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Zador, Anthony. Impact of synaptic unreliability on the informa- The computational strategies available to a neuronal cir-
tion transmitted by spiking neurons. J. Neurophysiol. 79: 1219– cuit depend upon the fidelity of its components. For example,
1229, 1998. The spike generating mechanism of cortical neurons the computational power of a single integrate-and-fire neu-
is highly reliable, able to produce spikes with a precision of a few ron depends on the effective noise of the currents driving
milliseconds or less. The excitatory synapses driving these neurons the spike generator (Zador and Pearlmutter 1996). In theare by contrast much less reliable, subject both to release failures

cortex, the transformation of somatic current into an outputand quantal fluctuations. This suggests that synapses represent the
spike train appears to be highly reliable (Mainen and Sej-primary bottleneck limiting the faithful transmission of information
nowski 1995, see also Bryant and Segundo 1976), in markedthrough cortical circuitry. How does the capacity of a neuron to
contrast to the unreliability of synaptic transmission (Allenconvey information depend on the properties of its synaptic drive?

We address this question rigorously in an information theoretic and Stevens 1994; Dobrunz and Stevens 1997; Stratford et
framework. We consider a model in which a population of indepen- al. 1996). In this paper, we use simple biophysical models
dent unreliable synapses provides the drive to an integrate-and-fire of spike transduction and stochastic synaptic release to ex-
neuron. Within this model, the mutual information between the plore the implications of synaptic unreliability on informa-
synaptic drive and the resulting output spike train can be computed tion transmission and neural coding in the cortex. Our goal
exactly from distributions that depend only on a single variable, is to provide a quantitative answer to the question: Howthe interspike interval. The reduction of the calculation to depen-

much information can the output spike train provide aboutdence on only a single variable greatly reduces the amount of data
the synaptic inputs? Our answer will be cast in an informa-required to obtain reliable information estimates. We consider two
tion-theoretic framework.factors that govern the rate of information transfer: the synaptic

reliability and the number of synapses connecting each presynaptic
M E T H O D Saxon to its postsynaptic target ( i.e., the connection redundancy,

which constitutes a special form of input synchrony). The informa- Physiology
tion rate is a smooth function of both mechanisms; no sharp transi- Standard slice recording methods were used to obtain Fig. 1.
tion is observed from an ‘‘unreliable’’ to a ‘‘reliable’’ mode. In- Briefly, patch-clamp recordings were obtained under visual guidance
creased connection redundancy can compensate for synaptic unre- by using infrared optics from 400-mm slices from Long Evans rats
liability, but only under the assumption that the fine temporal [postnatal day (P)14–P20]. Recordings were performed at 33–
structure of individual spikes carries information. If only the num- 357C. Slices were continuously perfused with a solution containing
ber of spikes in some relatively long-time window carries informa- (in mM) 120 NaCl, 3.5 KCl, 2.6 CaCl2, 1.3 MgCl2, 1.25 NaH2PO4,
tion (a ‘‘mean rate’’ code), an increase in the fidelity of synaptic 26 NaHCO3, and 10 glucose, which was bubbled with 95% O2-5%
transmission results in a seemingly paradoxical decrease in the CO2 and the pH of which had been adjusted to 7.35. All recordings
information available in the spike train. This suggests that the fine were obtained in the presence of the a-amino-3-hydroxy-5-methyl-
temporal structure of spike trains can be used to maintain reliable 4-isoxazolepropionic acid (AMPA) receptor antagonist 6-cyano-7-
transmission with unreliable synapses. nitroquinoxaline-2,3-dione (CNQX, 50 mM). Recording pipettes

were filled with (in mM) 170 K gluconate, 10 N-2-hydroxyethylpi-
perazine-N*-2-ethanesulfonic acid (HEPES), 10 NaCl, 2 MgCl2 ,

I N T R O D U C T I O N 1.33 ethylene glycol-bis(b-aminoethyl ether)-N ,N ,N*,N*-tetraace-
tic acid (EGTA), 0.133 CaCl2 , 3.5 MgATP, and 1.0 guanosine 5*-

A pyramidal neuron in the cortex receives excitatory syn- triphosphate (GTP), pH 7.2. Resistance to bath was 3–5 MV before
seal formation.aptic inputs from 103–104 other neurons (Shepherd 1990).

Data were acquired by using a National Instruments (TX)When an action potential invades the presynaptic terminal
AT-MIO-16-F-5 A/D card on a Pentium-based computer under theof one of these synapses, it sometimes triggers the release
Window NT (Microsoft) operating system. Software written in Lab-of a vesicle of glutamate, which causes current to flow into
view (National Instruments) with Dynamic Data Exchange linksthe postsynaptic dendrite. Some of this current then propa-
to Matlab (Mathworks) allowed convenient online synthesis and

gates, passively or actively, to the spike generator, where it injection of arbitrary synthetic current waveforms.
may contribute to the triggering of an action potential.

The postsynaptic neuron can be viewed as an input-output Simulations
element that converts the input spike trains from many pre- All simulations were performed using Matlab 4.2.
synaptic neurons into a single-output spike train. This input-

Model of spikingoutput transformation is the basic computation performed
by neurons. It is the foundation upon which cortical pro- We use an integrate-and-fire mechanism to model the transfor-

mation of synaptic inputs into spike trains in cortical neurons. Letcessing is based.
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isyn ( t) be the synaptic current driving a leaky integrator with a where the summation index j is over the input neurons, the random
process fj( t) representing synaptic failures is a binary string thattime constant t and a threshold Vthresh . As long as the voltage is

subthreshold, £( t) õ Vthresh , the voltage is given by is one when transmitter is released and zero otherwise and qj( t) is
a random variable that determines the quantal size of releases
when they occur. The processes isyn ( ti) , zj( ti) , fj( ti) , and qj( ti) aret

d£( t)
dt

Å 0[£( t) 0 Vrest ] / isyn ( t)Rn (1)
discrete-time, but for notational convenience we will often suppress
the time index i .where Rn is the input resistance and Vrest is the resting potential.

