions are relevant. The second dimension can be found by maximizing either (22) or
(23) with the first dimension fixed [22]. This can be seen by noting that the gradients of information
or variance along one of the most relevant dimensions (denoted as ê1) are

∇ I (ê1) =
∫

ds1 ds2P(s1, s2)〈s|s1, s2〉 P(spike|s1, s2)−P(spike|s1)
P(spike)

d

ds1
log2

P(s1|spike)
P(s1)

(24)

∇F(ê1) =
∫

ds1 ds2P(s1, s2)〈s|s1, s2〉 P(spike|s1, s2)−P(spike|s1)
P(spike)

d

ds1

P(s1|spike)
P(s1)

(25)
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which can be obtained starting from the expression for the gradient (17) valid for any dimension
and expanding the conditional averages as

〈s|s1〉 =
∫
ds2P(s1, s2)〈s|s1, s2〉

P(s1)
(26)

〈s|s1, spike〉 =
∫
ds2P(s1, s2|spike)〈s|s1, s2〉

P(s1|spike) (27)

In the last expression, 〈s|s1, s2, spike〉 = 〈s|s1, s2〉, because knowledge of the two relevant variables
{s1, s2} determines the spike probability.

Let us consider first the case of uncorrelated inputs. In this case,

〈s|s1, s2〉= a + s1ê1 + s2ê2 (28)

where a is some constant vector. The term with the constant vector a integrates to zero, because∫
ds2P(s1, s2)(P(spike|s1, s2)− P(spike|s2))= 0. Contributions from the terms linear in s1 and s2

of equation (28) in equations (17) and (18) describe the amplitude of the gradient of information
along the dimensions ê1 and ê2, which would be zero for the most informative dimension within
the relevant subspace. In other words, for uncorrelated inputs the most informative dimension
within the relevant subspace is also the most relevant overall.

The above argument also extends to correlated Gaussian inputs. This is because the relevant
dimensions can always be described in the coordinate system that corresponds to independent
axes of the multivariate Gaussian. Rescaling by the standard deviation along these axes converts
the distribution to those of independent inputs where the conditional average (28) is a vector that
depends linearly on s1 and s2. Because rescaling introduces only constant factors that do not depend
on s1 and s2, the linear dependence (28) is unaltered. Thus, the argument based on equation (28)
applies not only to uncorrelated inputs, but also to correlated Gaussian inputs. We can search for
fewer relevant dimensions than are actually relevant without the need to update the already found
relevant dimensions when additional dimensions are introduced, provided stimulus distribution is
a correlated Gaussian one. With natural stimuli, however, it is necessary to allow for the previously
found relevant dimensions to change when searching for additional ones. This is because, in the
presence of non-Gaussian correlations, the single most informative dimension found assuming that
no other relevant dimensions exist might deviate from a plane of two most relevant dimensions
[22]. This statement applies whether we are maximizing information or variance.

COMPARISON OF PERFORMANCE WITH FINITE DATA

When either of the two objective functions is calculated from a finite data set, the optimal vector
v̂ will deviate from the true relevant dimension ê1. The deviation �v= v̂ − ê1 arises because the
probability distributions (7) and (8) are estimated from experimental histograms and differ from
the distributions found in the limit of infinite data size. The effects of noise on the reconstruction
can be characterized by taking the dot product between the relevant dimension and the optimal
vector for a particular data sample: v̂ · ê1 = 1− (1/2)�v2, where both v̂ and ê1 are normalized, and
�v is by definition orthogonal to ê1. The deviation �v= −H−1∇F , where H is the Hessian of the
objective function (either information or variance), and both H and ∇F are evaluated for v= ê1.
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In the limit of infinite data, ∇F(ê1) = 0. However, for a data set of finite size, the gradient will
not be zero, and its magnitude together with the Hessian of the optimization function determines
(in the quadratic approximation) the deviation of the relevant dimension computed for a particular
instantiation of the noise from the true dimension. Just like in the case of optimizing information
[22], the Hessian of variance Hi j when evaluated along the optimal dimension ê1 is a weighted
average of covariance matrices Ci j (x):

Hi j = 2
∫

dx P(x)Ci j (x)

[
d

dx

P(x |spike)
P(x)

]2
(29)

where

Ci j (x)=〈si s j |x〉 − 〈si |x〉〈s j |x〉 (30)

is the covariance matrix of all inputs that have projection x along the optimal dimension.
Let us show that the expected value of the gradient is zero for the optimal direction. We

start by substituting back expression (19) and its analog for 〈s|x〉 into expression (18) for the
gradient:

