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Cheng S, Sabes PN. Calibration of visually guided reaching is driven
by error-corrective learning and internal dynamics. J Neurophysiol 97:
3057–3069, 2007. First published January 3, 2007; doi:10.1152/
jn.00897.2006. The sensorimotor calibration of visually guided reach-
ing changes on a trial-to-trial basis in response to random shifts in the
visual feedback of the hand. We show that a simple linear dynamical
system is sufficient to model the dynamics of this adaptive process. In
this model, an internal variable represents the current state of senso-
rimotor calibration. Changes in this state are driven by error feedback
signals, which consist of the visually perceived reach error, the
artificial shift in visual feedback, or both. Subjects correct for �20%
of the error observed on each movement, despite being unaware of the
visual shift. The state of adaptation is also driven by internal dynam-
ics, consisting of a decay back to a baseline state and a “state noise”
process. State noise includes any source of variability that directly
affects the state of adaptation, such as variability in sensory feedback
processing, the computations that drive learning, or the maintenance
of the state. This noise is accumulated in the state across trials,
creating temporal correlations in the sequence of reach errors. These
correlations allow us to distinguish state noise from sensorimotor
performance noise, which arises independently on each trial from
random fluctuations in the sensorimotor pathway. We show that these
two noise sources contribute comparably to the overall magnitude of
movement variability. Finally, the dynamics of adaptation measured
with random feedback shifts generalizes to the case of constant
feedback shifts, allowing for a direct comparison of our results with
more traditional blocked-exposure experiments.

I N T R O D U C T I O N

Subjects exhibit rapid and robust adaptation in the face of
altered feedback in many simple sensorimotor tasks (Held and
Gottlieb 1958; Miles and Fuller 1974; Optican and Robinson
1980; Welch 1978). In the study of these forms of plasticity a
fundamental question arises: How does sensory feedback drive
learning? We address this problem from a psychophysical and
modeling perspective using reach adaptation to shifted visual
feedback. Traditionally, studies of reach adaptation use a
blocked experimental design, where adaptation is quantified by
the difference in performance on two blocks of test trials,
before and after exposure to shifted feedback (e.g., Hay and
Pick 1966; Held and Gottlieb 1958; Welch et al. 1974). This
blocked design focuses on only the final effects of adaptation
and so it cannot reveal the processes that link sensory feedback
in a given trial to the adaptive responses observed in subse-
quent trials (Cheng and Sabes 2006; Nemenman 2005).

Recently, a number of researchers used analytic techniques
from engineering to study the trial-by-trial dynamics of senso-
rimotor adaptation. These studies found that adaptation occurs
rapidly, on the timescale of single trials, when a random shift
was added to the visual feedback of the fingertip (Baddeley et
al. 2003) or when perturbing forces were introduced during
reaching (Donchin et al. 2003; Scheidt et al. 2001; Thorough-
man and Shadmehr 2000). However, subjects in these studies
were aware of the experimental manipulations, either as a
result of the explicit instructions regarding the visual shift or of
the presence of noticeable force perturbations. Therefore learn-
ing likely reflected a combination of automatic sensorimotor
processes and strategic cognitive approaches to the task. These
two forms of learning obey very different underlying learning
rules. For example, when subjects are aware of a shift in visual
feedback, they are able to learn much more complex shift
patterns then when they are not aware of the shift (Bedford
1993). The goal of the present study was to quantify the
trial-by-trial dynamics of the automatic processes of sensori-
motor adaptation—that is, the processes that are presumably
responsible for the ongoing maintenance of sensorimotor cal-
ibration. We therefore study the adaptive responses of naı̈ve
subjects to surreptitious shifts in visual feedback.

As in previous studies, we model the trial-by-trial dynamics
of learning as a linear dynamical system (LDS). However, we
make use of the analytic methods described in Cheng and
Sabes (2006), allowing us to explore two issues that were not
dealt with in earlier studies. First, instead of using least-squares
regression to perform model fits, we take a more general
maximum-likelihood approach. This allows us to build explicit
models of the sources of variability in task performance and to
fit these models to experimental data. As we will show, such
variability plays an important role in the dynamics of adapta-
tion. Second, we consider multiple potential error-feedback
signals and attempt to determine which of these signals drive
learning.

This study focused on the sequence of reach errors induced
by a sequence of visual feedback shifts. We view these errors
as a reflection of the underlying state of reach adaptation. By
using a random, time-varying sequence of feedback shifts, we
obtained a statistically rich sequence of reach errors that was
modeled as an LDS (Cheng and Sabes 2006). We found that
this class of models is sufficient to describe the adaptation
dynamics: the LDS model captures both the changes in the
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mean reach endpoint and the temporal correlations between
these errors and the visual shift.

We draw several conclusions from the resulting model of
adaptation dynamics. First, significant adaptation to visual
feedback shifts occurs on single trials. Second, we explicitly
measure the internal dynamics of adaptation and show that the
state of adaptation decays over time. Third, a significant source
of movement variability is internal state noise that directly
affects the state of adaptation and thus accumulates across
trials. This form of variability only indirectly affects the
performance on a particular trial. We show that the state noise
accounts for at least a quarter of the overall movement vari-
ability, thus offering a very different perspective on the sources
of movement variability.

Finally, to relate these results to previous research using the
blocked experimental design, we used the model derived from
stochastic feedback trials to predict the sequence of reach
errors induced by blockwise-constant feedback shifts. We find
that the adaptation dynamics generalizes across feedback shift
conditions. We conclude that the dynamics of adaptation are
not specific to the sequence of feedback shifts and that the LDS
model can provide insight into the general mechanisms of
reach calibration.

M E T H O D S

Experimental setup and data collection

This study was approved by the University of California, San
Francisco Committee on Human Research, and subjects gave in-
formed consent. Ten right-handed subjects (four male, six female,
ages 18–28 yr) with no known neurological history and normal or
corrected-to-normal vision participated in this study. Subjects were
naı̈ve to the purpose of the experiment and were paid for their
participation.

The experiment consisted of trials in which subjects reached toward
visual targets with their right arm with virtual visual feedback (Fig.
1A). Throughout each session, the right arm remained on or just above
a horizontal table with direct view of the arm (and the rest of the body)
occluded by a mirror and a drape. The right wrist was fixed with a
brace in the neutral, pronate position and the index finger was
extended and fixed with a splint. An infrared light-emitting diode was
attached to the tip of the index finger and its position was recorded at
200 Hz with an Optotrak infrared tracking system (Northern Digital,
Waterloo, Canada). Because the subject’s hand was essentially re-
stricted to a two-dimensional workspace, we analyzed only two
components of the recorded positions: the positive x-axis points right
and the positive y-axis points sagittally away from the subject.

Target positions and virtual visual feedback of the fingertip location
(when available) were generated by a liquid crystal display projector
(1,024 � 768 pixels, 75 Hz) and viewed in the mirror by a rear-
projection screen, placed so that projected images appeared to lie in
the plane of the table, at the vertical level of the fingertip. In some
trials, the visual feedback was shifted relative to the true location of
the fingertip, as subsequently described. All subjects reported being
unaware of any such feedback manipulation in a postexperiment
questionnaire.

Task design

The purpose of this experiment was, first, to identify the adaptation
dynamics in response to stochastic feedback shifts (STOCH-P) and,
second, to compare the dynamics with those observed in trial blocks
with constant feedback shift (CONST-P), the traditional paradigm for
inducing adaptation.

