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We consider here how to separate multidimensional signals into two categories, such that the binary decision transmits the
maximum possible information about those signals. Our motivation comes from the nervous system, where neurons process
multidimensional signals into a binary sequence of responses (spikes). In a small noise limit, we derive a general equation for
the decision boundary that locally relates its curvature to the probability distribution of inputs. We show that for Gaussian
inputs the optimal boundaries are planar, but for non–Gaussian inputs the curvature is nonzero. As an example, we consider
exponentially distributed inputs, which are known to approximate a variety of signals from natural environment.
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INTRODUCTION
What we know about the world around us is represented in the

nervous system by sequences of discrete electrical pulses termed

action potentials or ‘‘spikes’’ [1]. One attractive theoretical idea,

going back to the 1950s, is that these representations constructed

by the brain are efficient in the sense of information theory [2–4].

These ideas have been formalized to predict the spatial and

temporal filtering properties of neurons [5–9], as well as the shapes

of nonlinear input/output relations [10], showing how these

measured behaviors of cells can be understood as optimally

matched to the statistical properties of natural sensory inputs.

There have been attempts, particularly in the auditory system, to

test directly the prediction that the coding of naturalistic inputs is

more efficient [11–15], and this concept of matching has been

used also to predict new forms of adaptation to the input statistics

[16–21]. Despite this progress, relatively little attention has been

given to the problem of optimal coding in the presence of the

strong, threshold–like nonlinearities associated with the generation

of spikes [22].

Sensory inputs to the brain are intrinsically high dimensional

objects. For example, visual neurons encode various patterns of

light intensities that, upon moderate discretization, become vectors

in 102–103 dimensional space [23,24]. We can think of the

‘‘decision’’ to generate an action potential as drawing boundaries

in these high dimensional spaces, so that a theory of optimal

coding for spiking neurons is really a theory for the shape of these

boundaries. In the simplest perceptron-like models [25], bound-

aries are planar, and spiking thus is determined by only a single

(Euclidean) projection of the stimulus onto a vector normal to the

dividing plane. In the perceptron limit, the optimal choice of

decision boundaries reduces to the choice of an optimal linear

filter. But a number of recent experiments suggest that neurons,

even in early stages of sensory processing, are sensitive to multiple

stimulus projections, with intrinsically curved decision boundaries

[17,24,26–30]. Here we try to develop a theory of optimal coding

for spiking neurons in which these curved boundaries emerge

naturally.

We consider a much simplified version of the full problem. We

look at a single neuron, and focus on a small window of time in

which that cell either does or does not generate an action

potential. We ignore, in this first attempt, coding strategies that

involve patterns of spikes across multiple neurons or across time in

single neurons, and ask simply how much information the binary

spike/no spike decision conveys about the input signal. Let this

input signal be a vector r in a space of d dimensions and let the

distribution of these signals be given by P(r). Note that what we

call ‘‘the input signal’’ could in fact reflect the recent history of the

physical inputs; we are interested in all aspects of the input that are

(potentially) relevant to the question of whether a single neuron

will generate an action potential in some small window of time. If

the binary output of the neuron is m, we are interested in

calculating the mutual information I(m,r) between m and the input

r.

ANALYSIS
We can always write the information as a difference between two

entropies [1,31], the response entropy and the noise entropy:

I(m,r) = Hresponse2Hnoise. This expression holds for any model of

neural noise and response probability [31]. Differences between

models for neural noise and response generation will affect

particular expressions for these two terms. In our simplified

problem, with a single neuron giving binary responses, the

response entropy,

Hresponse~{plogp{(1{p) log (1{p), ð1Þ

is completely determined by the average spike probability p. We

might imagine that this probability is set by constraints outside the

problem of coding itself. For example, generating spikes costs

energy, and so metabolic constraints might fix the mean spike rate
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[32–35]. Our problem, then, is to find coding strategies that

minimize the noise entropy at fixed p.

In the absence of noise, the coding scheme which maps signals

into spikes (or their absence) is a boundary in the d–dimensional

space of inputs. Figure 1 illustrates a hypothetical coding scheme

for two-dimensional inputs. In general, stimuli do not explore the

input space uniformly. In Figure 1 we illustrate one example

probability distribution as a color-plot, with darker values for more

common inputs and whiter values for more rare inputs. The

probability distribution is normalized to sum to 1 over all of the

possible inputs. Therefore, if spikes mostly occur in some domain

G (the boundary of this region is shown with a solid red line in

Figure 1), then the average spike probability p would just equal to

the probability that inputs would fall within the spike region:

p~
Ð

G
ddrP(r). In the absence of neural noise, all codes with the

same value of p would transmit the same amount of information,

and there would be an infinite set of nominally optimal domains G.

