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Electrotonic structure of dendrites plays a critical role in 
neuronal computation and plasticity. In this article we de- 
velop two novel measures of electrotonic structure that de- 
scribe intraneuronal signaling in dendrites of arbitrary ge- 
ometry. The log-attenuation L,j measures the efficacy, and 
the propagation delay P,, the speed, of signal transfer be- 
tween any two points i and i. These measures are additive, 
in the sense that if j lies between i and k, the total distance 
L, is just the sum of the partial distances: & = L, + LIM 
and similarly P,k = /J,, + Pjk. This property serves as the 
basis for the morphoelectrotonic transform (MET), a graph- 
ical mapping from morphological into electrotonic space. 
In a MET, either P,, or L,, replace anatomical distance as the 
fundamental unit and so provide direct functional mea- 
sures of intraneuronal signaling. The analysis holds for ar- 
bitrary transient signals, even those generated by nonlin- 
ear conductance changes underlying both synaptic and 
action potentials. Depending on input location and the 
measure of interest, a single neuron admits many METS, 
each emphasizing different functional consequences of the 
dendritic electrotonic structure. Using a single layer 5 cor- 
tical pyramidal neuron, we illustrate a collection of METS 
that lead to a deeper understanding of the electrical be- 
havior of its dendritic tree. We then compare this cortical 
cell to representative neurons from other brain regions 
(cortical layer 2/3 pyramidal, region CA1 hippocampal py- 
ramidal, and cerebellar Purkinje). Finally, we apply the MET 
to electrical signaling in dendritic spines, and extend this 
analysis to calcium signaling within spines. Our results 
demonstrate that the MET provides a powerful tool for ob- 
taining a rapid and intuitive grasp of the functional prop- 
erties of dendritic trees. 

[Key words: computer mode/s, electrotonic structure, den- 
dritic computation, cable theory, calcium dynamics, den- 
dritic spines, neuronal simulation, dendritic morphology] 

Electrotonic structure plays a critical role in neuronal informa- 
tion processing, and in the experimental analyses of neuronal 
events (Rall, 1959; Rall, 1967; Barrett and Crill, 1974; Jack et 
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al., 1983; reviewed in Rall et al., 1992). It is a key determinant 
of the spatio-temporal integration of synaptic inputs upon the 
tree (reviewed in Rall, 1989; Segev et al., 1994), and the same 
equations also govern chemical signaling within the tree (Zador 
and Koch, 1994; M. Siegel, E. Marder, and L. Abbot, unpubli- 
shed observations). While there is growing recognition of the 
importance of nonlinear, voltage-dependent, dendritic properties 
(Miyakawa et al., 1992; Regehr et al., 1992; Stuart and Sak- 
mann, 1994; reviewed in Mel, 1994), any understanding of the 
nonlinear case must begin with the linear case. This was the 
reason for the elaboration of cable theory (Rall, 1977; Tuckwell, 
1989), which over the last 30 years has provided major insights 
into dendritic function (McKenna et al., 1992). Yet in spite of 
its importance, many neuroscientists tend to neglect the detailed 
electrotonic structure of dendrites. In most cases the first-and 
often only-question posed about the electrotonic structure of a 
neuron is “What is its electrotonic length, L?” or “How elec- 
trically compact is it?“. However, knowledge of L alone offers 
very limited understanding since it provides an estimate only of 
voltage attenuation from the soma. It does not reflect the actual 
electrotonic structure of the tree as seen by the dendritic syn- 
apses, nor does it give insight into important questions of signal 
delay and input synchronization at different regions of the den- 
dritic tree. 

To elucidate the functional significance of the dendrites, we 
have developed a simple graphical approach that offers an im- 
mediate intuitive understanding of electrotonic structure. The ap- 
proach is based on two novel measures of dendritic electrotonic 
structure, the log-attenuation L,, and the propagation delay P,. 
The log-attenuation (Zador et al., 1991) can be considered a 
generalization of the standard electrotonic distance X for passive 
dendrites with arbitrary branching structure. Only for infinite 
cylinders is L, equal to the electrotonic distance X; in other 
structures it is a functional measure of the efficacy of signal 
transfer between any two points i and j. The propagation delay 
P, is a measure of the rate at which transient signals propagate 
through the tree (Agmon-Snir and Segev, 1993). These measures 
are developed within the framework of a passive dendritic tree, 
but they are directly applicable even to the brief localized non- 
linear events-such as synaptic and action potentials-that are 
of greatest interest to the neurobiologist. The power of these 
measures is that they offer direct and easily interpretable insights 
into intradendritic signaling, even in complicated dendritic struc- 
tures. 