An experimental session consisted of four repetitions of the fol-
lowing sequence of trial blocks: 25 transition trials (see following
text), 35 CONST-P trials, 10 transition trials, and 50 STOCH-P trials.
Within each CONST-P trial block the feedback shift was constant, but
the shift varied between the four CONST-P block. The four shifts were
a random ordering of the four vectors with �3 cm along both the x-
and y-axes. Transition trials with either unshifted visual feedback or
no visual feedback were inserted to minimize the possibility that
subjects became aware of manipulations in the visual feedback. Each
CONST-P trial block was preceded by 15 trials with unshifted feedback
and then 10 trials without visual feedback. When a CONST-P block
followed a STOCH-P block, the shift was ramped down to zero over the
first five of these transition trials. Each CONST-P block was also
followed by 10 trials without visual feedback. In total, each session
consisted of 480 trials, with 200 STOCH-P trials and 140 CONST-P trials.
An example session is shown in Fig. 2.

STOCHASTIC FEEDBACK-SHIFT SEQUENCE. We expect that reach
adaptation will be driven by either the artificial shifts in visual
feedback, the resulting visually perceived reach errors, or a combina-
tion of both. In other words, these signals will be the “inputs” that
drive changes in the state of adaptation. To identify the trial-by-trial
dynamics of adaptation, these inputs have to be “rich” enough to
excite all the modes of the dynamics (e.g., Ljung 1999). Feedback
shifts that follow a white-noise sequence would be ideal, especially
because they decorrelate the input sequence and the state (Cheng and
Sabes 2006). However, in pilot experiments subjects often became
aware of these shifts, creating the possibility of explicit cognitive
strategies. Therefore we used a modified random-walk sequence of
visual shifts for this study.

From one trial to the next, the shift in visual feedback (p; see Fig.
1B) changed incrementally by one of the following (x, y) vectors,
selected with equal probability: (0, 0), (0, sy), (sx, 0), or (sx, sy)/�2,
where � sx � � � sy � � 5.2 mm, and initial signs of sx and sy were
assigned randomly at the beginning of each block. The maximum
magnitude of the feedback shift in either dimension was limited to �3
cm. If the selected increment would have caused the x or y component

FIG. 1. A: virtual feedback setup. B: definition of reach and feedback
variables: f, location of unseen fingertip location at end of reach; c, location of
visual feedback (cursor); g, target location; e, true reach error; v, visually
perceived reach error; p, artificial feedback shift (perturbation).
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of the feedback shift to exceed this range, then the sign of sx or sy,
respectively, was reversed (reflecting boundaries). In each trial block,
the feedback shift in the first trial was the value used in the last
preceding trial with feedback. Example random-walk sequences are
shown in the STOCH-P blocks of Fig. 2.

REACH TRIALS. Every trial in the experiment consisted of reaching
to a visual target. At the beginning of each of these trials, subjects
were guided to a start position without visual feedback about either
the start location or their hand (“arrow field” technique; Sober and
Sabes 2005). Specifically, an array of 3 � 3 identical arrows appeared
in a randomized position of the workspace. The arrows corresponded
to the vector from the current finger position to the start position, with
a maximal length of 9 cm. Subjects were instructed to move their
finger in the direction indicated by the orientation of the arrows until
the arrows disappear, which occurred when the fingertip was within 5
mm of the unmarked start position. The start position was the same for
all trials and was located a few centimeters in front of the subject,
roughly along the midline.

Subjects were required to hold the start position for a random delay
(0.5–1 s) until the reach target appeared (an open green circle, radius
6 mm). The target location gt was drawn randomly from a uniform
distribution over a 4-cm square centered 26 cm distally from the start
location. The appearance of the target together with an audible tone
constituted the go signal for initiating the reach. Subjects were
instructed to make a single quick and smooth movement toward the
target. The trial terminated when the velocity of the finger fell to �2
mm/s.

To minimize variation in movement speed across trials, a loose
timing constraint was used. The movement duration was defined as
the length of the time interval between when the finger first moved �1
cm from the start location and when the tangential velocity of the
finger first fell to �15% of its peak value at the end of the movement.
These landmarks were chosen to exclude effects of variable reaction
time and movement corrections at the end of the reach. A tone was
sounded if reaches were too slow (movement duration �500 ms) or
too fast (movement duration �300 ms). Subjects generally had no
difficulty meeting these criteria.

Subjects received “velocity-dependent terminal feedback.” Visual
feedback of the finger tip position appeared only near the end of the
movement, when the tangential finger velocity fell to �15% of the
peak value and feedback continued until the end of the trial. This
arrangement satisfies two constraints. The feedback appears suffi-
ciently late in the movement so that we are able to assess the endpoint
of the initial reach before visual feedback is able to drive corrective
changes. The endpoint is thus taken as a measure of the state of the
reach adaptation. However, the brief period of visual feedback while
the hand is still moving provides a richer feedback signal for learning
than would static feedback after the completion of the movement.
Feedback was in the form of a white disk, 3-mm radius, located at the
fingertip or displaced by the feedback shift pt. Finally, subjects were
instructed to correct any reach errors after completing the first reach
and trials terminated when the finger remained stationary within the
target circle for 500 ms.

In some transition trials subjects received no visual feedback of
their reaching arm during any part of the trial. These trials were
identical to those with visual feedback, except that the target was
marked by a filled green circle with radius 6 mm, providing a cue of
the feedback type before reach initiation. Before data collection
subjects were given sufficient practice trials to ensure that all task
constraints were met.

Data analysis and a model for the dynamics of adaptation

Velocities were determined by first-order numerical differentiation
of the positional data after smoothing with a 5-Hz low-pass Butter-
worth filter. The reach endpoint ft on trial t was defined as the finger
position when the tangential velocity first fell to �5% of its maximum
value on that trial. Typical velocity profiles were unimodal bell-
shaped curves (cf. Atkeson and Hollerbach 1985), corresponding to
the primary reaching movement, followed by one or more smaller
peaks attributed to corrective movements. In a few trials the velocity
fell to �5% criterion only after the second velocity peak. In these
cases visual inspection usually indicated a clear endpoint for the
primary reach (velocity dip and curvature peak); in the rare cases,
however, where an endpoint could not be identified confidently the
trial was discarded. The reach error et is defined as the difference
between the target position gt and the reach endpoint ft (Fig. 1B): et �
ft � gt.

We use a linear dynamical systems (LDS) model to describe the
adaptation dynamics (Cheng and Sabes 2006; Donchin et al. 2003;
Scheidt et al. 2001). The output of the system yt is a noisy readout of
the internal state of the sensorimotor map xt. Here we define yt to be
the reach error et. This means that the internal state of the system is
defined as the mean reach error one would observe across trials if
adaptation could be frozen in time. Given the limited set of reach
vectors used in this experiment, the state can be described with a
single two-dimensional variable. Formally we write

LDS Output: yt � xt � rt (1a)

where rt is the sensorimotor noise, or output noise, in trial t, assumed
to be an independent zero-mean, Gaussian random variable with a
covariance matrix R, i.e., rt 	 N(0, R). We model adaptation as the
trial-by-trial change in the state arising from sensory feedback on the
preceding trial. Formally

LDS Update: xt
1 � Axt � But � qt (1b)

where ut represents the sensory feedback variables (inputs) driving
adaptation and qt is additive noise in the state variable, assumed to
be independent, zero-mean, Gaussian with covariance Q, i.e., qt 	
N(0, Q). The term But represents error corrective learning, Axt repre-
sents the decay of the state of adaptation back to baseline, and qt

represents variability in these two processes. Because the spatial
variables are all two-dimensional vectors, the parameters of the LDS

_

_

_

FIG. 2. Example trial sequence. Visual feedback shifts (black traces) and
reach errors (see key at bottom) along the x-axis (top) and y-axis (bottom) are
shown. Gray vertical bars mark boundaries between blocks of trial types:
STOCH-P: stochastically shifted feedback; CONST-P: constant feedback shift;
transition: trials include reaches without visual feedback to prevent subjects
from noticing onset of constant shift blocks and ramping down of shift after a
STOCH-P block.
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model, A, B, Q, and R, are 2 � 2 matrices. There are no direct
“feedthrough” inputs affecting yt because terminal visual feedback
prevents on-line visual correction and the ongoing reaches were not
otherwise externally perturbed.