We will work in an approximation where the noise is small. We

will allow for the noise magnitude to vary with the stimulus to

account for the fact that, for example, noise level could be larger for

inputs of large magnitude. Then if the boundary of the spiking

domain is some (d-1 dimensional) surface c, as illustrated by a solid

red line in Figure 1, we expect that responses far from this boundary

are essentially deterministic and do not contribute to the noise

entropy; all of the contributions to Hnoise should arise from a narrow

strip surrounding the boundary c. Within this strip, the response is

almost completely uncertain. Thus we can approximate the noise

entropy by saying that it is ,1 bit inside the strip, and zero outside;

the total noise entropy is then the mass of probability inside the strip.

The width of the strip is proportional to the strength of the noise,

and if noise is small the probability distribution of inputs does not

vary significantly across this width. Thus, we can write the overall

noise entropy as an integral along the decision boundary c:

Hnoise c; P(r)½ �&
ð

c

dsP(r)s(r), ð2Þ

where ds is the infinitesimal surface element of dimension d-1 on the

decision boundary c and s(r) is the amplitude of the noise for inputs

at location r. The exact shape of the nonlinear function describing

how spike probability changes across the domain boundary might

introduce additional numerical factor of order unity in Eq. (2), but

these factors can always be accounted for by defining s to be the

effective noise level.

While our choice of threshold–like transitions between spiking

and non–spiking regions considerably narrows the types of possible

input-output transformations, it still leads, as we show below, to

highly nontrivial, yet tractable, solutions. We will treat the local

noise length scale s(r) as a pre-defined function; it can take

arbitrary positive values and will set the units for locally measuring

contours’ curvature and + ln P(r).

Taking into account that the response entropy Hresponse only

depends on the average spike probability, the optimal contour

providing maximal information may be found by minimizing

F~

ð
c

dss(r)P(r){l p{

ð
G

ddrP(r)

� �
, ð3Þ

where l is the Lagrange multiplier incorporating the constraint for

the average spike probability p. To find an optimal contour, we

look for a contour such that the functions F would not change, to

the first approximation, under small perturbations dr in the

contour shape, cf. Figure 1. Two effects take place with any

perturbation of the contour. First, the contour will now be

positioned at slightly different points, so that there will be a change

in the values of input probability distribution that contribute to the

functional F. This effect contributes a term !+ s(r)P(r)½ � to the

first order variation in the value of F. The second effect of

perturbing a contour is that the overall length of the contour

changes. This effect can be quantified locally through a change in

the arc length element ds~
ffiffiffiffiffiffiffiffiffiffiffi
dr:dr
p

. For two-dimensional inputs,

cf. Figure 1, the arc length element changes with perturbation by

a factor 1z dr
ds
: ddr

ds

� �
. It can be verified that only perturbations

along the contour’s normal could possible change the value of the

functional. Then, the change in the arc length element can be

written as a dot product between the tangent vector to the contour

t̂~dr=ds and the change in the direction of the normal n̂ of the

contour along the contour, dn̂=ds : 1z dr
ds
: ddr

ds
~1ẑt: dn̂

ds
(dr:n̂).

One might recognize here the expression for the curvature,

k~t̂: d n̂
ds

[36]. Thus, a first-order change in the arc length (and

overall length of the contour) is observed only for curved contours.

In the case of straight lines, for example, there is no first-order

change in the arc length element. This result can be generalized to

inputs of arbitrary dimensionality by taking into account that (i)

now there will be a set of tangent vectors t̂1,t̂2, � � � ,t̂d{1

� �
defining

the tangent plane, and that (ii) the change in the surface element is

affected by a change in the direction of the normal n̂ to the contour

along all of tangent vectors, k~
P

t̂i
: dn̂

dsi
~divn̂, where k is the

total curvature of the decision boundary c. Putting it all together,

we find that the first order variation in the functional F for

multidimensional inputs is given by.

dF~cdsdr\(s) ks(r)P(r)zn̂n:+ s(r)P(r)½ �zlP(r)½ �: ð4Þ

Because perturbations at various points along the surface are

independent, the optimal contour should satisfy:

lzs(r) kzn̂:+ln(sP)
� 	

~0, ð5Þ

First, let us consider the simplest case where inputs are

uniformly distributed and noise level is constant. In this case, the

no spike

spike
δr

G γ

σ

Figure 1. Schematic illustration of a hypothetical decision boundary
relative to the input probability distribution, shown as a color plot. In
this case, the decision boundary (red solid line) is shown as extending
to infinity, but closed contours are also possible. Variations in contours’
shape (as illustrated with a dashed curve) not only shift the position of
the decision boundary relatively to the input probability distribution,
but also change the overall length of the contour and its infinitesimal
arc length element.
doi:10.1371/journal.pone.0000646.g001
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optimal contours obtained according to Eq. (5) are circles. The

circle radius is determined by the average firing rate, which in this

case equals its area. The fact that a circle turns out to be an

optimal solution for uniform inputs is, perhaps, not surprising.