A single axon may sometimes make multiple synapses onto aAt the instant the voltage reaches the threshold Vthresh , the neuron
postsynaptic target, or a single synapse might have multiple releaseemits a spike, and resets to some level Vreset õ Vthresh . The five
sites. We use the term functional contact to describe both theseparameters of this model, Vthresh , Vreset , Vrest , t, and Rn , determine
situations. Equation 2 implicitly assumes that each axon has onlyits response to a given input current.
a single ‘‘functional contact’’ onto the postsynaptic neuron. WeThe output of the model is a spike train, i.e. a sequence of times
also consider the case where each axon makes Nr multiple func-at which £( t) exceeded threshold. If time is finely discretized into
tional contacts. In this case, the current isyn is given bybins shorter than the shortest interspike interval, so that the number

of spikes in each bin is either zero or one (but not greater than
isyn ( t) Å ∑

j

zj( t) 1 ∑
N

r

k

qjk( t) 1 fjk( t) (3)one) , then the spike train can be represented as a binary string
zo( t) , with ones at times when the neuron fired and zeros at other
times.

where the summation index k is over functional contacts, each of
which is driven by the same sequence of presynaptic action poten-

Model of synaptic drive tials zj( t) . In this model, all the terminals k associated with a single
presynaptic axon are activated synchronously, but release failures

We assume that the synaptic current isyn ( t) consists of the sum occur at each contact independently.
of very brief—essentially instantaneous—individual excitatory The Poisson rate Snet ( impulses/second) at which EPSCs con-
postsynaptic currents (EPSCs). This represents a reasonable sim- tribute to the postsynaptic current is given in this model by
plification of the component of the excitatory input to cortical
neurons mediated by fast AMPA receptors, which decay with a Snet Å A 1 Fin 1 Nr 1 Pr (4)
time constant of 2–3 ms (Bekkers and Stevens 1990), but not
for the component mediated by the slower N-methyl-D-aspartate where A is the number of afferent axons, Nr is the number of
(NMDA) receptor-gated channels. functional contacts per axon (assumed to be the same for all ax-

The synaptic current driving any neuron results from the spike ons) , Fin is the Poisson rate at which each axon fires (assumed to
trains of all the other neurons that make synapses onto it. The be the same for all axons) , and Pr is the release probability at each
postsynaptic current depends both on the precise times at which functional contact (assumed to be the same for all contacts) . Snet
each of the presynaptic neurons fired and on the response at each determines the average postsynaptic current and thereby the output
synapse to the arrival of a presynaptic action potential. If the re- firing rate R .
sponse at each synapse is either unreliable or variable in amplitude, In some of the simulations described below (Figs. 3–5), the
then even the arrival of precisely the same spike train at each parameters Nr and Pr were varied. To keep Snet fixed under these
terminal will fail to produce identical postsynaptic current. In what conditions, any decrease in these parameters was compensated for
follows, the exact sequence of action potentials arriving at each of by a proportional increase in A 1 Fin . For example, if the release
the presynaptic terminals is the ‘‘signal,’’ and any variability re- probability Pr was reduced to 0.5 from 1, Fin was increased twofold.
sponse to repeated trials on which precisely the same sequence is
presented represents the ‘‘noise.’’

After the basic quantal model of synaptic transmission (Katz Information rate of spike trains
1966), we consider two sources of synaptic variability, or noise.
The first is that the probability Pr that a glutamate-filled vesicle is A typical pyramidal neuron in the cortex receives synaptic input
released after presynaptic activation may be less than unity in from 103–104 other neurons. We define the activity in each of
the hippocampus (Allen and Stevens 1994; Hessler et al. 1993; these input neurons as the ‘‘signal,’’ and the variability due to the
Rosenmund et al. 1993) and the cortex (Castro-Alamancos and unreliability of synaptic transmission is the ‘‘noise.’’
Connors 1997; Stratford et al. 1996). The second is that the post- How much information does the output spike train zo( t) provide
synaptic current in response to a vesicle may vary even at single about the input spike trains zj( t)? More formally, what is the
individual terminals (Bekkers and Stevens 1990). This quantal mutual information I(Zin ( t) ; Zout ( t)) between the ensemble of input
variability may arise, for example, from variable amounts of neuro- spike trains Zin ( t) Å {z1( t) , . . . , z ; ( t), . . .} and the output spike
transmitter filling each vesicle (Bekkers and Stevens 1990); but train ensemble Zout ( t)? We assume that both Zin ( t) and Zout ( t) are
the results of the present study do not depend on the mechanism completely specified by the activity (i.e., the precise list of spike
underlying this variability. times) in each spike train; that is, all the information in the spike

The basic model for the postsynaptic current isyn driving the trains can be represented by the list of spike times and there is no
neuron is as follows. We assume that the activity in the population extra information contained in properties such as spike height or
of presynaptic neurons j is given by zj( t) , where (by analogy with width. Characteristics of the spike train such as the mean or instan-
the output zo( t) above) zj( t) is a binary string whose entries are taneous rate can be derived from this representation; if such a
one if the neuron fired and zero otherwise. When an axon fires, derived property turns out to be the relevant one, then this formula-
the presynaptic terminal releases transmitter with a probability Pr . tion can be specialized appropriately.
If transmitter is released at time t at synapse j , then the postsynaptic The mutual information I(Zin ( t) ; Zout ( t)) is defined (Shannon
amplitude is given by qj( t) , which is a random variable that repre- and Weaver 1948) in terms of the entropy H(Zin ) of the ensemble
sents the quantal variability. Thus the total postsynaptic current is of input spike trains, the entropy H(Zout ) of output spike trains,
given by and their joint entropy H(Zin , Zout ) ,

isyn ( t) Å ∑
j

zj( t) 1 fj( t) 1 qj( t) (2)
I(Zin ; Zout ) Å H(Zin ) / H(Zout ) 0 H(Zin , Zout ) (5)
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SYNAPTIC UNRELIABILITY AND INFORMATION 1221