∇F = 2
∫

dx
∫

ds s�(x − s · v)[PN (s|spike)−P(s)PvN (x |spike)/Pv(x)] d

dx

PvN (x |spike)
Pv(x)

(31)

where subscript N was added to emphasize that probability distributions PN (s|spike) and
PvN (x |spike) are estimated as histograms and will vary across different instantiations of neural
noise, whereas probability distributions P(s) and Pv(x) depend only on the input distribution. Our
assumptions are that different stimuli elicit spikes independently. Given that a particular stim-
ulus pattern s was encountered Ns times in the spike-conditional ensemble, and that there were
Nspike spikes overall, we estimate the spike-conditional probability as PN (s|spike) = Ns/Nspike. On
average, 〈PN (s|spike)〉 = P(s|spike) and, similarly, 〈PvN (x |spike)〉 = Pv(x |spike). Now we can use
our primary assumption (1), P(s|spike) = P(s)P(s1|spike)/P(s1) (s1 represents projections onto
the true relevant dimension) to show that the expected value for the term in square brackets in
(31) is zero. Note that the expected value for the cross-terms

〈[�PN (s|spike) − P(s)�PvN (x |spike)/Pv(x)]�PvN (x ′|spike)〉= 0 (32)

where �PN (s|spike) = PN (s|spike)−P(s|spike) and �PvN (x |spike) = PvN (x |spike)−PvN (x |spike)
describe deviations in the probability distributions due to finite sampling; the expected value in
(32) is zero whether or not x ′ equals x . Putting it all together, we find that the expected value of
the gradient ∇F is zero. In other words, there is no specific direction toward which the deviations
�v are biased.

Next, let us compute the expected spread in the optimal dimensions around the true dimension
ê1. To achieve this, we need to evaluate 〈�v2〉=Tr[H−1〈∇F∇FT〉H−1], where average is taken
over different instantiations of neural noise [42]. In the expression 〈∇Fi∇Fj 〉, the leading terms
are ∼1/Nspike. They arise from covariance of terms in square brackets of equation (31) for the
two gradients. Because fluctuations in estimates of probability distribution for different stimuli are
independent, we have

〈�PN (s|spike)�PN (s′|spike)〉 = P(s|spike)�(s − s′)/Nspike (33)

〈�PvN (x |spike)�PvN (x ′|spike)〉 = Pv(x |spike)�(x − x ′)/Nspike (34)
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Similarly, one can also find, based on (8) and (33), that

〈�PN (s|spike)�PvN (x ′|spike)〉= P(s|spike)�(x ′ − s · v)/Nspike (35)

Using expressions (33)–(35), we find that 〈∇Fi∇Fj 〉 = Di j/Nspike, where

Di j = 4
∫

dx P(x |spike)Ci j (x)

[
d

dx

P(x |spike)
P(x)

]2
(36)

Therefore, an expected error in the reconstruction of the optimal filter by maximizing variance is
inversely proportional to the number of spikes:

v̂ · ê1 ≈ 1 − 1

2
〈�v2〉 = 1 − Tr′[H−1DH−1]

2Nspike
(37)

where Tr′ denotes the trace taken in the subspace orthogonal to the relevant dimension (this is
because deviations along the relevant dimension have no meaning [22], which mathematically
manifests itself in the fact that ê1 corresponds to a zero eigenvalue of matrices H , D, and A
below).

By comparison, the corresponding expected value of the projection between the reconstructed
vector by maximizing information and the relevant direction ê1 was shown to be [22]

v̂ · ê1 ≈ 1 − 1

2
〈�v2〉= 1 − Tr′[A−1]

2Nspike
(38)

where

Ai j =
∫

dx P(x |spike)Ci j (x)

[
d

dx
ln

P(x |spike)
P(x)

]2
(39)

is the Hessian of information evaluated at the optimum.
With either optimization strategy, the error ∼D/(2Nspike) increases in proportion to the

dimensionality D of inputs and decreases as more spikes are collected [22, 23]. Using a version of
the Cauchy–Schwarz inequality, it can be shown that the average expected error for maximizing
information (38) is less than or equal to the average expected error for maximizing variance (37).
While complete derivation is provided in Appendix A.1, an intuition for the derivation can be
obtained by considering the approximation where Ci j (x)=Ci j f (x), where f (x) is some positive
function. Then, matrices A, H , and D can all be written as a product of C and averages of the
combinations of functions a(x) and b(x), defined as

a2(x) = f (x)

[
g′(x)
g(x)