After all, the optimization problem we consider is related to the

theory of minimal surfaces, which have the smallest circumference

for a given area. A circle is the most obvious example of a minimal

surface. In the context of information transmission, fixing the

average firing rate is equivalent to fixing the enclosed area,

whereas minimizing noise entropy is equivalent to minimizing the

circumference in the case of minimal surfaces. Despite its

simplicity, the finding that optimal decision contours are circles

for uniform probability distribution indicates possible functional

advantages of the circular symmetry observed for receptive fields

in the retina. After all, in the case of retinal processing, the

probability to have certain intensity value is uniform across space.

Below we solve Eq. (5) to find optimal decision boundaries for two

example non-uniform probability distributions: a Gaussian and the

exponential. The exponential distribution is important not only as

an example of non–Gaussian inputs, but also because it captures

some of the essential statistical properties found in real–world

signals [37,38]. In these examples, we assume that the noise level

does not depend on stimulus coordinate. With constant noise level,

parameter l can be rescaled by a factor of s, so there is only one

parameter in the problem.

Consider the case of uncorrelated Gaussian inputs

P(r)~(2p){d=2exp(�r2=2), where the equation for optimal

contours takes the form:

lzk{n̂:r~0: ð6Þ

The families of possible solutions, include circles [l= R-(d-1)/R,

where R is the circle radius] and straight lines k= 0 [l= R, where

R, in this case, is the smallest distance from the line to the origin].

Circles and straight lines turn out to be the only possible smooth

contours. Other smooth contours are not possible because the

mean curvature increases exponentially with distance (k!er2=2),

causing contours to self–intersect before a closed smooth contour

can be obtained.

To choose between circles and straight lines, we calculate the

noise entropy as a function of spike probability p in both cases.

From Eq (2), we see that Hnoise is proportional to the noise level s,

so in what follows we compute the noise entropy in these units. For

a circle in two dimensions, the noise entropy is given by

Hcircle~Rexp(�R2=2). If we presume that spikes occur whenever

inputs fall outside of the circle, the corresponding average spike

probability is given by Poutside�a�circle~exp({R2=2). Thus,

within the family of circular solutions, there is a one-to-one

correspondence between the noise entropy and the average spike

probability. It follows from Eq. (6) that the Lagrange multiplier is

l= R2(d21)/R.

For straight lines a distance R from the origin, the noise entropy

is given by Hline~exp(�R2=2)=
ffiffiffiffiffiffi
2p
p

(the integral of the

probability distributions with respect to component along the line

gives 1). The spike probability associated with a line a distance R

from the origin can be obtained by integrating the probability

distribution from the line to infinity (on the side where spikes are

thought to occur). This leads to an error function, with

Pline~ 1{erf(R=
ffiffiffi
2
p

)
� 	

=2. Thus, there is a one-to-one relation-

ship between the threshold value R and the average firing rate

Pline. From Eq. (6), we find that the Lagrange multiplier l = R.

Knowing the threshold value R, one can then look up the

corresponding value of the noise entropy Hline. Therefore,

similarly to the case of circular decision boundaries, within the

family of planar threshold decisions there is also a one-to-one

relationship between the average firing rate and the noise entropy.

Comparing the noise entropy as a function of the corresponding

average spike probability both the family of circular and linear

solutions, we find that threshold decisions with respect to straight

lines lead to smaller values of noise entropy, and therefore larger

values of information transmitted, for all values of average spike

probability, cf. Figure 2.

This result can be generalized to inputs of arbitrary di-

mensionality. Expressions for entropy and probability for straight

lines do not change with dimensionality d, while the corresponding

values for circles are:

H
(d)
circle ~

2Rd{1e{R2=2

2d=2C( d
2

)
, ð7Þ

P
(d)
outside�a�circle ~

C( d
2

, R2

2
)

C( d
2

)
, ð8Þ

where C(n,x)~
Ð?

x
dte{ttn{1 is the incomplete Gamma function.