I(Zin , Zout ) Å H(Zout ) 0 H(ZoutÉZin ) (7)The entropies H(Zin ) , H(Zout ) and H(Zin , Zout ) depend only on the
probability distributions P(Zin ) , P(Zout ), and the joint distribution

The first term H(Zout ) is the entropy of the output spike train itself,P(Zin , Zout ) , respectively.
whereas the second term H(ZoutÉZin ) is the conditional entropy ofNote that because the joint distribution is symmetric P(Zin ,
the output given the inputs. The first term measures of the variabil-Zout ) Å P(Zout , Zin ) , the mutual information is also symmetric,
ity of the spike train in response to the ensemble of different inputs,I(Zin ; Zout ) Å I(Zout ; Zin ) . Note also that if the inputs Zin ( t) and
whereas the second measures the reliability of the response tooutputs Zout ( t) are completely independent, then the mutual infor-
repeated presentations of the same inputs. The second term dependsmation is zero, because the joint entropy is just the sum of the
on the reliability of the synapses and spike generating mechanism:individual entropies H(Zin , Zout ) Å H(Zin ) / H(Zout ) . This is com-
to the extent that the same inputs produce the same outputs, thispletely reasonable, because in this case the inputs provide no infor-
term approaches zero.mation about the outputs.

The direct method has two advantages over the reconstruction
method in the present context. First, it does not require the con-

Methods for estimating spike train information rates struction of a ‘‘reconstructor’’ for estimating the input from the
output. Although the optimal linear reconstructor is straightforwardThe expression given in Eq. 5 for the mutual information is in
to estimate, the construction of more sophisticated (i.e., nonlinear)practice difficult to evaluate because estimating the distributions
reconstructors can be a delicate art. Second, it provides an estimateP(Zin ) , P(Zout ) , and P(Zin , Zout ) may require very large amounts
of information that is limited only by the errors in the estimationof data. For example, suppose that there are 1,000 input spike
of H(Zout ) and H(ZoutÉZin ) ; the reconstruction method by contrasttrains driving the output and that each spike train is divided into
provides only a lower bound on the mutual information that issegments 100 ms in length and discretized into 1 ms bins. There
limited by the quality of the reconstructor.are then 2100 possible output spike trains, 210011,000 sets of input

As noted above, the estimation of H(Zout ) and H(ZoutÉZin ) canspike trains, and 210011,000 1 2100 possible combinations of input
require vast amounts of data. If, however, interspike intervalsand output spike trains forming the space over which the joint
(ISIs) in the output spike train were independent, then the entropiesdistribution P(Zin , Zout ) must be estimated. Although this naive
could be simply expressed in terms of the entropy of the associatedcalculation is in practice an overestimate (see Buracas et al. 1996
ISI distributions. The information per spike I(Zin , T ) is then givenand de Ruyter van Steveninck et al. 1997 for methods that make
simply byuse of the fact that most spike trains are very unlikely) , it empha-

sizes the potential problems involved in estimating the mutual I(Zin , T ) Å H(T ) 0 H(TÉZin ) (8)
information. Below we describe two practical methods for comput-

where H(T ) are H(TÉZin ) are total and conditional entropies, re-ing information rates.
spectively, of the ISI distribution. The information rate (units: bits /
second) is then just the information per spike (units: bits /spike)

Reconstruction method times the firing rate R (units: spikes/second)
One approach to this dilemma (Bialek et al. 1991, 1993) is to I(Zin , Zout ) Å R 1 I(Zin , T ) (9)

compute a strict lower bound on the mutual information using the
reconstruction method. The idea is to ‘‘decode’’ the output and The representation of the output spike train as a sequence of
use it to ‘‘reconstruct’’ the input that gave rise to it. The error firing times { to , . . . , tn} is entirely equivalent (except for edge
between the reconstructed and actual outputs is then a measure of effects) to the representation as a sequence of ISIs {To , . . . , Tn},
the fidelity of transmission and with a few testable assumptions where Ti Å ti/1 0 ti . The advantage of using ISIs rather than spike
can be related to the information. Formally, this method is based times is that H(T ) depends only on the ISI distribution P(T ) ,
on an expression mathematically equivalent to Eq. 5 involving the which is a univariate distribution. This dramatically reduces the
conditional entropy H(ZinÉZout ) of the signal given the spike train amount of data required.

In the sequel we assume that spike times are discretized at a
I(Zin , Zout ) Å H(Zin ) 0 H(ZinÉZout ) (6) finite time resolution Dt . The assumption of finite precision keeps

the potential information finite. If this assumption is not made, eachIn the present context, the quantity reconstructed is the sum of the
spike has potentially infinite information capacity; for example, ainput, (

j
zj( t) . The entropy H(Zin ) is just the entropy of the time

message of arbitrary length could be encoded in the decimal expan-
series (

j
zj( t) and can be evaluated directly from the Poisson syn- sion of a single ISI.

thesis equation (Eq. 3) . Intuitively, Eq. 6 says that the information Equation 8 represents the information per spike as the difference
gained about the spike train by observing the stimulus is just the between two entropies. The first term is the total entropy per spike
initial uncertainty about the synaptic drive (in the absence of

H(T ) Å 0∑
`

iÅ0

p(Ti ) log2 P(Ti ) (10)knowledge of the spike train) minus the uncertainty that remains
about the signal once the spike train is known. The reconstruction
method estimates the input from the output and then bounds the where P(Ti) is the probability that the length of the ISI was be-
errors of the outputs from above by assuming they are Gaussian. tween Ti and Ti/1 . The distribution of ISIs can be obtained from
This method, which can provide a lower bound on the mutual a single long (ideally, infinite) sequence of spike times.
information, has been used with much success in a variety of The second term is the conditional entropy per spike. The condi-
experimental preparations (Bialek et al. 1991; de Ruyter van Ste- tional entropy is just the entropy of the ISI distribution in response
veninck and Bialek 1988; de Ruyter Van Steveninck and Laughlin to a particular set m of input spikes [Zin ( t)]m , averaged over all
1996; Rieke et al. 1997). possible sets of inputs spikes