]2
, b2(x)= 4 f (x)[g′(x)]2

Ai j = Ci j

∫
dx P(x |spike)a2(x), Di j =Ci j

∫
dx P(x |spike)b2(x)

Hi j = Ci j

∫
dx P(x |spike)b(x)a(x)

Application of the Cauchy–Schwarz inequality, 〈b2〉/〈ab〉2�1/〈a2〉, where averaging 〈. . .〉 ≡∫
dx P(x |spike) is carried out with respect to the probability distribution P(x |spike), shows that
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the expected error for maximizing information (38) is less than or equal to that for maximizing
variance (38), see Appendix A.1 for a full derivation. The lowest possible error that can be achieved
by any unbiased method is derived in Appendix A.2 based on Fisher information [35].

Compared to the reverse correlation method, both of the expected errors given by equations
(37) and (38) are of the same order as errors expected of the reverse correlation method when it
is applied to Gaussian ensembles. The latter have been shown for correlated [22] and white noise
inputs [6, 23] to be

Tr′[C−1]/[2Nspike〈g′2(s1)〉] (40)

If the gain function g(s1) (which in this case depends only on a single relevant variable s1) is
a relatively sharp sigmoid, then integrals in (29, 36, 39) can be taken by the steepest descent
method [43], and the error estimates associated with maximizing information or variance will be
smaller than those of the reverse correlation method (40) by a factor of g(t), where the value s1 = t
corresponds to the maximum in the derivative of the gain function g(s1). This has been reported to
be observed in numerical simulations [23]. While the errors expected for maximizing information
or variance and those of the reverse correlation technique are similar when applied to Gaussian
inputs, the reverse correlation will have larger errors if applied to the non-Gaussian ensemble.

Performance of the information maximization method was already explored in the relatively
well-sampled regime, with 0.01�D/Nspike�0.1 [22]. For data sets of such size, the expected
errors indeed decrease initially as 1/Nspike. At small spike numbers D/Nspike�0.03, corrections
of ∼N−2

spike become important, but fortunately have a positive sign, so that the purely linear
approximation underestimates the effectiveness of relatively small data sets [22].

The focus of numerical simulations in this paper is on the relatively under-sampled regime,
D∼Nspike, where the asymptotic results (37) and (38) do not necessarily apply. The results of
simulations for various numbers of trials, and therefore numbers of spikes, are shown in Plate 3 as
a function of D/Nspike for four different model visual neurons. The model cells had one relevant
dimension, shown in Plate 1(a). The input–output functions (20) were described by threshold
� = 2.0 and noise standard deviation �= 1.5, 1.0, 0.5, 0.25 for groups labeled A, B, C, and D,
respectively. Across the four different model cells, simulations cover the range 0.1�D/Nspike�3.
Identical numerical algorithms, including the binning procedure, were used for maximizing variance
and information. The only differences between algorithms were, of course, in the expressions for
objective functions and their gradients. Computations were performed with number of bins equal
to 15, 21, 32, and 64 for cells A–D, respectively. These numbers of bins were selected such that,
for each cell, the bin width would be ��/2 and, therefore, adequate sampling of the input–output
function [23] could be achieved. Generally, the bin size should be, on one hand, sufficiently
small to adequately represent the input–output function, but not so small that some bins are not
sampled at all by the ensemble of presented stimuli. This is because both neural noise and binning
approximations (even without neural noise) contribute to errors in estimating the input–output
function. Roughly, the noise contribution is ∼[g(x)]2/[P(x |spike)�x], whereas the error due to
binning approximation is ∼(g′(x))2�x . The optimal bin size is then �x∼g(x)/[g′(x)P(x |spike)].
Typically, the smallest bin size should be in the center of the distribution. For uniform bin size
and a threshold-like nonlinearity, this argument leads to �x��, where � is the width of the
threshold transition. Therefore, more fine binning may be required to describe very sharp input–
output functions. For example, analysis for a model cell D with � = 0.25 was carried out with
64 bins. Given that stimulus projections typically cover the range ±5 when measured in standard
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deviations, the bin size with 64 bins was ≈ 0.16<�. However, the improvement in projection
values of relevant dimensions onto the true relevant dimensions from using 64 bins compared with
15 bins was marginal. Empirically, uniform binning with 15–20 bins covering all of the range of
projection values encountered in the stimulus ensemble is adequate to describe the input–output
functions of neurons in the primary visual cortex [37].