An important variable in the LDS model of Eq. 1 is the feedback
signal that drives adaptation ut. Our experimental design makes the
selection of candidate signals easier because visual feedback is given
only near the end of the movement, representing only the location of
the index fingertip (Fig. 1B). Under these conditions, there are two
likely candidates for the input signal: the visually perceived error vt,
defined as the difference between the position of the visual feedback
at the reach endpoint and the target position, vt � ct � gt, and the
artificial feedback shift pt (Fig. 1B). We also consider the reach error
et as a potential input signal. Note that the three error signals are
linearly related: et � vt � pt. Therefore any model that includes two
of these variables effectively includes the third one as well.

Given a sequence of inputs ut and outputs yt, the maximum-
likelihood estimates of the model parameters A, B, Q, and R are
determined using an expectation-maximization (EM) algorithm
(Cheng and Sabes 2006; Ghahramani and Hinton 1996; Shumway and
Stoffer 1982) (Matlab routines for performing this analysis are freely
available at http://keck.ucsf.edu/	sabes/software/). The algorithm
takes into account that data were collected in separate blocks by
resetting the state to an initial Gaussian distribution (with the neces-
sary additional model parameters) at the beginning of each block. The
EM algorithm is guaranteed only to converge to a local maximum of
the log likelihood. In fact, however, we find that the parameter
estimates were robust to running the estimation algorithm with dif-
ferent sets of initial values, suggesting that no local minima exist close
to the identified parameter estimates.

Model comparisons and goodness of fit

The EM algorithm will find a maximum-likelihood model for any
input and output sequence. Therefore it is important to be able to
assess model performance. We begin with model selection, asking
whether particular model parameters—in this case input signals—
provide significant explanatory power. We then describe two ap-
proaches to quantifying whether the best-fit model is sufficient to
account for important statistical features of the input–output se-
quences. These analyses are described in detail below.

LIKELIHOOD RATIO TEST FOR MODEL SELECTION. To determine
whether the inclusion of a particular input variable or other parameter
provides significant explanatory power we use the generic likelihood
ratio test (LRT) for maximum-likelihood estimation (Stuart and Ord
1987). Consider a model class M1 with d1 free parameters and a
second model class M0, with a subset of free parameters, d0 � d1. For
example, M1 could be the model with a particular two-dimensional
input variable ut and M0 could be the null model with no input
variables. M0 has four fewer free parameters because it has no input
weighting matrix B. Given each model class, we can find the maxi-
mum-likelihood model parameters and the values of likelihood they
achieve, Li for model Mi. The inclusion of additional model parame-
ters will always result in a better fit to the data, i.e., L1 � L0. However,
under the assumption that the data come from a model in M0, the
distribution of gains in log likelihood resulting only from overfitting
is known in the limit of large data sets

2 log
L1

L0

� �d1�d0

2 (2)

Using this distribution, the LRT either accepts or rejects the additional
parameters.

PREDICTING THE STATISTICS OF THE REACH ERRORS. The most
direct approach to assessing model sufficiency would be to compare
the empirical output sequence yt with the outputs predicted from the
model and the input sequence. However, the outputs depend heavily
on the specific sequence of state noise terms qt, which are not directly
observable. Instead, we determine how well models are able to predict
the statistics of the sequence of reach errors and the relationship to the
sequence of visual shifts.

The sequence of reach errors is characterized by two measures: the
variance �e

2 and the autocorrelation �e(�), which is a function of the
time lag � at which the autocorrelation is measured. Similarly, the
statistical relationship between the reach error and the visual shift
vector is characterized by two measures: the covariance �ep and the
cross-correlation function �ep(�). These measures are defined as fol-
lows

�e
2 �

1

T
�

t

�et � ē)T�et � ē) (3a)

�e��t
 �
1

T�e
2 �

t

�et � ē)T�et��t � ē) (3b)

�ep �
1

T
�

t

�et � ē)T�pt � p�) (3c)

�ep��t
 �
1

T�e�p
�

t

�et � ē)T�pt��� � p�) (3d)

where T is the total number of trials, ā represents the mean value of
a vector a across trials, and aTb represents the inner product of the
vectors a and b.

The statistics defined earlier provide a summary of the adaptive
response of the reach endpoint to the shifted visual feedback. These
statistics were not used explicitly when performing the maximum-
likelihood model fitting. Thus if the model is able to accurately predict
these statistics, then it is sufficient to capture the key elements of the
response. The model predictions for these statistics are obtained using
a Monte Carlo approach. Given the LDS model parameters and actual
sequence of visual shifts experienced by the subject in a given trial
block, we simulate a sequence of state and output variables using Eq.
1, with state and output noise terms generated independently for each
simulated trial. For each subject, we compute the desired statistics
from 100 combined runs of these Monte Carlo simulations and
compare the values to those obtained from the empirical data.

ONE-STEP-AHEAD PREDICTION AND THE PORTMANTEAU TEST. Our
second approach to assessing sufficiency is to test whether an LDS
model is demonstrably insufficient to account for the dynamics of the
sequence of reach errors. We start with the one-step-ahead predictor
ŷt, which is the expected value of yt given a model and all the inputs
and outputs up to trial t � 1. The ŷt values are obtained from the
Kalman filter using the estimated model parameters (Anderson and
Moore 1979; Shumway and Stoffer 1982). However, if the LDS
model being used to predict the same data set on which it was fit, a
cross-validation procedure is used: the one-step-ahead predictions ŷt

for each block of 25 trials are computed using a model fit to the data
set with that block excluded.

If the model satisfactorily captures the adaptation dynamics, then
the one-step-ahead prediction residuals yt � ŷt should be free of
temporal correlations, i.e., the residuals should be a white-noise
sequence. We can compare this null hypothesis to the alternative
(significant residual correlations exist) using a portmanteau test for
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serial autocorrelations (Hosking 1980). This test is based on the
autocorrelations of the prediction errors at a lag of � trials

J� � ��yt
� � ŷt
�
�yt � ŷt

T (4)

The mth portmanteau statistic combines the autocorrelation at lags up
to m trials

Pm � T2 �
��1

m 1

T � �
tr �J�

T J 0
�1J� J 0

�1
 (5)

Under the null hypothesis, the model captures the statistical structure
of the output sequence, and so the J� and (thus) the Pm should be
smaller than if the model were not sufficient. In the case of no inputs
to the system and in the limit of large T, Pm is �2 distributed under the
null hypothesis (Hosking 1980). When there are inputs to the system,
as is typically the case here, the theoretical distribution of the
portmanteau statistic is unknown. Therefore we use Monte Carlo
simulation to estimate the distribution of the portmanteau statistic
under the LDS model, given the known sequence of feedback shifts pt.
First, we simulate 1,000 artificial data sets, as described in the
previous section. For each of these artificial data sets we compute the
portmanteau statistic Pm. This yields an empirical distribution of
1,000 samples for Pm under the assumption of the LDS model. If the
portmanteau statistic calculated from the actual data is larger than the
95th percentile of this distribution, then we reject the null hypothesis
and say that the model is not sufficient to account for the sequence of
reach errors.