H(TÉZin ) Å 0K∑
`

jÅ1

P(TjÉ[Zin ( t)]m) log2 P(TjÉ[Zin ( t)]m) L
[Zin (t )]m

(11)Direct method

In this paper we will use a direct method (DeWeese 1995, 1996;
de Ruyter van Steveninck et al. 1997; Stevens and Zador 1996) to whereõrú represents average. Here P(TjÉ[Zin ( t)]m) is the proba-

bility of obtaining an ISI of length Tj in response to a particularestimate the mutual information. Direct methods use another form
of the expression Eq. 5 for mutual information set of input spikes [Zin ( t)]m .
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We used the following algorithm for estimating the conditional through the history-dependence of efficacy at individual synapses
(Abbott et al. 1997; Dobrunz and Stevens 1997; Markram andentropy:

1) Generate ensemble of input spikes. Some particular ensemble Tsodyks 1996; Varela et al. 1997; Zador and Dobrunz 1997).
We have made no attempt to explore the potentially importantof input spikes (corresponding, for example, to m Å 17) is gener-
consequences of such use-dependent effects.ated, [Zin ( t)17 Å [z 17

1 ( t) , . . . , z 17
j ( t) , . . .] , where [z 17

1 ( t) , . . . ,
z 17

j ( t) , . . .] are independent homogenous Poisson processes (for
convenience we assume they have the same rate, but this is not Informative upper bound
essential) .

2) Compute conditional ISI distribution. The conditional distri- The assumption that successive ISIs are independent ( i.e., that
bution P(TÉ[Zin ( t)]17) of ISIs of the model neuron is obtained by the spike train is a renewal process) leads to an exact expression
measuring the ISIs on a large (ideally, an infinite) number of trials (rather than the upper bound provided by the reconstruction
in which a synaptic current is generated from [Zin ( t)]17 by using method) for the mutual information, subject only to error in the
the synaptic noise equations Eq. 2 or Eq. 3 . If the noise is nonzero, estimation of the ISI distribution. Here we review the well known
then each realization of the synaptic current i 17

syn ( t) is slightly differ- result that a Poisson process (the special case where the ISI distri-
ent, leading to variability in the output ISI. bution is exponential) leads to the maximum entropy spike train,

3) Compute conditional entropy for this input ensemble. From and give the simple closed-form expression for the entropy in this
the conditional distribution, the conditional entropy in response to case.
this particular input ensemble is computed as H(TÉ[Zin ( t)]17) Å The upper bound on the possible information transmitted in this
0(TP(TÉ[Zin ( t)]17) log2 P(TÉ[Zin ( t)]17) . This ISI distribution de- model is straightforward to calculate (MacKay and McCulloch
pends on the amount of synaptic noise assumed; if there is no 1952). The output is a binary string—we have disallowed the
noise, the output distribution assumes only a single value and the possibility of multiple spikes per bin. If the conditional entropy is
conditional entropy is zero. zero (i.e., if there is no noise whatsoever) , then all the entropy is

4) Repeat and average over conditional entropies for other en- information, and the upper bound on the entropy is equal to the
semble. The average conditional entropy per spike is calculated by upper bound Iub on the information.
repeating this procedure for a large (ideally, infinite) number of The probability of observing a spike in a bin of length Dt de-
input patterns [Zin ( t)]1 , [Zin ( t)]2 , . . . and averaging over the re- pends on the firing rate R as P1 Å R 1 Dt and the probability of
sulting conditional entropies. not observing a spike is P0 Å 1 0 R 1 Dt . If spikes are indepen-

In summary, we have described the three steps required to com- dent—that is, if the probability of observing a spike in one bin
pute the information rate in our model. First, the total entropy per does not depend on whether there was a spike in any neighboring
spike is computed from Eq. 10 and the conditional entropy per bin, so that the spike train is a Poisson process—then the entropy
spike is computed from Eq. 11 . Next, the information per spike is

per bin is (i Pi log2
1
Pi

Å P0 log2
1
P0

/ P1 log2
1
P1

. At low firingcomputed from Eq. 8 . Finally, the information rate (information
per time) is computed from Eq. 9 .

rates, P0 r 1, and P0 log2
1
P0

r 0, so the entropy per bin is approxi-

Model assumptions
mately P1 log2

1
P1

Å R 1 Dt log2
1

R 1 Dt
. The entropy rate (en-

We have assumed a model of neuronal dynamics in which ISIs
tropy per time) is then the entropy per bin divided by the time perare independent. This assumption simplifies the estimation of the
bin Dt orinformation rate, because it reduces the estimation of the multidi-

mensional distribution of spike times to the estimation of the one
Iub Å R log2 S 1

R 1 DtD (12)dimensional ISI distributions (P(T ) and P(TÉZin ( t)) , from which
the mutual information can be calculated exactly. Under what con-
ditions will ISIs be independent? Because correlated ISIs can arise This upper bound on the information encoded in a discretized spike
either from the spike generating mechanism itself or the input train is achieved if 1) there is no noise, 2) spikes are independent,
signal, we consider the validity of our assumptions about each in and 3) the spike rate is low compared to the inverse bin size,
turn. R ! 1/Dt . Its shows that the information rate increases almost

The first assumption is that the spike-generating mechanism does linearly with the firing rate, but the information per spike
not induce correlations between ISIs. We have used a standard

log2 S 1
R 1 DtD decreases logarithmically.‘‘memoryless’’ integrate-and-fire model in which the length of one

ISI has no influence on subsequent ISIs. At least in cortical neurons,
this assumption is not strictly valid for at least two reasons. First,
on long time scales, adaptation (i.e., a change in the firing rate