The relevant dimension for each simulated spike train was obtained as an average of four
jack-knife estimates computed by setting aside 1

4 of the data as a test set. While maximizing
information or variance on the training part of the data set, performance of the candidate relevant
dimension was tested on the test data set after each line maximization. The dimension with
the best performance on the test data set was selected as the relevant one. Results are shown
after 1000 line optimizations (D = 900). In Plate 3, we also show results for relevant dimensions
obtained by computing STA, decorrelated STA(dSTA), and regularized decorrelated STA(RdSTA).
Regularization of the dSTA was also performed by setting aside 1

4 of the data as a test data set, and
choosing a cutoff on the eigenvalues of the input covariances matrix that would give the maximal
information value on the test data set [7, 12, 39]. Selecting the dimension for the RdSTA based on
variance, instead of information, did not produce significantly different results (data not shown).

As can be seen in Plate 3, a good reconstruction with projection values >0.7 can be obtained by
maximizing either information or variance, even in the severely undersampled regime of D<Nspike.
By comparison, the methods of STA and dSTA produce dimensions with projection values ∼ 0.3
onto the relevant one. Although the regularized dSTA provides a remarkable improvement over
the dSTA (panel B), it does not outperform full information and variance maximization, even for
the lowest of the spike numbers tested and the lowest signal-to-noise ratio (cell A). In general,
the less noisy the cell is, the more substantial the improvement that can be achieved by doing full
information or variance optimization compared with computing the RdSTA. The same rule applies
to increasing the number of spikes for the same cell. In this case, the most important drawback of
the RdSTA is that it does not converge to the true relevant dimension [22, 40, 41], cf. right panels
of Plates 2 and 3.

Comparison between information and variance optimization strategies reveals that both algo-
rithms result in similar errors throughout the studied range of spike numbers and for different neural
noise levels. Even though most of the error bars (showing standard deviations) overlap, projection
values between the true relevant dimensions and those obtained by maximizing information are
slightly larger in nearly all data points than those for dimensions obtained by maximizing the
variance. This difference was quantified with a paired t-test to be highly significant (p<10−4)
when simulations for all values of spike numbers and noise levels were included. Thus, the same
inequality between errors of the two algorithms that was obtained in the asymptotic limit of large
spike numbers (A11) are also empirically observed for numbers was spikes typical of physiological
recordings.

DISCUSSION

The application of system identification techniques to the study of neural systems has a long history.
While early on it was realized that, for Gaussian inputs [9, 18, 25, 26], the relevant dimensions
can be found without precise knowledge of subsequent nonlinearities, the methods of charac-
terizing neural feature selectivity with non-Gaussian inputs employed an iterative adjustment of
features and corresponding nonlinearities [17, 32, 34, 44]. Such iterative adjustments often require
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inversion of nonlinearities, thus severely limiting the range of neurobiological systems that could
be studied.

The main advantage of information and variance optimization schemes is that they allow one
to bypass the steps of nonlinearity adjustment and its inversion in order to obtain a new estimate
of the relevant dimension. Instead, information and variance optimization strategies consist only
of feature optimization. Information or variance provides a measure to judge the best quality of
a ‘fit’ that could possibly be obtained with a given dimension to the neural data at hand. Their
computation according to equations (6) and (13) is based on an implicit calculation of the best
possible nonlinearity for the candidate dimension and the neural data. In other words, instead
of matching the recorded spike train directly to that predicted by a set of relevant features and
guessed nonlinearities, one can create a measure (not necessarily a least-square one, e.g. Shannon
information) to match the change in the probability distributions upon observation of a spike with
inputs of reduced dimensionality. Ideally,

P(s|spike)
P(s)

= P(s · v|spike)
P(s · v)

could be achieved, with several, if not one, relevant dimensions. Matching probability distribu-
tions offers several advantages. First, the nonlinearity does not need to be inverted, and, in fact,
nonlinearity could be of any form, as long as it is smooth enough to be binned at some reasonable
resolution [23]. Second, there is no need to smooth spike trains in time in order for them to be
compared. As a side bonus, the ratio

F[v]/Fmax (41)

measures the variance explained by the nonlinear model (1) of reduced dimensionality. It is
designed for, and is based on, the binary nature of spike trains. Of course, the relevance of
dimensions found by maximizing information can be double checked by computing the ratio (41)
and, vice versa, relevance of dimensions found by maximizing variance can be quantified using
the ratio I [v]/Ispike.