Although the portmanteau test can be used for any maximum lag m,
the statistical power of the test decreases with the lag (Davies and
Newbold 1979). On the other hand, larger lags need to be included in
the portmanteau statistic to test for long-range residual autocorrela-
tions. As a compromise, we will present the portmanteau statistic for
maximum lags m up to eight trials, although no substantial differences
were noted for maximum lags 	20 trials.

R E S U L T S

We are primarily concerned with the trial-by-trial sequence
of reach errors, which reflects the changing state of reach
adaptation. A sequence from a typical session is shown in Fig.
2. Two salient features of these plots highlight the key ele-
ments of the dynamics of adaptation. First, over the course of
a block, the reach errors are strongly influenced by the direc-
tion of the visual feedback shift: the error appears to roughly
track the inverse of the shift. This is the general pattern that is
expected when subjects adapt to the shifted feedback. Second,
there is considerable variability in reach error from one trial to
the next trial, even when there is no time-varying feedback
shift.

The goal of this work is to quantify and characterize how
such error sequences arise from a combination of error-correc-
tive learning processes and the various sources of variability,
including a stochastic component of the internal dynamics of
adaptation. In the rest of this paper we use the LDS model of
adaptation to accomplish this goal.

Error-corrective learning

We begin by determining which feedback signals, if any,
drive error-corrective learning. In terms of the LDS model, this
means identifying the inputs that lead to a significantly better

fit to the data. The three candidate inputs signals each have a
corresponding LDS update (learning) equation

Mv: xt
1 � Axt � Bvt � qt

Mp: xt
1 � Axt � Bpt � qt

Me: xt
1 � Axt � Bet � qt (6)

that represent three classes of LDS models. Two additional
model classes are also considered: the null model class

M�: xt
1 � Axt � qt (7)

which has no error feedback, and the Mvp model class, in which
both vt and pt contribute to reach adaptation. Because vt, pt, and
et are linearly related, Mvp is equivalent to any model that
includes at least two of the three input signals. Together, these
five model classes form the hierarchy shown in Fig. 3.

We use the likelihood ratio test (LRT) to compare model
pairs that differ by the inclusion of a single variable (arrows in
the hierarchy of Fig. 3). For each subject, each model class was
fit to the sequence of 200 reach errors from the four STOCH-P

trial blocks. Both the visually perceived error vt and the
feedback shift pt significantly improved the fit over the null
model for every subject. In contrast, including the reach error
et did not significantly improve the model for any subjects.
These results indicate that the trial-by-trial changes in reach
error are not simply the result of a random walk. Rather, we
observe an error-corrective adaptation process driven by either
the visually perceived error, the feedback shift, or a combina-
tion of both.

The relative contributions of these two feedback signals
could, in principle, be quantified with the LDS approach.
However, there is not sufficient statistical power to accomplish
this when there is a strong correlation across trials between the
two signals. In our case, the visually perceived error and the
feedback shift are related by the expression vt � et 
 pt, and so
we expect them to be correlated. Indeed, across subjects the
mean (�SD) correlation coefficient between vt and pt in the
STOCH-P trial blocks is 0.35 � 0.12. It is thus not surprising
that, although both the Mv and Mp single-input models are
significant, the two-input model Mvp does not yield a signifi-
cant improvement over either. The same qualitative results are
obtained when the model selection procedure is applied to
artificial data generated with the best-fit Mv or Mp model,

FIG. 3. Hierarchical model selection. Arrows represent comparisons be-
tween nested model classes (boxes) made with the likelihood ratio test (LRT)
on STOCH-P data. Each test had 4 degrees of freedom, corresponding to 2 � 2
matrix parameters. P values for the LRT, shown next to the appropriate arrow,
apply across all 10 subjects and were highly consistent. Thick lines represent
comparisons for which the additional input variable resulted in a significant
improvement.
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underscoring the lack of power to quantify the relative roles of
the two feedback signals. Thus in the remainder of the paper
we will analyze both the Mv and Mp model classes.

Model parameters

We next consider the maximum-likelihood parameter values
for the Mv and Mp model classes (Fig. 4). We will show that the
learning rates are quite large, with subjects correcting for about
one third of the error feedback after each trial. We will also
show that the parameters governing state decay (“forgetting”),
state noise, and output noise suggest an important role for each
of these processes. Finally, we will show that, although the
values for these latter parameters differ between the Mv and Mp
model fits, the two model classes are nearly equivalent from
the perspective of these data sets.

The best-fit values of the learning parameter B agree quite
well between the two model classes (Fig. 4). To interpret these

2 � 2 matrices, we consider the first (second) eigenvalues of B,
which represent the maximum (minimum) fraction of the error
feedback that is corrected for, depending on the direction of the
error vector. The mean and SD of the eigenvalues of B (and the
other model parameters) are shown in Table 1. They represent
a per-trial correction of the respective error signals (v or p) in
the range of 20–50%, across subjects, a rapid pace of learning.

The most pronounced difference between the two model fits
is in the value of the “decay” parameter A. The values of A are
larger for the Mv model than for the Mp model and there is an
appreciably greater consistency across subjects for the Mv
model. The first (second) eigenvalues of A represent the max-
imum (minimum) fraction of the state xt that has not decayed
back to the mean by the next trial, ignoring the inputs u. A
value of 1 means no state decay (no forgetting) and a value of
0 means a complete reset of the state after each trial (complete
forgetting). For the Mv model, the maximum eigenvalue of A is
0.97 on average, corresponding to a state-decay half-life of 23
trials (Table 1). For the Mp model, the eigenvalues are smaller,
with a half-life for the first eigenvector of just three trials.

The parameters Q and R represent the state and output noise,
respectively. The best-fit parameter values differ across the two
model classes (Fig. 4). However, in both cases the magnitude
of the state noise is comparable to that of the output noise. For
example, in the Mv model fit, the SD of the state noise along its
most variable axis (first eigenvalue) is 8.7 mm, compared with
12.3 mm for the output noise (Table 1). We will return to this
comparison later.

Last, we analyze the differences between the Mv and Mp
model fits. It might seem odd that the models agree so closely
on the learning parameter B, which is applied to different input
signals in the two models, whereas they disagree on the state
decay parameter A. Nonetheless, these differences are expected
given the relationship between the visually perceived error vt
and the feedback shift pt. To show this we rewrite the state
update equations for the two models (Eq. 6) using the LDS
output (Eq. 1a) and the fact that et is the LDS output

Mv: xt
1 � Av xt � Bvvt � qt

Mp: xt
1 � Ap xt � Bppt � qt

� Ap xt � Bp�vt � et
 � qt

� �Ap � Bp
xt � Bpvt � Bprt � qt. (8)

where subscripts have been added to the parameter variables
for clarity. When the noise term Bprt is relatively small, the two
models are essentially the same if the two equalities Bv � Bp
and Av � Ap � Bp hold. Even if Bprt is not small, however, that
term contributes only to the effective state noise and so these

TABLE 1. Mean (�SD) eigenvalues for the LDS model
parameters

Parameter Mv Mp

A [0.97 0.89] � [0.03 0.09] [0.77 0.52] � [0.13 0.23]
B [�0.36 �0.18] � [0.18 0.10] [�0.38 �0.18] � [0.18 0.10]