R E S U L T S
that depends on the firing rate itself) becomes important. Second,
low-pass filtering by dendrites may induce temporal correlations Synaptic variability is the dominant source of output
in the effective synaptic current reaching the spike generator, even variability
if they did not exist in the input ensemble. Correlations between
ISIs may either increase or decrease the information rate. Mainen and Sejnowski (1995) have previously shown that

The second assumption is that the correlations do not arise from the timing of spikes produced by cortical neurons in response
the synaptic drive. This assumption may be inadequate for at least to somatic current injection can be highly reliable. The cur-
three reasons. First, it requires that EPSCs be much shorter than rents they injected were obtained by passing a Gaussian
typical ISIs. Correlations in the synaptic drive are unlikely to arise signal through a low-pass filter representing the time coursefrom the fast AMPA component, but might well arise from the

of an EPSC and adding a constant offset. Although such aNMDA component, which decays much more slowly. A second
Gaussian current is obtained in the limit as the number ofpotential source of correlations in the synaptic drive is correlations
inputs becomes large, Mainen and Sejnowski (1995) did notin the spike trains of each of the input neurons. To the extent that
explicitly relate the current they injected to the underlyingeach input spike train is not a homogenous Poisson spike train, the

model must be reevaluated. Finally, correlations might arise synaptic drive.
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Figure 1A shows a typical experiment in which the same Fig. 1A , generated according to the synaptic model de-
scribed in Eq. 2) , but assuming that synapses failed to elicitcurrent was injected into the soma of a pyramidal neuron in

layer II /III of a slice of rat neocortex and the response on a postsynaptic response on average 3 of every 10 spikes
(Pr Å 0.7) . The response to 20 consecutive trials was re-20 consecutive trials was recorded. In the experiment shown,

a single 1,024 ms waveform was generated according to Eq. corded. Thus in contrast to Fig. 1A—in which precisely the
same current was injected on each trial—for this experiment2 and then stored; this precise waveform was injected on 20

trials. Figure 1A shows that most of the spikes are aligned a somewhat different waveform, corresponding to the ran-
dom removal of 3/10 spikes from the input ensemble, waswith a ‘‘jitter’’ of °1 ms, although a few ‘‘stray’’ or ‘‘dis-

placed’’ spikes are also seen. In agreement with the observa- injected on every trial. Figure 1B shows that spikes are
no longer well aligned, indicating that under these condi-tions of Mainen and Sejnowski (1995), these results show

that cortical neurons can generate precisely repeated outputs tions synaptic failures are the dominant source of output
variability.in response to precisely repeated inputs, even when the driv-

ing current corresponds to a synthetic synaptic current gener-
ated by an ensemble of independent inputs. The small re- Information rate depends on firing rate
maining output variability seen in Fig. 1A is due to some
combination of experimental instability and the intrinsic im- Experiments like those shown in Fig. 1 suggest that synap-

tic noise represents an important source of output variability.precision of spike generator. Experiments in which precisely
the same current is injected establish a limit on the output Such experiments can be used to estimate information rates

in cortical neurons by using techniques developed elsewhereprecision of which these neurons are capable. The output
variability increases as other sources of variability, such as (Buracas et al. 1996; de Ruyter van Steveninck et al. 1997).

In an experimental setting, however, information estimatessynaptic noise are considered.
Synaptic failures occurring at even a relatively low rate can be distorted by nonstationarity, finite data sizes, variabil-

ity between neurons, and a number of other factors. Althoughdramatically increase the output variability. Figure 1B shows
the response of the same neuron to injected current (as in it is possible to correct for such factors (subject to certain

FIG. 1. Synaptic variability is dominant source of output variability. Top : spike generator is reliable. Response of a
neuron from layer II /III of a slice of rat neocortex to 20 consecutive even-numbered trials in which precisely same synthetic
synaptic current was injected through a somatic electrode (see METHODS). Most of spikes are aligned to a precision of Ç1
ms, although a few ‘‘stray’’ or ‘‘displaced’’ spikes are also seen. This experiment places a lower bound on precision with
which spikes can be generated in response to identically repeated stimuli; remaining variability is due to some combination
of experimental noise and intrinsic variability of spike generator. Bottom : noisy synapses introduce output variability.
Response to 20 consecutive odd-numbered trials ( interleaved with even-numbered trials presented in top) is shown. In this
experiment, synthetic currents were generated from same ensemble as in top , using a fixed pattern of presynaptic spikes
drawn from a Poisson ensemble, but assuming that, because of synaptic failures, 3/10 spikes failed to elicit an EPSC (Pr Å
0.7) . [Current repeatedly injected in top is equivalent to assumption that precisely the same 3/10 spikes failed to elicit an
excitatory postsynaptic current (EPSC) on every trial. ] Under these conditions, effective output reliability is markedly
decreased, as seen by poor alignment of spikes giving a haphazard appearance to raster. For this experiment, quantal
fluctuations, which would tend to further decrease output reliability, were suppressed (CV Å 0). Parameters for synthetic
synaptic currents: quantal size (mean), 30 pA; quantal size (coefficient of variation): 0 Pr Å 0.7, Nr Å 1.