The important component of both STA and covariance methods is to separate features that
represent overall correlations present in the stimulus ensemble from those that are relevant to
neural response. When inputs are truly white (without any correlations), this is not an issue.
When inputs are described by a correlated Gaussian distribution, both dimensions that describe
a change in the mean (spike-triggered average) [10–12] and the variance (eigenvectors of the
change in variance distribution [1, 5, 7, 20, 21]) need to be ‘decorrelated’ by multiplying them with
the inverse of the stimulus covariance matrix. This procedure is prone to noise amplification and
typically requires regularization [7, 10–12, 22, 37–39]. In inverse problem theory, multiplication
by an inverse of covariance matrix is often transformed into an optimization problem [45], just
as has been done to study the feature selectivity of simple cells in the primary visual cortex [38].
Both information and variance optimization strategies allow one to correct for correlations in the
inputs without an explicit inversion of the input covariance matrix. Intuitively, this is because the
objective function in either case is based on the ratio of probability distributions Pv(x |spike)/Pv(x)
evaluated along the dimension v, cf. Table I. If the dimension v describes mostly input correlations,
then the two probability distributions Pv(x |spike) and Pv(x) will be similar, so that both objective
functions of information or variance, which depend on their ratio, will be small.

As with the methods based on STA, information and variance optimizations are also prone to
overfitting and regularization can make a big difference in predicting power. All of the optimization
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Table I. Comparison of information and variance optimization strategies.

Information Variance

Objective function I [v]= ∫
dx Pv(x |spike) log2 Pv(x |spike)

Pv(x)
F[v]= ∫

dx [Pv(x |spike)]
2

Pv(x)

Kullback–Leibler divergence Rényi divergence (�= 2)

Gradient
∫
dx Pv(x |spike)[〈s|x, spike〉 − 〈s|x〉] 2

∫
dx Pv(x |spike)[〈s|x, spike〉 − 〈s|x〉]

×
[
d
dx log2

Pv(x |spike)
Pv(x)

]
×

[
d
dx

Pv(x |spike)
Pv(x)

]

Maximal value Ispike = 1
T

∫
dt r(t)r̄ log2

r(t)
r̄ Fmax = 1

T

∫
dt

[
r(t)
r̄

]2

Multiple dimensions I [v1, v2]=
∫
dx Pv1,v2(x1, x2|spike)

× log2
Pv1,v2 (x1,x2|spike)

Pv1,v2 (x1,x2)
F[v1, v2]= ∫

dx
[Pv1,v2 (x1,x2|spike)]2

Pv1,v2 (x1,x2)

parameters, i.e. coordinates of the relevant dimension, can be controlled by regularization (via
performance on the test data set) to minimize the effects of overfitting. In contrast, regularization
of the decorrelated STA adjusts only its overall smoothness [38, 46] or, very similarly, the value for
the cutoff in the stimulus covariance matrix separating the well-sampled stimulus dimensions from
the poorly sampled ones [7, 10–12, 39]. Because receptive fields of the linear model (decorrelated
STA) computed with natural stimuli do not principally describe linear filters of the linear–nonlinear
model, their regularization can offset effects due to insufficient data, but also can lead to artifacts in
physiologically important quantities. For example, smoothness constraints directly affect estimation
of frequency tuning. Therefore, it is not clear whether smoothness constraints can be used, for
example, in studies designed to measure stimulus-dependent changes in frequency tuning. As
Plate 2 illustrates, one-parameter regularization of decorrelated STA computed from naturalistic
stimuli can lead to artifacts in frequency tuning. At the same time, numerical results shown in
Plate 3 demonstrate that information and variance optimization outperform the one-parameter
regularization of the decorrelated STA, even for the lowest number of spikes.

The above arguments describing the advantages of information and variance maximization
strategies also apply to optimization strategies that are based on other divergence measures [23].
However, not all divergences might be equally good. For example, gradient-based algorithms could
not be used to optimize Kolmogorov’s measure of ‘variation distance’

∫
dx |P(x |spike) − P(x)|,

which belongs to the class of f -divergence measures [29, 30]. We have also seen that, in the
asymptotic regime, the expected error in relevant dimensions found by maximizing information
is less than or equal to that expected for variance maximization. Both information and variance
maximization produce good matches between the true relevant dimensions and the reconstruc-
tion for a wide range of spike numbers, even for very small number of spikes, cf. Plate 3 and
Figure 1. Even though the difference in performance between information and variance maximiza-
tion strategies can be quite small, it was significant when simulation results for different number
of spikes and neural noise level were combined (p<10−4, paired t-test). One potential reason for
this is the non-Gaussian character of stimulus correlations present in the natural ensemble used in
these simulations. With non-Gaussian inputs, accounting for a certain percentage of information
present in neural responses could be more appropriate than accounting for a certain percentage
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Figure 1. Comparison of performance for small numbers of spikes. Results are shown for three model cells
with the same relevant dimension (leftmost column) and three different noise levels. From top to bottom,
� = 1.5, 1.0, and 0.5, measured in units of standard deviation of stimulus projections along the relevant
dimension. Receptive fields shown correspond to the leftmost points of the curves labeled A, B, and C

in Plate 3, and were computed with approximately 2100, 1200, and 500 spikes, respectively.