�Q [8.7 4.2] � [4.4 2.4] [6.2 2.5] � [3.4 1.18]
�R [12.3 9.1] � [5.1 3.2] [14.6 11.0] � [5.5 4.1]

Eigenvalues for each 2 � 2 matrix parameter were sorted in descending
order and then averaged across subjects. For Q and R, the square root of the
eigenvalues was used, and so the parameters represent SDs whose units are in
millimeters. A and B are dimensionless.
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FIG. 4. Maximum-likelihood linear dynamical system (LDS) model param-
eters. Best-fit parameters for the Mv and Mp models. Each panel represents the
values of a 2 � 2-matrix parameter (see labels on ordinate axes), with values
for all subjects clustered by the matrix components. Bar colors correspond to
subjects (n � 10).
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equalities should hold whenever the Mv and Mp models are fit
to the same data set. Indeed, the best-fit values of B for the two
model classes are nearly identical (Fig. 4 and Table 1)
and across subjects the mean (�SD) value of the expression
Av � (Ap � Bp) is

�0.01 0.00
0.00 0.01� 
 �0.03 0.04

0.01 0.01�
This analysis shows that the Mv and Mp model classes are

essentially equivalent, formally differing only in the structure
of the noise terms. Because in the following we focus on these
noise terms, we will continue to present results for both model
classes, in that they represent endpoints in the continuum of
models in which both signals contribute with varying strengths.

Model sufficiency

In the two previous sections, we showed that the visually
perceived reach error and/or the visual feedback shift drive a
large and significant adaptive response. Here we ask whether
our LDS models of that response are sufficient, that is, whether
they do a “good enough job” of explaining the trial-by-trial
sequence of reach errors.

SAMPLE DATA. Figure 5 shows the sequence of reach errors in
the STOCH-P trial blocks for a single subject. In addition, this
figure shows one-step-ahead model predictions for three dif-
ferent models, i.e., the predicted reach errors for each trial
given the actual inputs and outputs up to the previous trial. The
one-step-ahead predictions of the best-fit Mv and Mp models
(Fig. 5, red and blue traces, respectively) largely overlap each
other, as expected. These predictions appear to track the errors
well, capturing the general trends in the data. However, two
other features of these traces should be noted. First, although
according to the LRT the Mv and Mp models fit the data
significantly better than the null model MA (black trace), the
difference in the one-step-ahead predictions is rather small.
This is explained by the fact that the predictor is using all
inputs and outputs up to a given trial to predict the output on

the next trial. Second, all three models leave a large residual of
unpredicted reach error in this sample data set.

In the remainder of this section we present two approaches
to assessing model sufficiency, one addressing the shortcom-
ings of the one-step-ahead predictor and one aimed at the
prediction residuals. First we determine how well the models
predict the statistical relationship between the reach error and
the visual shift. Unlike the one-step-ahead predictor, these
predictions are made without access to the real sequence of
reach errors, making them a much more stringent test of model
sufficiency. Second, we examine the one-step-ahead residuals
to determine whether they are as good as can be expected,
given the levels of state and output noise, or whether there is
still some “signal” to be accounted for.

PREDICTING REACH ERROR STATISTICS. Our first test of model
sufficiency is how well a model predicts the statistical structure
of the adaptive response to shifted feedback. As described in
METHODS, we chose four statistical measures: the variance and
autocorrelation of the reach errors and the covariance and cross-
correlation between the reach errors and feedback shifts (Eq. 3).
For each subject, we computed these measures from the empirical
sequence of reach errors in the STOCH-P trial blocks. We also
computed the measures from 100 combined Monte Carlo simu-
lations of that sequence, generated from the best-fit LDS model
and the true sequence of visual feedback shifts (see METHODS).

We first observe that the Mv and Mp models provide a nearly
perfect account of the reach variance and autocorrelation (Fig.
6, A and B). However, the null model performs just as well by
these measures. This result shows that the state decay A, state
noise Q, and output noise R parameters of the LDS are
sufficient to account for the second-order statistics of the reach
errors. Furthermore, it shows that the maximum-likelihood–
fitting procedure implicitly fits these quantities.

Next we consider the relationship between the reach errors and
the sequence of visual feedback shifts. For all subjects, there is a
large negative covariance between these variables (Fig. 6C), as
expected when subjects adapt their reach error to the visual shift.
Predicted covariances under the best-fit Mv and Mp models are
nearly identical to each other. Although there is a slight downward
bias (weaker correlation) in the model predictions, discussed later
in greater detail, the predicted and empirical values are strongly
correlated across subjects. In contrast, the null model predicts
essentially no covariance between the reach error and visual shift.
The Mv and Mp model models also provide an excellent prediction
of the cross-correlation function between the sequences of reach
errors and visual shifts (Fig. 6D).

The close agreement between the empirical and predicted
error-shift cross-correlation functions raises the question of
how sensitive a measure this is. We want to be sure that the
predictions depend on the details of the model and are not, for
example, dominated by the sequence of visual shifts. Therefore
we performed a sensitivity analysis to quantify how the pre-
dicted cross-correlation function depends on the model param-
eters. We generated Monte Carlo simulations with individual
parameters altered from their actual best-fit values. The pre-
dicted cross-correlations were found to be sensitive to all four
parameters and even fairly small parameter changes can pro-
duce large discrepancies between the data and model predic-
tions (Fig. 6E, results for only Mv are shown).

_

_

FIG. 5. Sample model predictions. Reach errors and one-step-ahead model
predictions for one subject in the STOCH-P trial blocks.
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RESIDUALS OF ONE-STEP-AHEAD PREDICTIONS. If the one-step-
ahead model predictions captured the full dynamics of adap-
tation, then the residual errors should have no statistical struc-
ture, i.e., they should be white noise. This can be assessed by
the portmanteau test for serial autocorrelations. If significant
correlations existed in the model prediction residuals, then the
model would be insufficient to account for the dynamics of
adaptation and the model would be rejected. For all subjects,
the one-step-ahead predictions of both the Mv and the Mp
model leave no significant residual correlations in a cross-
validation test for the STOCH-P trial blocks (portmanteau test,
P � 0.05, max. lag m � 8).

These results suggest that the LDS models are sufficient to
capture the trial-by-trial dynamics of adaptation. However, be-
cause the portmanteau test pools all residuals and all time lags into
a single statistic, it has relatively low statistical power. This means
that more subtle model inaccuracies might not be detectable with
this approach. Detecting such inaccuracies is especially important
when interpreting the state and output noise terms because model
inaccuracies will appear in our model fits as additional noise.
Therefore we performed a variety of additional analyses on the
model residuals, testing for violations of normality, stationarity,
and model linearity. We found no significant evidence for any of
these effects, as described in detail in the APPENDIX.

Together, these analyses suggest that the LDS models con-
sidered here are indeed sufficient to explain the dynamics of
reach adaptation in the STOCH-P trial blocks.

State noise

The two sources of variability in the LDS model—the state
noise and the output (or sensorimotor) noise—are conceptually
quite different and both will contribute to the overall variability
in any measure of performance. Although the output noise is

uncorrelated across trials, state noise is accumulated in the
state and thus its contribution to the reach variability is corre-
lated across trials. Given that the state noise is often over-
looked in models of motor variability, we want to confirm here
that the level of state noise is indeed significant.

We use the LRT to compare the Mv or Mp model class to a
null hypothesis class with no state noise. In practice, Q cannot
vanish entirely or the parameter estimation algorithm would
become unstable. Thus for the null hypothesis we use a model
with the state noise covariance fixed to a negligible value (Q �
0.1 mm2) relative to the output noise covariance R. The LRT
shows that the addition of state noise significantly improves the
model fit in the STOCH-P condition for both learning models and
for all subjects (Mv: P � 10�4; Mp: P � 0.003; n � 10).