J757-7/ 9k26$$mr19 02-18-98 09:28:52 neupa LP-Neurophys



A. ZADOR1224

reasonable assumptions) , here we focus on the results from tropy at 4 Hz) is information. As seen in the next section,
additional sources of synaptic variability reduce this fractiona model neuron in which all assumptions are explicit; this

permits us to focus specifically on the role of synaptic vari- further.
The information and entropies per spike decrease mono-ability in governing transmitted information.

tonically with firing rate. These quantities diverge logarith-In what follows, we consider a model in which the spike
mically to infinity as the firing rate goes to zero and in factgenerating mechanism is completely deterministic, known,
the entropy rates were calculated for firing rates only as lowand stationary. Thus variability in the output spike train is
as Ç4 Hz. The behavior of the total entropy per spike atdue solely to variability among the stochastic inputs. In this
low firing rates can be understood in terms of the results forsection we begin with the limiting case in which the only
the limiting case of Poisson model outlined (see Eq. 12).source of variability among the inputs is the quantal variabil-

In contrast to the entropy and information per spike, theity of the synapses, i.e., to the variation in the postsynaptic
entropy and information per second increase with increasingresponse that occurs even when only a single functional
firing rate. The reason is that the entropy and informationcontact is successfully activated. Thus in this section we
per time depend only logarithmically on firing rate, so theassume not only that 1) the spike generating mechanism is
overall dependence, I } R log2 1/R , is increasing (see Eq.completely deterministic, but also that 2) synapses release
12) . Figure 2B illustrates the entropy and information ratestransmitter reliably when an action potential invades the pre-
(units: bits /second) corresponding to the curves shown insynaptic terminal (Pr Å 1). Here as elsewhere, the exact
Fig. 2A . Because of our assumption that time is discretizedsequence of action potentials arriving at each of the presyn-
into bins of length Dt, each containing only at most oneaptic terminals is the signal and any variability response
spike, the information declines back to zero at very highto repeated trials on which precisely the same sequence is
firing rates (not shown).presented represents the noise.

The information rate is a nearly linear function of theThe information per spike is defined (Eq. 8) as the differ-
firing rate (Fig. 2B) . This is precisely the behavior thatence between the total and conditional entropies per spike.
would be expected from the maximum entropy Poisson pro-Figure 2A shows how these quantities depend on the firing
cess (Eq. 12) . Although the output of the integrate-and-firerate for the integrate-and-fire spike generation model given
model is not a Poisson process, the dependence on firingby Eq. 1 . The dashed curve represents the total entropy,
rate is qualitatively similar: an increased firing rate compen-which quantifies the total output variability of the spike train.
sates for a logarithmic decrease in the entropy per spike.The dotted line represents the conditional entropy, which

quantifies the variability that remains when the signal ( i.e.
the precise firing times of each of the inputs) is held constant. Information rate depends on release probability
The solid line is the mutual information between the input
and the output and is the difference between these quantities. The invasion of a synaptic terminal by an action potential
If there were no quantal variability, the conditional entropy often fails to induce a postsynaptic response both in the hippo-
would be zero and all the entropy would be information. campus (Allen and Stevens 1994; Dobrunz and Stevens 1997)
Figure 2A shows that even when the only source of synaptic and in the cortex (Stratford et al. 1996). Although the release
variability is quantal, only about 3/4 of the spike entropy probability Pr varies across synapses onto the same neuron

(Castro-Alamancos and Connors 1997; Hessler et al. 1993;(6 bits /spike conditional entropy vs. 8 bits /spike total en-

FIG. 2. Dependence of entropy and information firing
rate in a model neuron. Left : entropy and information per
spike are plotted as a function of firing rate in a model
integrate-and-fire neuron. ( – – – ): total entropy, which
quantifies total output variability of spike train. (rrr) : con-
ditional entropy, which quantifies variability that remains
when signal is held constant. ( ) : mutual information
between input and output and is difference between these
quantities. Right : corresponding entropy and information
rates in bits /ms are shown. Parameters: Vthresh Å 040 mV;
Rn Å 150 MV; t Å 50 ms; Vreset Å 050 mV; Vrest Å 060
mV; quantal size (mean): 30 pA; quantal size (coefficient
of variation): 0.2; Pr Å 1; and Nr Å 1. Spike rate was varied
by increasing presynaptic Poisson input rate. Smooth curves
shown represent fit of a high-order polynomial to values
computed at a large number of firing rates. In this and all
other simulations presented, a binsize of 1 ms was used.
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Rosenmund et al. 1993) and as a function of history of use greater than one (Markram and Tsodyks 1996; Sorra and
Harris 1993). We have therefore explored the consequences(Abbott et al. 1997; Dobrunz and Stevens 1997; Markram

and Tsodyks 1996; Varela et al. 1997), for simplicity we of multiple functional contacts on the information rate.
Figure 4A shows the dependence of information rate onmake the assumption here that the release probability Pr is

the same at all terminals. release probability for three different values of Nr , the num-
ber of functional contacts per axon. As in the previous simu-Figure 3A shows the dependence of information on firing

rate for several values of Pr . The top curve shows Pr Å 1 lations, the input Poisson rate Snet was held constant as de-
scribed in Model of synaptic drive . The bottom curve is theand is the same as the solid curve in Fig. 2B . The lower

three curves show that as Pr is decreased (to 0.9, and 0.6, same as that shown in Fig. 3B . As the number of functional
contacts is increased, the information available in the outputand 0.3) , the form of the dependence is largely preserved,

but the curves are shifted down. Thus as expected, synaptic spike train is increased as well. Because multiple functional
contacts can be seen as a form of redundancy, the increaseunreliability lowers the information rate. In these simula-

tions, the input Poisson rate Snet was held constant as de- in transmitted information is not unexpected. In these simu-
lations, the input Poisson rate Snet was held constant as de-scribed in Model of synaptic drive , so the decrease in the

information rate was due solely to an increase in the condi- scribed in Model of synaptic drive . Although the firing rate
was slightly (õ10%) higher for large Nr , the increase in thetional entropy per spike and not to a change in firing rate.

Fig. 3B illustrates the dependence on Pr in more detail. For information rate was due primarily to both an increase in
the total entropy per spike and a decrease in the conditionalthis curve, the firing rate was held constant at 40 Hz and Pr

was varied from zero to one. The information is a monotoni- entropy per spike and not to the increased firing rate.
Figure 4B illustrates the dependence on the number ofcally increasing function of Pr . This is reasonable, because

as the synaptic reliability increases, so should the reliability functional contacts Nr in more detail. For this curve, release
probability was held constant at Pr Å 0.5 and Nr was variedwith which information is transmitted. No sharp transition

is observed from an unreliable to a reliable mode. from 1 to 25. The information saturates at high Nr , but no
sharp transition is seen from a low to a high reliability mode.