In Figure 2 we plot these solutions to show that for any probability

p and dimensionality d, the optimal separation is with straight

boundaries. This result also holds for correlated Gaussian inputs,

where the optimal hyper-plane is the one which intersects the axis

of largest variance and is parallel to other coordinate axes. Thus,

the presence of correlations between input signals lifts the

degeneracy of optimal solutions observed in the uncorrelated

case. Whereas, in the case of white Gaussian inputs, any line with

the same smallest distance R from the origin, provides equivalent

encoding in terms of information transmission regardless of its

orientation, the presence of correlations breaks the spherical

symmetry, so that there is only one optimal decision line in the

case of encoding correlated Gaussian inputs.

As an example of a non–Gaussian probability distribution, we

consider an exponential distribution in two dimensions (2D):

P(x,y)~ 1
4

e{ xj j{ yj j. The local equation for optimal contours (5)

can be written parametrically:

dx

ds
~cosw,

dy

ds
~sinw,

dw

ds
~lzsinw{cosw, xw0,yw0 ð9Þ

where angle Q determines the tangent t̂~(cosw,sinw) and normal

0.2 0.4 0.6 0.8 1
P

0.1

0.2
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0.6
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22'
d=2
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d=10

d=10
4

3

2

Figure 2. Comparison of noise entropies for straight line solutions (1)
and circles with spiking on the outside (2) or inside (29) for Gaussian
inputs. The entropy for circular solution depends on the dimensionality
d of inputs as illustrated here in the case of spiking outside of a circle.
doi:10.1371/journal.pone.0000646.g002

Neural Decision Boundaries

PLoS ONE | www.plosone.org 3 July 2007 | Issue 7 | e646



n̂~({sinw,cosw) of the curve, as well as the curvature k= 2dQ/

ds. Solutions in other quadrants can be obtained from Eq. (9) by an

appropriate change of variables.

For l= 61, the family of optimal contours includes straight

lines parallel to coordinate axes. Such straight lines represent 1D

threshold decisions, and in this case the noise entropy equals the

spike probability, decreasing exponentially with the threshold R for

decision x.R:

Hindependent~Pindependent~exp (�R)=2 ð10Þ

The only other straight line solution that satisfies the optimality

condition in Eq (9) is a line y = 6x; it corresponds to spike

probability p = 1/2. Straight lines of the same angle that do not

pass through the origin do not satisfy the optimality condition,

but they provide a useful benchmark for other solutions in

the middle range of probabilities 0:2[p[0:8, where they

are better than the straight lines parallel to the axes:

Hp=4~
ffiffiffi
2
p

(Rz1)exp(�R)=4, Pp=4~(Rz2)exp(�R)=4, as illus-

trated in Figures below.

Within a single quadrant, the optimal solution can be found

explicitly in terms of angle Q relative to the starting point where

Q = Q0, x0 = x(Q0), and y0 = y(Q0):

x(Q)zy(Q)~x0zy0zln
lzsinQ{cosQ

lzsinQ0{cosQ0

y(Q){x(Q)~y0{x0zQ{Q0{l s(Q){s(Q0)½ � ð11Þ

where arc length s(Q) depends on the angle Q as:

s(w)~

1ffiffiffiffiffiffiffiffiffi
2{l2
p ln u(w){1

u(w)z1
, lj jv

ffiffiffi
2
p

(13)

2ffiffiffiffiffiffiffiffiffi
l2{2
p tan�1u(w), lj jv

ffiffiffi
2
p

8><
>: , ð12Þ

u(w)~(1z(lz1)tan(w=2))=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2{2


 

q

:

These solutions are similar to a logarithmic spiral for lj jw
ffiffiffi
2
p

, and

to a hyperbola for lj jv
ffiffiffi
2
p

, with asymptotes at

p=4{arcsin(l=
ffiffiffi
2
p

) and 5p=4zarcsin(l=
ffiffiffi
2
p

). Asymptotes them-

selves are valid solutions within a quadrant; they will be part of

a global solution. For all l, the solution (12) within a quadrant

intersects coordinate axes where it should be matched with similar

solutions in other quadrants.

The possible types of global solutions are shown in Figure 3.