We confirm this result by applying the portmanteau test to
the best-fit null hypothesis model (i.e., the best model with
Q � 0.1 mm2). These models could not capture the temporal
structure of the reach errors: the residuals were significantly
correlated across trials (Mv rejected in 10/10 subjects, Mp
rejected in 7/10; P � 0.05, max. lag m � 8). These results
establish that state noise contributes significantly to the trial-
by-trial sequences of reach error.

Next, we assess the magnitude of the state noise by com-
paring it to the output noise. As a measure we choose the ratio
of the largest eigenvalues of the state and output covariance
matrices, vQ and vR, respectively, (see also Table 1)

k � ��Q /�R (9)

For all subjects, the two noise terms are on the same order of
magnitude, although the output is typically larger by about a
factor of two (Fig. 7, open bars). To assess the statistical
significance of the ratio k, we compared these values to the
95% confidence values obtained by separately fitting the LDS

FIG. 6. LDS model is sufficient to predict the statistical structure of the adaptive response to shifted feedback. A: comparison of empirical reach error variance
�e

2 and the predicted variance under the best-fit Mv (black), Mp (green), and MA (red) models. Data points represent values for a single subject (symbols overlap);
thick lines represent a linear regression of empirical data on prediction (P � 0.05). B: reach error autocorrelation function �e(�t) for time lags �t � 1–8 trials.
Dark gray band represents mean � SE across subjects. Model predictions are shown in 3 lines representing mean � SE across subjects: Mv, green; Mp, black;
MA, red. C: comparison of empirical values and model predictions of the covariance �ep between reach errors and visual shifts. Symbols as in A. D:
cross-correlation function �ep(�t) between reach errors and feedback shifts, along with the Monte Carlo model predictions. Symbols as in B. E: sensitivity
analysis: how predicted cross-correlation functions depend on model parameters. Gray band (data) and green line (Mv model predictions) are the same as those
in B. Other colored lines represent the cross-correlations predicted by the best-fit Mv model with selected parameters altered, as indicated by the legends. Only
the diagonal elements of the parameter matrices A and B were varied, whereas in the case of Q and R the entire matrix was scaled.
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models to each of 1,000 Monte Carlo simulations run with Q
reset to 0.1 mm2 (Fig. 7, filled bars). The k ratios obtained in
these simulations are quite small, significantly smaller than the
values obtained from the true data. This underscores the
conclusion that the state noise is an important feature of the
data and not an artifact of the fitting procedure.

Finally, we consider the contribution of state noise to the
overall reach error variability. It is not difficult to show that in
the case of no visual feedback shift, the LDS models predict an
overall reach variance of

Mv: Var �et
 � R � �
s�0

�

�A � B
sQ�A � B
sT
 �
s�0

�

�A � B
sBRBT�A � B
sT

Mp: Var �et
 � R � �
s�0

�

AsQAsT

We computed the values of these expressions numerically from
the best-fit models. We then quantify the fraction of the overall
reach variability that is attributed to the output noise (the
second term in the equations above), as opposed to the state
noise (the first term). For the Mv model there is also a third
term corresponding to the effects of feeding the reach error
back into the LDS by the input vt. On average, the estimated
contribution of state noise to the overall reach error variability
was 23% for the Mp model and 38% for the Mv; error feedback
in Mv contributes another 7%. Therefore whereas output noise
accounts for more than half of the overall reach endpoint
variability, state noise represents a sizable component as well.

Adaptation dynamics generalizes to constant feedback shift

Up to this point we have examined only the adaptation
dynamics in the STOCH-P trial blocks. One concern that might
arise is that the results we have found, such as the magnitudes
of the learning rates and state noise, are specific to the stochas-
tic sequence of feedback shifts. It is important to verify that the
conclusions drawn from studies using these dynamical systems
techniques will generalize to other experimental paradigms, in

particular to the blocked-exposure design traditionally used in
studying reach adaptation. Therefore we quantified how well
LDS models that were fit to the STOCH-P data predict the results
of the CONST-P condition, which is similar to a blocked-
exposure design. We focused on predictions of the steady state
of adaptation, the statistics of the sequence of reach errors, and
the residuals of the one-step-ahead model predictions.

In general, LDS models predict that adaptation should con-
verge to a “steady state” when the input is held constant.
However, as a result of the presence of state and output noise,
there will be random fluctuations in both the state and the
output even after this convergence has occurred. The LDS
model predicts both the magnitude of this steady-state reach
error and the fluctuations around it. We compared these model
predictions to values obtained from the data. The Mv and Mp
models make nearly identical predictions for the steady-state
error magnitude and these values correlate well with the
empirical data across subjects (Fig. 8A). There is a small bias,
however: the models consistently predict a slightly smaller
steady-state error than what is empirically observed (mean bias
is 2.7 mm for Mv and 2.8 mm for Mp). Both models make
accurate predictions for the SD of the reach error during the
steady state (Fig. 8B).

Next, we consider how well the Mv and Mp models fit to the
STOCH-P data can predict the statistics of the reach errors across
the CONST-P trial blocks. Both models provide a good predic-
tion of the variance and autocorrelation of the reach errors as
well as the covariance and cross-correlation between the reach
errors and the sequence of visual feedback shifts (Fig. 9, A–D).
This generalization across tasks is not solely attributable to the
nature of the CONST-P shift sequence because the model pre-
dictions are sensitive to the parameter values (Fig. 9E).

Finally, however, we note that the generalization is not
perfect. We performed the portmanteau test for serial autocor-
relations on the residuals of the one-step-ahead predictors
(models fit on STOCH-P data, tested on CONST-P data). For a
minority of subjects, the models were unable to fully account
for the temporal structure of the reach error sequence (Mv: fits

FIG. 7. Magnitude of estimated state noise relative to output noise (open
bars) for 2 model classes fit to the STOCH-P data. vQ and vR are the largest
eigenvalues of the state and output noise covariances, respectively. Filled bars
represent the 95% confidence value under the null hypothesis of negligible
state noise determined from 1,000 Monte Carlo simulations.

FIG. 8. Comparison of empirical and predicted steady states of adaptation.
Predictions were derived from the Mv (●, solid lines) and the Mp (E, dashed
lines) models fit to STOCH-P data. Empirical values were averaged over the last
10 trials of each CONST-P trial block. A: magnitude of the steady state of
adaption with a 30-cm magnitude shift along each axis. Empirical values are
averages of the x and y error coordinates. Expression for model predictions is
given in Cheng and Sabes (2006). Linear regression of the measured values on
the model fits shown in bold lines (Mv: R2 � 0.52, P � 0.02; Mp: R2 � 0.50,
P � 0.02). B: SD of the reach error during steady state (�e

2 in Eq. 3a). Model
predictions come from Monte Carlo simulations (see METHODS). Linear regres-
sion in bold lines (Mv: R2 � 0.79, P � 0.007; Mp: R2 � 0.81, P � 0.006).
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for 4/10 subjects rejected; Mp: 2/10 rejected; P � 0.05 and
max. lag m � 8).

Taken together these comparisons suggest that the dynamics
of adaptation largely generalizes from a stochastic sequence of
visual shifts to a constant shift paradigm. Furthermore, the
LDS model fit to the stochastic shift data is able to quantita-
tively predict the key features of the of the blocked-exposure
paradigm.