Information rate depends on the number of functional
contacts per axon Reliability of mean rate coding

It may seem obvious that because multiple functional con-A single axon may sometimes make multiple synapses
onto a postsynaptic target, or a single synapse (such as the tacts increase the fidelity with which a presynaptic signal is

propagated, it can overcome the noise induced by synapticneuromuscular junction) might have multiple release sites.
To avoid ambiguity, we use functional contact to refer to failures and quantal fluctuations and thereby increase the

fidelity of neuronal signaling. In the previous section weany release site from a presynaptic axon to a postsynaptic
target, whether it involves multiple synapses per axon or quantified this intuition under the hypothesis that the precise

timing of spikes carries information. To what extent doesmultiple release sites per buoton. At the neuromuscular junc-
tion, functional contacts are counted by the thousands (Katz this conclusion depend on the particular assumptions we are

making about the neural code?1966). At excitatory synapses in the cortex, the number of
functional contacts is much smaller, but still sometimes According to the ‘‘mean-rate’’ hypothesis for the neural

FIG. 3. Information depends on synaptic release proba-
bility. Top : left information rate is plotted as a function of
firing rate for 4 values of release probability Pr Å 1, 0.9,
0.6, 0.3, in a model integrate-and-fire neuron (top to bot-
tom). Top curve is same as the middle curve shown in Fig.
2, bottom . Bottom : right information rate is plotted as a
function of release probability Pr at F Å 40 Hz. In each
simulation, Pr was same at all synapses. To maintain Pois-
son input rate Snet constant, Poisson rate at each synapse
was increased to compensate for decrease in Poisson rate
because of synaptic failures. Thus for all curves, EPSCs
arrived at a net rate of 2.4/ms (see Model of synaptic drive
for details) . Except as indicated, parameters are same as in
Fig. 2, bottom .
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FIG. 4. Information rate depends on number of func-
tional contacts. Left : information rate is plotted as a func-
tion of release probability Pr for 3 values of number of
functional contacts Nr Å 1, 5, and 20 (bottom to top) in
a model integrate-and-fire neuron. Bottom curve is same
as that shown in Fig. 3, bottom . Right : information rate
is plotted as a function of number of functional contacts
for Pr Å 0.5, F Å 40 Hz. To maintain Poisson input rate
Snet constant, Poisson rate at each synapse was increased
to compensate for changes in Snet because of synaptic fail-
ures or number of functional contacts; thus for all curves,
EPSCs arrived at a net rate of 2.4/ms (see Model of synap-
tic drive for details) . Except as indicated, parameters are
same as in Fig. 2.

code, the signal is carried not by the times at which spikes connection redundancy. In these simulations, the net input
Poisson rate Snet was held constant (as described in Modeloccur, but instead by the number of output spikes generated

in some relatively long window. Under this hypothesis, mul- of synaptic drive) to keep the mean postsynaptic current
isyn ( t) , and therefore the firing rate, constant. A large Nrtiple functional contacts can actually have the seemingly

paradoxical effect of decreasing the transmitted information. leads to a redistribution of the presynaptic spikes into a small
number of highly synchronous events, surrounded by longerWe use the Fano factor (Fano 1947) to assess the reliability

of coding under the mean rate hypothesis. The Fano factor is
defined as the variance s2

N divided by the mean mN of the spike
count N in some time window W . The Fano factor can be
viewed as a kind of ‘‘noise-to-signal’’ ratio; it is a measure of
the reliability with which the spike count could be estimated
from a time window that on average contains several spikes.
In fact, for a renewal process like the neuronal spike generator
considered here, the distribution PN(N , W ) of spike counts can
be shown (Feller, 1971) by the central limit theorem to be
normally distributed (asymptotically, as the number of trials
becomes large), with mN Å W/misi and sN Å W s2

isi /m
3
isi, where

sisi and are, respectively, the mean and the standard deviation
of the ISI distribution P(Ti). Thus the Fano factor F is related
to the coefficient of variation C

£
Å sisi /misi of the associated

ISI distribution by C
£
Å

√
F .

Figure 5 shows the Fano factor as a function of the number
of functional contacts. The spike trains are the same as those
analyzed in Fig. 4B . The Fano factor increases monotoni-
cally with the firing rate. Because the reliability with which
the spike count can be estimated is inversely related to its

FIG. 5. Information is inversely proportional to number of functional
variability, an increase in the number of functional contacts contacts in a mean rate code. In these simulations, input Poisson rate Snet

was held constant. Fano factor (variance divided by mean of spike count)results in a decrease in the effective signal-to-noise ratio.
during a 250-ms window is plotted as a function of number of functionalThis suggests that if a mean-rate coding scheme is used, an
contacts. This measure can be thought of as an effective ‘‘noise-to-signal’’increase in the number of functional contacts could actually
ratio for a mean rate code, because it reflects how well spike count can be

decrease the coding fidelity. This behavior stands in marked estimated. A larger ratio indicates that spike count is harder to estimate.
contrast to that observed in the previous section, where the Curve illustrates that an increase in number of functional contacts leads to

an increase in variance of synaptic current driving neuron and thereby anincrease in functional contacts produced the expected in-
increase in Fano factor. To maintain rate of Poisson input Snet constant,crease in information rate.
Poisson rate at each synapse was increased to compensate for changes inHow can we account for this seemingly paradoxical de- Snet because of synaptic failures or number of functional contacts; thus for

crease in signal-to-noise with increased redundancy? The all curves, EPSCs arrived at a net rate of 2.4/ms (see Model of synaptic
drive for details) . Except as indicated, parameters are same as in Fig. 2.resolution rests in the normalization used to increase the
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periods during which no spike occurred. Normalizations that struction method to estimate the information in a spiking
neuron model. In Stevens and Zador (1996), the key as-do not increase the effective synchrony might have given a

different result. sumption was that ISIs were independent, whereas in De-
Weese (1996), the key assumption was that spikes wereThese synchronous events have two effects. First, they

tend to trigger postsynaptic action potentials at precise times. independent.
This increased timing precision decreases the conditional