of variance. This makes the problem of finding relevant dimensions one of the few examples
where information-theoretic measures are no more data limited than the variance-based measures.
The key feature of the problem that makes this possible is its low-dimensional character: during
optimization, information (variance) needs to be estimated only with respect to one dimension, or
perhaps several dimensions, at a time.

SUMMARY

It is shown here that the least-square fitting of a linear–nonlinear model to a spike train can be
transformed into an optimization problem for finding the relevant dimensions as those that account
for most variance in the neural response. The resulting optimization strategy was proposed in [23],
and has a structure similar to the optimization scheme of searching for maximally informative
dimensions [22]. Both methods do not assume a particular form of the input–output function.
Multiple dimensions can be found by iteratively adding relevant dimensions to the model and
simultaneously optimizing the relevant dimensions. Either of the two methods can be used with
stimulus ensembles of arbitrary statistical properties, as long as stimuli span the space of possible
relevant dimensions. Thus, information and variance optimization can be used even with those
ensembles that are strongly non-Gaussian, such as in the case of natural signals. The performance
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of both methods has been demonstrated here on model neurons responding to natural movies.
With finite data, the two algorithms have similar convergence rates in the limit of large numbers of
spikes (studied analytically) and at medium-to-small numbers of spikes (studied numerically). In
the limit of large spike numbers, the expected error for relevant dimensions found by maximizing
information was found analytically to be less than or equal to that with variance maximization.
Slightly, but significantly, smaller errors associated with information maximization, compared
variance optimization were also observed in numerical simulations with medium-to-small numbers
of spikes. Both information and variance optimization strategies outperformed methods based
on STA for nearly all values of spike numbers, with similar performance for the lowest spike
numbers.

APPENDIX

A.1. Comparison of asymptotic errors for information and variance optimization

The error expected for information maximization from equations (38) and (39) is

〈�v2〉information = Tr′[A−1]
2Nspike

, Ai j =
∫

dx P(x |spike)Ci j (x)

[
g′(x)
g(x)

]2
(A1)

and the gain function g(x)= P(x |spike)/P(x). Because covariance matrices Ci j (x) are symmetric
and positive definite, they can be represented as Ci j (x)= �ik(x)� jk(x), where sum over k is implied
(the exact expression of matrices � will not be important). Then, matrix A can be written as an
average over the probability distribution P(x |spike) of the product of matrix a and its transpose:

A=
∫

dx P(x |spike)a(x)aT(x), ai j (x)= �i j (x)
g′(x)
g(x)

(A2)

In the case of variance optimization, the expected error from equations (29)–(37) is

〈�v2〉variance = Tr′[DH−2]
2Nspike

(A3)

where

Di j = 4
∫

dx P(x |spike)Ci j (x)[g′(x)]2, Hi j = 2
∫

dx P(x |spike)Ci j (x)
[g′(x)]2
g(x)

(A4)

Similar to the matrix A in (A2), matrices H and D can also be written as an average over the
same probability distribution P(x |spike):

D=
∫

dx P(x |spike)b(x)bT(x), H=
∫

dx P(x |spike)a(x)bT(x), bi j (x)= 2�i j (x)g
′(x) (A5)

To summarize, the errors associated with maximizing information and variance are determined
by three matrices, each of which can be written as an average:

A=〈aaT〉P(x |spike), D =〈bbT〉P(x |spike), H = 〈abT〉P(x |spike) = 〈baT〉P(x |spike) (A6)
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In the rest of this section, 〈. . .〉 will mean averaging with respect to the probability distribution
P(x |spike), and we will omit the explicit reference to it.
The derivation will closely follow the logic of deriving the Cauchy–Schwarz inequality (as in

Reference [47, p. 120]). We consider the following matrix:

M =〈(〈bbT〉a − 〈abT〉b)(aT〈bbT〉 − bT〈baT〉)〉 (A7)

This matrix is, by construction, positive definite. Using expressions (A6), it is equal to

M = DAD − HHD − DHH − HDH (A8)