D I S C U S S I O N

We have shown that the trial-by-trial dynamics of reach
adaptation to shifted visual feedback is well described by a
simple linear dynamical system. In this model, there are two
forces driving changes in the state of adaptation. First, learning
is driven by error-corrective feedback, with the state of the
system correcting for �20% of the error observed in the
preceding movement, on average. The data presented here are
consistent with two candidate error signals: the visually per-
ceived reach error and the artificial visual shift. Second, adap-
tation is driven by the internal dynamics of learning, including
a decay back to a baseline state and the accumulation of an
internal “learning” or state noise. Finally, the LDS model
generalizes from the case of stochastic feedback shifts to the
more traditional case of constant feedback shifts.

Sufficiency and generalization of the LDS model

One finding of this study is that simple LDS models are
sufficient to describe the dynamics of adaptation. If our model
captured all the temporal structure in the data, the model
prediction residuals should be a white-noise sequence. We
therefore analyzed the correlations among and between resid-
uals and various key task variables. We found no significant
evidence for autocorrelations in the model residuals, nonsta-
tionarity and nonlinearities in the dynamics, or non-Gaussian
noise.

Nevertheless, another indication that the LDS models are
indeed capturing the dynamics of adaptation is the fact that the
models generalize from stochastic to constant feedback shifts.
Although the bulk of our analyses support this conclusions,
there are three deviations from the model predictions that
should be considered. First, the predicted covariances between
reach errors and feedback shift were systematically smaller
than the empirical values (Fig. 6C). Second, the models pre-
dicted a slightly smaller steady-state adaptation in the CONST-P

FIG. 9. Dynamics model identified from STOCH-P data can also account for adaptation to constant visual shift. Plotting convention is the same as in Fig. 6.
A: reach errors variance vs. Monte Carlo model predictions. B: autocorrelation function of reach errors for time differences of 1–8 trials and Monte Carlo model
predictions. C: covariance between reach errors and feedback shifts for individual subjects vs. Monte Carlo model predictions. Linear regression of subject data
on model prediction was marginally significant: P � 0.06 for the Mv model (green circles and green regression line) and P � 0.07 for the Mp model (black circles,
thick black regression line). D: cross-correlation function between reach errors and feedback shifts for time differences of 1–8 trials, along with the Monte Carlo
model predictions. E: sensitivity analysis of how predicted cross-correlation functions depend on model parameters.

_

_

_
_

_

_ _ _

___
_

_

FIG. 10. Examples of statistical analyses performed on the model predic-
tion errors. A: normal probability plot for the only residual component
(x-component, Subject 8) that showed significant deviations from normality
(N � 199, Lilliefors test, P � 0.04). Data-points are represented by crosses;
Gaussian data fall on a straight line. Without the single large outlier (top right
of graph), the deviation from the Gaussian distribution is not significant (P �
0.2). B: example of significant nonstationary (linear regression, F-test, P �
0.036) in the model-fit residual (y-component, Subject 1). C, D: example plots
of model-fit residual (y-component, Subject 1) vs. visual shift on the prior trial
(C) or reach error on the prior trial (D). Linear regression shows no significant
effect in either plot (F-test, P � 0.79 and P � 0.69) and no clear nonlinear
relationships are discernible.
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condition (Fig. 8A). Third, the portmanteau test for generali-
zation to the CONST-P case failed for a minority of the subjects.

All three of these observations could be explained by an
underestimate of about 10 to 20% in the magnitude of the
learning rate B. The learning rate controls how much the
external input affects the state of adaptation and so a more
negative B would increase the covariance between reach error
and feedback shift in the STOCH-P condition. In addition, the
magnitude of the steady-state error in the CONST-P condition
depends only on the decay parameter A and the learning rate B.
Increasing the magnitude of either parameter would lead to a
larger predicted steady state (Cheng and Sabes 2006). Simi-
larly, if the estimated magnitude of B is low, there will be a
persistent bias in the one-step-ahead prediction of the reach
error in the CONST-P trial blocks, resulting in a significant
correlation in the prediction residuals across trials. This would
explain the occasional failure of the portmanteau test for
generalization to the CONST-P condition. Visual inspection
confirms that predictions of CONST-P reach errors are indeed
biased in the very cases for which the portmanteau test failed
(data not shown). Finally, a higher learning rate (more negative
B) would not significantly degrade the predictions of the
cross-correlations between reach errors and feedback shifts
(Figs. 6E and 9E).

Why might the learning rate B have been underestimated?
One obvious reason would be a bias in the maximum-likeli-
hood–fitting procedure. However, we found no evidence for
such a bias in control analyses in which we estimated the LDS
parameters from artificial data generated from a known LDS
(data not shown). Another possibility is that adaptation is a
higher-order system—i.e., subjects maintain a memory of more
than just the immediately preceding input—and these older
error signals also influence learning. To address this possibil-
ity, we fit the stochastic shift data with augmented models in
which learning is driven by the two preceding inputs. This
model yielded a significant improvement for some subjects
(LRT, Mv 2/10 subjects, Mp 6/10, with P � 0.05). Because
both the feedback shift and the visually perceived error had
sizable autocorrelations at a lag of one trial, this analysis had
limited power. Therefore it is plausible that such second-order
effects are present in all of our data sets. This extra source of
input would explain the prediction errors described here, even
in the absence of a fitting bias.

A second explanation for imperfect generalization to the
constant-shift data could be the presence of multiple timescales
of reach adaptation (Smith et al. 2006). Suppose that there were
two state variables that contribute to the trial-by-trial task
performance: one that learns on the fast timescales described
above and one with a much slower learning rate. The effects of
the slow-learning system would not be apparent when the
visual feedback shift changes on a trial-by-trial basis because
its effects would average out across trials. However, when a
constant feedback shift is used, the slow learning system would
contribute to the state of adaptation. This contribution could
account for the discrepancies we observed between the con-
stant shift data and the model predictions.

State noise

We have found that state noise accounts for at least a quarter
of the overall trial-by-trial variability in reaching, after dis-

counting the changes arising from our artificial feedback shifts.
The presence of significant state noise implies that sensorimo-
tor calibration is changing continually, even without exoge-
nous driving inputs. This model offers a strong counterpoint to
the traditional view of motor variability as arising largely from
limitations in the sensory and motor peripheries (Donchin et al.
2003; Gordon et al. 1994; Harris and Wolpert 1998; Messier
and Kalaska 1990; Osborne et al. 2005; Thoroughman and
Shadmehr 2000; van Beers et al. 1998). Neglecting the pres-
ence of such state noise in studies of sensorimotor variability
can lead to overestimates of those variances. Also, because
state noise leads to correlations in movement variability across
trials, the application of statistical models that assume inde-
pendent noise across trials (e.g., Donchin et al. 2003; Thor-
oughman and Shadmehr 2000) may lead to incorrect conclu-
sions (Cheng and Sabes 2006).

There are several potential sources for the state noise we
observed: variability could arise in the sensory processing of
the error feedback signals; variability could be injected into the
state during the process of adaptation, i.e., as a by-product of
the computations that underlie learning; or variability can be
introduced in the memory or maintenance of the state across
trials. In fact, it is likely that at least some of the state noise
comes from each of these sources. Quantifying the relative
importance of sources of variability is a direction for further
research.