Neural codeentropy (and thereby increases the total information by Eq.
8) under the coding assumptions analysed in this section, Although it is generally agreed that the spike train output
but has no effect on the available information under the by a neuron encodes information about the inputs to that
mean rate hypothesis. Second, the increased synchrony in- neuron, the code by which the information is transmitted
creased the variance of the postsynaptic input current, which remains unclear (see Ferster and Spruston 1995; Stevens
in turn leads to an increase in the output variance (as as- and Zador 1995) for recent discussions. One idea (the con-
sessed by the Fano factor) . This increases the total entropy ventional view in systems physiology) is that it is the mean
and hence the total information under the coding assump- firing rate alone that encodes the signal and that variability
tions analyzed in this section, but actually decreases the about this mean is noise (Shadlen and Newsome 1994,
effective signal-to-noise ratio under the mean rate hypothe- 1995). An alternative view that has recently gained increas-
sis. Thus the increased connection redundancy has diametri- ing support is that it is the variability itself that encodes the
cally opposed effects on the available information, de- signal, i.e. that the information is encoded in the precise
pending on how the spike trains are decoded. times at which spikes occur (Abeles et al. 1994; Bialek et

al., 1991; Rieke et al. 1997; Softky 1995).
Our results make no assumptions about the neuronal code.D I S C U S S I O N

Rather, they provide an exact expression for the maximum
We have estimated the mutual information between the information that could possibly be transmitted, given the

synaptic drive and the resulting output spike train in a model stimuli and the neuronal parameters. The precise timing of
neuron. We have adopted a framework in which the time at spikes is used to achieve this maximum; how much of this
which individual spikes occur carries information about the available information is actually used by ‘‘downstream’’
input. In this formulation, the exact sequence of action poten- neurons is a separate question.
tials arriving at each of the presynaptic terminals is the ‘‘sig- The importance of spike timing in encoding time-varying
nal,’’ and the ‘‘noise’’ is any variability in the response signals is now well-established in some systems, such as the
to repeated trials on which precisely the same sequence is motion-sensitive H1 neuron of the fly (Bialek et al. 1991).
presented. We found that the information was a smooth func- A comparable role for spike timing in mammalian cortex has
tion of both synaptic reliability and connection redundancy: been more controversial. It has been suggested that motion-
no sharp transition was observed from an ‘‘unreliable’’ to a sensitive neurons in area MT of awake monkeys encode only
‘‘reliable’’ mode. However, connection redundancy can only fractions of a bit per second and that all of the encoded
compensate for synaptic unreliability under the assumption information is available in the spike count over a relatively
that the fine temporal structure of individual spikes carries long time window (Britten et al. 1992). However, more
information. If only the number of spikes in some relatively recent experiments (Bair et al. 1997; Buracas et al. 1996)
long time window carries information (a ‘‘mean rate’’ suggest that these neurons encode information at rates (1–
code), an increase in the fidelity of synaptic transmission 2 bits /spike) comparable with those of the H1 neuron of
results in a seemingly paradoxical decrease in the informa- the fly, when presented with visual stimuli that have appro-
tion available in the spike train. priately rich temporal structure. Thus it may be wrong to

speak of the neural code: it may well turn out that some
components of the input stimulus (e.g., those that are chang-Related work
ing rapidly) are encoded by precise firing times, whereas

Information rates for sensory neurons in a wide variety others are not.
of experimental systems have now been measured for both We have shown that an increase in the number of func-
static (Golomb et al. 1997; Optican and Richmond 1987; tional contacts per axon can lead to an increase in transmitted
Richmond and Optican 1990; Tovee et al. 1993) and time- information if the timing of spikes encodes the signal, but
varying (Bair et al. 1997; Bialek et al. 1991; Buracas et al. not if a mean rate code is used. Such an increase can be
1996; Dan et al. 1996; de Ruyter van Steveninck and Bialek seen as a special case of neuronal synchrony in which all
1988; Gabbiani and Koch 1996; Gabbiani et al. 1996; Rieke synapses from a single axon are stimulated at precisely the
et al. 1997; Warland et al, 1997) stimuli. Most of the work on same instant. This seemingly paradoxical observation is a
time-varying stimuli used reconstruction methods to obtain a consequence of the manner in which synchrony affects firing
lower bound on the transmitted information; typical values patterns: it increases timing precision, but also increases the
were in the range of 1–3 bits /spike. De Ruyter van Ste- trial-to-trial variability in the spike count. It is not clear how
veninck and Lauglin (1996) applied similar techniques to synaptic unreliability could be compensated for in a mean
estimate information rates across graded synapses in the rate scenario.
blowfly.

Information and synaptic unreliabilityThe present model is a direct extension of that considered
in Stevens and Zador (1996) and closely related to that in The present paper is the first to interpret information rates

in single cortical neurons in terms of the underlying biophys-DeWeese (1996). Both used a direct rather than a recon-
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ical sources of the signal and noise. Here signal is the set occur is a necessary step toward understanding the computa-
tion.of firing times over the ensemble of presynaptic neurons,

whereas noise is synaptic variability that leads to variability
in the firing times of the postsynaptic neuron. This work was supported by The Sloan Center for Theoretical Neurobiol-

ogy at the Salk Institute and by a grant to Charles F. Stevens from theThe present study was centrally motivated by the hypothe-
Howard Hughes Medical Institute.sis that the nervous system is under selective evolutionary

pressure to preserve as much information as possible during Received 12 September 1997; accepted in final form 19 November 1997.
processing. In the limit this is trivially true: a retina that
transmits no information whatsoever about the visual input
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