To connect with expressions (A1) and (A3) for expected standard deviations in estimates of the
relevant dimension, we consider a trace of the matrix H−1A−1MD−1. This matrix is also positive
definite, being a product of the positive-definite matrices:

Tr(H−1A−1MD−1H−1) = Tr(H−1DH−1) − Tr(A−1D−1H2DH−2)

−Tr(A−1) + Tr(A−1D−1HDH−1) (A9)

To verify that Tr(A−1D−1HDH−1) =Tr(A−1), we introduce matrix K = HD−1. Then,
Tr(A−1D−1HDH−1) =Tr(A−1KTK−1), where we have used the fact that matrices H and
D are symmetric. Because trace can be computed in any basis, we evaluate it in the basis
where matrix K is diagonal. In this basis, KT and K−1 will be diagonal as well, so that
Tr(A−1D−1HDH−1) =Tr(A−1). An identical argument can be used to show that Tr(A−1D−1H2

DH−2) =Tr(A−1) (in this case K = H2D−1). Expression (A9) is therefore given by

Tr(H−1A−1MD−1H−1) =Tr(H−1DH−1) − Tr(A−1)�0 (A10)

where we have used the fact that the trace of a positive-definite matrix Tr(H−1A−1MD−1))�0. As
a final note, we point out that the two traces in equation (A10) should be taken with respect to all di-
rections in the stimulus space, except for the relevant dimension, so that Tr′(H−1DH−1)�Tr′(A−1).
This is because we are computing deviations between the true relevant dimension and its estimates,
which by definition can only be orthogonal to it. Mathematically, this is manifested by the zero
eigenvalue that all three matrices A, D, and H exhibit when applied to the relevant dimension
vector (all three matrices are linearly related to Ci j (x), which is zero along the relevant dimension).
Thus, the inverse of each of these three matrices is not even well defined in all of the stimulus
space, only in the subspace orthogonal to the relevant dimension. This is precisely the subspace we
are interested in when considering reconstruction errors for the relevant dimension. To summarize,
in the asymptotic regime of large spike numbers, the expected error for relevant dimensions found
by maximizing information is less than or equal to the expected error in relevant dimension found
by maximizing the variance

〈�v2〉information�〈�v2〉variance (A11)

A.2. Fisher information for estimating a single relevant dimension

Here, we compute the lower bound on the reconstruction error for a single relevant dimension.
According to the Cramér–Rao inequality [35], the lowest variance in estimating relevant dimensions
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that can be achieved by any unbiased method is equal to a trace of the inverse of the Fisher
information matrix:

〈�v2〉=Tr′[I−1
F ] (A12)

where the Fisher information matrix IF depends on the likelihood P(spike, s|v) that the response—
‘spike’—co-occurred with a particular stimulus s, given our model for the data. In this paper, a
model for the data is specified by the relevant dimension v:

IFi j = N
∫

dsP(spike, s|v)�vi [ln P(spike, s|v)]�v j [ln P(spike, s|v)] (A13)

Here, N is the total number of stimulus presentations. This factor arises because Fisher informa-
tion is additive for independent measurements [35]. To transform expression for the likelihood,
we will first use the fact that the stimulus likelihood does not depend on relevant dimension:
P(spike, s|v) = P(s)P(spike|s, v). According to our models (1) and (2), the spike probability for
a given stimulus depends only on its projection onto the relevant dimension. Therefore,

P(spike, s|v) = P(s)P(spike|s · v) = P(s)P(spike)g(s · v) (A14)

We can now substitute this expression for the likelihood into the expression (A13) for the Fisher
information matrix. Taking into account that the first two factors in (A14) do not depend on v and
that N P(spike) = Nspike, we get

IFi j = Nspike

∫
dsP(s)g(s · v)�vi [ln g(s · v)]�v j [ln g(s · v)] (A15)

Integrating over all stimulus components other than the component x = s · v along the relevant
dimension, we get

IFi j = Nspike

∫
dx Pv(x |spike)�vi [ln g(x)]�v j [ln g(x)] (A16)

Using expressions (7) and (8) for the probability distributions Pv(x |spike) and Pv(x), we find that
the gradient of ln g(x)= ln[Pv(x |spike)/Pv(x)] is given by

�vi [ln g(x)] = �vi Pv(x |spike)
Pv(x |spike) − �vi Pv(x)

Pv(x)

=
d

dx
[〈si |x, spike〉P(x |spike)]

Pv(x |spike) −
d

dx
[〈si |x〉P(x)]
Pv(x)

(A17)