An alternative explanation for the apparent state noise is that
our LDS models are deficient in some respect. The resulting
error in the state update would then be subsumed into the state
noise when estimating the LDS parameters. In the APPENDIX, we
argue that the state noise is unlikely to be the result of
nonlinearity, nonstationarity, or nonnormal noise in the true
process of adaptation. Of course, those analyses would be
unable to detect high-order nonlinearity or rapid nonstationar-
ity. As an extreme example, consider the case where the neural
circuit that underlies adaptation is made up of a large number
of deterministic, nonlinear “units” that combine to approximate
a linear learning rule. This circuit is deterministic, but there
will be many small fluctuations about the linear learning rule.
Although such variability may in fact be “deterministic,” from
a practical perspective we may view it as “noise.”

Another model assumption that could potentially be incor-
rect is that there is a single process giving rise to the adaptation
we study here. We tested whether multiple processes with
different timescales (Smith et al. 2006) could account for the
state noise. In fact, when we fit the data with a two-timescale
model, the state noise was still significant for all subjects
(likelihood ratio test). Furthermore, despite having many extra
model parameters, the best-fit state noise in the two-timescale
model was appreciably lower in only three subjects (data not
shown) and, even in those cases, the state noise covariance was
within the range of values found for other subjects with the
single-timescale model. We conclude that the existence of
multiple timescales could not account for the state noise that
we observed.

The LDS models would also be deficient if they were
missing a significant input signal. Two candidate signals come
easily to mind. One candidate is the error feedback from earlier
trials, as discussed earlier. However, the estimated state noise
is qualitatively unchanged when these earlier inputs are in-
cluded in the model (data not shown). Another variable that we
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did not include in our models is the actual position of the reach
target, which was drawn uniformly from a 4-cm square for
each trial. However, adding the target position improved the
Mp model fit in only two subjects (LRT, � � 0.05) and lowered
the estimated state noise covariance only marginally.

Finally, we recall that the distinguishing difference between
state and output noise in the LDS model is the fact that the state
noise creates variability, which is correlated across trials (a
random walk), whereas the output noise in uncorrelated (white
noise). Therefore noise in the sensory or motor periphery
would mimic state noise if it were correlated across trials (on
the order of tens of seconds to minutes). Although we know of
no evidence for such correlations, they might exist and could
account for some fraction of our observed state noise.

Error-driven learning

One clear result from this study is that the trial-by-trial
dynamics of reach adaptation are well modeled by an error-
corrective learning rule. Furthermore, the rate of learning is
quite rapid, with an average correction in the state of �20% of
the last error after each movement. These rapid adaptation
dynamics appear to be inconsistent with slower models of
learning, such as those based on Hebbian learning rules (Hua
and Houk 1997; Salinas and Abbott 1995).

What is less clear, however, is the specific sensory signal
that drives learning. We have shown that the visually perceived
error and the artificial feedback shift provide equally good
explanations of the trial-by-trial changes in reach performance.
Indeed, the two models classes corresponding to these input
signals are largely equivalent with respect to the present data
set (see Eq. 8). From a biological perspective, however, these
input signals are quite distinct. Determining the feedback shift,
for example, requires a comparison between visual and other
sensory modalities, whereas the visually perceived error can be
computed entirely from retinal signals. Thus it should be
possible to design experiments using the LDS modeling ap-
proach that better distinguish between these feedback signals.
For example, by using small, undetectable jumps in the target
position (Magescas and Prablanc 2006), one can dissociate the
visually perceived error from a shift in visual feedback.

The LDS model and the mechanisms of adaptation

We have shown that the LDS model provides a concise and
accurate description of the trial-by-trial dynamics of reaching.
However, we do not believe that this simple class of models
can capture the full complexity of sensorimotor adaptation. For
example, it is well recognized that there are multiple compo-
nents of prism adaptation (Harris 1963; Redding and Wallace
1988; Redding et al. 2005; Welch et al. 1974) and evidence for
multiple learning and decay rates exists as well (Choe and
Welch 1974; Hatada et al. 2006; Smith et al. 2006; Taub and
Goldberg 1973). Furthermore, multiple brain areas have been
implicated in the process of prism adaptation (Baizer and
Glickstein 1974; Baizer et al. 1999; Clower et al. 1996; Kurata
and Hoshi 1999). Rather, we see these models as a powerful
analytic tool for quantitatively characterizing the dynamics of
adaptation in the face of artificial sensorimotor perturbations,
the natural and ongoing processes of sensorimotor calibration,
and the relationship between these processes. For example,

some parameters, such as the state decay, showed little vari-
ance across subjects, whereas others, such as the learning rate,
showed more variability. Understanding the forces that shape
these parameter values over both the short term (i.e., arising
from the details of the experimental conditions) and the long
term would provide valuable insight into the general mecha-
nisms for the maintenance of accurate sensorimotor control.
Finally, the tools developed here can be used not only to relate
sensory feedback signals to behavior, but also to relate these
psychophysical variables to the underlying patterns of neural
activity.

A P P E N D I X

Analysis of model prediction errors

In this APPENDIX, we test for subtle inaccuracies in the best-fit
models with a range of statistical tests on the one-step-ahead predic-
tion residuals. Specifically, we ask whether the residuals are normally
distributed and whether there is evidence for nonstationarity or non-
linearity in the true dynamics of learning.

NON-GAUSSIAN NOISE. The LDS models used herein assume that
both the state noise qt and output noise rt have Gaussian distributions.
Under this model, the one-step-ahead prediction errors should also be
Gaussian. Deviations from normality in these prediction errors could
arise in two ways: the true underlying noise processes could be
non-Gaussian, or there could be inaccuracies in the model of learning
dynamics. For example, if there were nonlinearities or nonstationari-
ties in the true dynamics of learning, or if we had neglected to include
an important additional input signal, then we would not necessarily
expect the model residuals to look Gaussian. Therefore we performed
a test of normality on the model prediction residuals. Because subjects
performed reaches in a two-dimensional environment, the residuals
are two-component vectors. Here, and in subsequent tests, we tested
each component separately for a total of 20 tests (10 subjects � 2
components). Of these 20 tests, only one showed a significant devi-
ation from Gaussianity (Lilliefors test, � � 0.05). Even this deviation
was the result of only a single outlier point (Fig. 10A); without the
outlier the residual component was not significantly non-Gaussian
(P � 0.2). Except for the outlier point, the normal probability plot
shown in Fig. 10A is typical of that observed for other subjects. We
conclude that the model residuals are normally distributed.

NONSTATIONARITY. If the true learning dynamics were nonstation-
ary, then we would expect our stationary LDS models to fit better at
some times during the experiment and worse at other times. Therefore
we plotted the residuals as a function of trial number and looked for
changes across trials. Out of 20 such plots, three showed a significant
linear dependency of residual on trial number (linear regression,
F-test, � � 0.05). An example of a significant effect is shown in Fig.
10B. Although these effects were observed slightly more often than
expected by chance (3/20 � 15%), the significant comparisons had
weak correlations (r2 � 0.034) and were never found in both residual
components of the same subject. Across subjects there are no discern-
ible nonlinear trends in the residuals, nor were there any apparent
changes in the variance of the residuals across trials.

NONLINEARITY. If the true learning dynamics were nonlinear, then
the LDS prediction errors would contain a component that was a
deterministic function of one of the key variables driving learning.
Therefore we examined whether the model-fit residuals across trials
covary with either of the key variables that influence the dynamics of
learning, the visual shift, and the reach error from the previous trial.
Not one of the 20 comparisons showed a significant linear dependency
of residual on either the previous visual shift or the previous reach
error (linear regression, F-test, � � 0.05). Representative examples
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are shown in Fig. 10C and D. As in these examples, there were also
no discernible nonlinear relationships between the residuals and the
task variables.
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