They could be either closed (‘‘stretched circles’’; A) or extended (B

and C). For the 2D exponential distribution, no curved solutions

that extend to infinity and are confined to one or two quadrants

can exceed the efficiency level of H = P achievable by straight lines

parallel to the axes (11). This is due to the arc length factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z(y0(x))2

q
in the noise entropy H~

Ð?
r

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1zy02

p
e{x{y(x),

which is absent in P~
Ð?

r
dxe{x{y(x), so that H.P for all such

solutions. This argument does not apply to solution spanning three

quadrants or four quadrants, shown Figure 3. For lj jv
ffiffiffi
2
p

,

extended solutions can be formed by connecting asymptotes in two

separate quadrants with a convex curve described by Eqs. (12,13).

We will refer to such extended solutions as B or C depending upon

whether the curved segment passes through one or two quadrants,

cf. Figure 3. Extended solutions B are symmetric around y = x line,

and exist only for 21,l,0, while extended solutions C are

symmetric around x = 0 line, and exist for 21,l,1.

For all types of global solutions (A–C), boundary conditions

specify a unique curve for each value of l. In all cases, both

entropy and probability can be found exactly as a function of l.

For solutions A we find

HA~
2{l(lz1)DsA

2{l2
e{RA , ð13Þ

PA~ 1z
(lz1)DsA{l

2{l2

� �
e{RA , ð14Þ

where the arc length is given by DsA~ 1ffiffiffiffiffiffiffiffiffi
2{l2
p ln lz2z

ffiffiffiffiffiffiffiffiffi
2{l2
p

lz2{

ffiffiffiffiffiffiffiffiffi
2{l2
p , if

{1vlƒ

ffiffiffi
2
p

, and DsA~ 2ffiffiffiffiffiffiffiffiffi
l2{2
p p

2
{tan�1 lz2ffiffiffiffiffiffiffiffiffi

l2{2
p

� �
, if l§

ffiffiffi
2
p

.

The size of the curved segment is RA~p=4{lDsA=2. These

solutions are continuous at l~
ffiffiffi
2
p

.

For extended solutions B, the entropy and probability become

HB~e{RB
2(

ffiffiffiffiffiffiffiffiffiffiffiffi
2{l2

p
{l){lDsB(lz

ffiffiffiffiffiffiffiffiffiffiffiffi
2{l2

p
)

4(2{l2)
ð15Þ

PB~e{RB
4{l2{l

ffiffiffiffiffiffiffiffiffiffiffiffi
2{l2

p
zDsB(lz

ffiffiffiffiffiffiffiffiffiffiffiffi
2{l2

p
)

4(2{l2)
, ð16Þ

where the arc length DsB~{ ln(1zl
ffiffiffiffiffiffiffiffi
2�l2
p

)ffiffiffiffiffiffiffiffi
2�l2
p ; and corresponding size

of the curved segment is RB~{arcsin(l=
ffiffiffi
2
p

)�lDsB=2. These

solutions are valid only for 21, l ,0. More detailed calculations

shows that solutions C are suboptimal compared to global

solutions A or B; see Figure 4 and the discussion below. Note

that neither A, B, nor C solutions exist for l,21.

The most physiologically relevant regime corresponds to

l= 21+e, e%1. Here, all global solutions A-C have a large

‘‘radius’’ of the curved segment R*{lne. The probability and

noise entropy depend exponentially on R, so that

P*
ffiffiffi
2
p

e{p=4(e{3e2lne)zae2 and H=P*1{ e
2
z e2

2
lnezbe2.

The constants a and b and depend on the solution type (A, B,

or C). Because bA, bB, bC, solutions A are optimal for small e.
Near p<0.2, intersections between the three curves occur. In the

O(e2) approximation, all of the three curves intersect at a single

intersection point that splits into three once higher-order terms are

included. As probability increases, B and C intersect first (A goes

below), then A and B (the crossover point, C goes above), and

finally, A and C (B goes below). The inset of Figure 4 shows A–B

and A–C intersections. Thus, solutions A and B are optimal at

extreme and medium probabilities, respectively. Solutions of type

C are never optimal, and neither are the straight line solutions,

except for the middle point p = 1/2.

Conclusion
We have presented a general approach to finding optimal binary

separations of multidimensional inputs. In the small noise limit, the

curvature of the optimal bounding surface is determined locally by

the probability distribution. While Gaussian inputs are optimally

separated by hyper-planes, this is not the case in general. For
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example, in the case of exponentially distributed inputs in two

dimensions, the optimal decision contours are curved and could

either be closed or extended. Closed contours are optimal at

extreme probabilities, while extended ones are optimal for spike

probabilities near 1/2. The ubiquity of non–Gaussian signals in

nature, particularly of the exponential distributions considered

here, suggests that these results might be relevant for neurons

across different sensory modalities.
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