Fisher information matrix is evaluated at the maximum of the likelihood function at the true
relevant dimension v= ê1. Stimulus projections along the true relevant dimensions provide a
sufficient statistic for the ‘spike’ response, so that 〈si |s1, spike〉 = 〈si |s1〉 (this can also be verified
directly, using P(s|spike)/P(s) = P(s1|spike)/P(s1)). Therefore,

�vi [ln g(x)]= 〈si |x〉
[
d

dx
ln

P(x |spike)
P(x)

]
, x ≡ s1 (A18)
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Putting it all together, we find that the Fisher information matrix is given by

IFi j = Nspike

∫
dx P(x |spike)〈si |x〉〈s j |x〉

[
d

dx
ln

P(x |spike)
P(x)

]2
(A19)

By comparison, the variance of relevant dimensions computed by maximizing information from
(39) is inversely proportional to a trace of matrix A:

Ai j = Nspike

∫
dx P(x |spike)(〈si s j |x〉 − 〈si |x〉〈s j |x〉)

[
d

dx
ln

P(x |spike)
P(x)

]2
(A20)

According to the Cramér–Rao bound, Tr′[I−1
F ]�Tr′[A−1]. Matrices IF and A have very similar

structures, and it might be possible that the two traces, computed in the subspace orthogonal to
the relevant direction, are equal to each other for some types of stimulus distributions and input–
output nonlinearities. In those situations, maximizing information provides the lowest possible
reconstruction error. It remains to be determined whether maximizing objective functions based
on other f -divergences [23] could saturate the Cramér–Rao bound.
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Plate 1. Analysis of a model visual neuron with one relevant dimension shown in (a). Panels (b)
and (c) show normalized vectors v̂max found by maximizing information and variance, respec-
tively; (d) the probability of a spike P(spike|s · v̂max) (blue crosses—information maximization, red
circles-variance maximization) is compared to P(spike|s1) used in generating spikes (solid line).
Parameters of the model are �= 0.5 and � = 2, both given in units of standard deviation of s1,
which are also the units for the x-axis in panels (d, h). The spike-triggered average (STA) is shown
in (e). An attempt to remove correlations according to the reverse correlation method, C−1

a priorivsta
(decorrelated STA), is shown in panel (f) and in panel (g) with regularization, as described in the text
and in Reference [37]. In panel (h), the spike probabilities given as projections onto the dimensions
obtained as decorrelated STA (blue crosses) and regularized decorrelated STA (red circles) are

compared with a spike probability used to generate spikes (solid line).
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Plate 2. Spatial frequency profiles along the preferred orientation for relevant dimensions from Plate 1. The
left panel shows spatial frequency profiles for the relevant dimensions obtained by maximizing variance
(blue line, left panel) and information (red line, left panel). The right panel shows the same analysis for rele-
vant dimensions obtained as decorrelated STA before (gray) and after regularization (green). The black line
in both panels shows the spatial frequency profile for the true relevant dimension. Despite the rather large
number of spikes (50 000) used in these simulations, the decorrelated STA remains biased toward higher
spatial frequencies, while the regularized decorrelated STA remains biased to low spatial frequencies.
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Plate 3. Projection of vector v̂max obtained by maximizing information (red filled sym-
bols) or variance (blue open symbols) on the true relevant dimension ê1 is plotted
as a function of ratio between stimulus dimensionality D and the number of spikes
Nspike, with D = 900. Simulations were carried out for model visual neurons with one
relevant dimension from Plate 1(a) and the input–output function described by threshold
�= 2.0 and noise standard deviation � = 1.5, 1.0, 0.5, and 0.25 for groups labeled A
(
-symbols), B (�-symbols), C (©-symbols), and D (�-symbols), respectively. All
parameter values are given in units of standard deviation of stimulus projection val-
ues along the relevant dimension. The left panel also shows results obtained using
spike-triggered average (STA, gray) and decorrelated spike-triggered average (dSTA,
black). In the right panel, we replot results for information and variance optimization
together with those for regularized decorrelated spike-triggered average (RdSTA, green
open symbols). All error bars show standard deviations. Information and variance op-
timization outperform the methods of STA and dSTA (panel A) by a large margin, and
also provide better or equal (for very low spike number) results compared with RdSTA,
cf. right panel. As expected, none of the three methods based on STA converge to the
true relevant dimension for large spike numbers. While maximizing information or vari-
ance produces similar results, information maximization achieves significantly smaller
errors than the variance maximization when compared across all simulations for the

four different model cells and spike numbers (p<10−4, paired t-test).
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