We use these measures as the basis for a set of graphical 
transformations, or mappings, of morphological structure into 
electrotonic structure. These morphoelectrotonic transformations 
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Figure 1. L, and P,, measure signal 
transfer. In this schematic neuron, a 

Definitions of Lij and Pij 

transient current I,. is injected into a 
branch at location i. In A, the shaded 
regions represent the area under the 
voltage response recorded at the point 
of injection i and at a recording point 
j. The log-attenuation L, = log(V,/V,) is 
the loaarithm of the ratio of the areas 
under the two voltage responses. The 
same attenuation is obtained from the 
steady-state voltages between these 
two points. In B, the centroids t’!’ and 
fy of the same responses are denoted by 
vertical lines at 1.5 and 2.5 msec. The 
propagation delay P, = y - f; is the 
1.0 msec difference between the cen- 
troids. 

_ - 
Lij = log (V$Vj) 

(METS) emphasize that electrotonic structure depends critically 
on the location of the input on the tree and on the question of 
interest (Zador et al., 1991; Brown et al., 1992; Zador, 1993; see 
also Tsai et al., 1994); indeed, for any given tree there are an 
infinite number of such transformations. Each MET emphasizes 
a different aspect of electrotonic structure, yet consideration of 
just a few can provide a rather complete functional view of a 
neuron’s tree. Applying the MET to different neuron types (layer 
5 and layer 2/3 cortical pyramidals, hippocampal pyramidal, and 
cerebellar Purkinje), we gain insights into the different integra- 
tive properties of these neurons. Finally, we show that the MET 
can be extended to treat ionic signaling in dendrites and spines. 

Theory 
Model assumptions 
The formalism developed here assumes that the electrical poten- 
tial along each branch satisfies the standard one-dimensional ca- 
ble equation (Jack et al., 1983; Rall, 1989): 

7 a”(4 t) - A* a*v(x, t) 

m 
at 

~ - “(4 t) - z(x,, tw,,, 
dX2 

(1) 

where V(n, t) is the membrane potential at time t and position 
x, Z(x,, t) is the injected current at some point x0 where the input 
resistance is R,,, 7, = R,C, is the membrane time constant, A 
= q is the space constant, d is the process diameter, 
and C,,,, R,, and R, are the membrane capacitance, resistivity, 
and axial resistance, respectively. Note that the formalism below 
permits the current Z(xn, t) to be generated by transient conduc- 
tance changes, for example, by a synaptic input Z(x,,, t) = 
&,“W[“(x,~ t) - ~,,“I. 

Dejinitions 
Electrotonic distance and length. Here we review the standard 
definitions of electrotonic distance and length (Rall, 1959; Jack 
et al., 1983). The electrotonic distance X is the physical distance 
x scaled by the length constant A: 

x=f. (2) 

Similarly, the electrotonic length of a finite cable is the total 
length 1 scaled by the length constant 

L=f. (3) 

A more general expression (Rall, 1962) for X between two 

k Pij 4 

points i andj, applicable to cables of varying geometry or mem- 
brane properties, is 

x= “‘dx 

I x, w-a’ 
(4) 

Transfer impedances. Here we present the two-port formula- 
tion-of electrotonic structure (Butz and Cowan, 1974; Carnevale 
and Johnston, 1982; Koch et al., 1982). Let i and j be spatial 
indices along a branched structure without loops. If we inject an 
arbitrary current Z,(t) = Z(x,, t) at some location i, then the volt- 
age Vj(t) = V(x,, t) at any other point j in response to Z, is 

I 

cc 

y(t) = Zi(7)K,,(t - T) dT = Zi(t)*K,(t), (5) 
-m 

where * indicates convolution. K;,(t) = K(x,, x,, t) is the response 
atj to a Dirac delta pulse 8(t) of current injected at i. K,, (which 
has units of 1R) is the transfer impedance (also called the impulse 
response or Green’s function) from i to j. The convolution be- 
comes a multiplication following the Fourier transform of Equa- 
tion 5, 

v;(f) = QfPqf,> (6) 

where Z?#) is the Fourier transform of K,,(t) (We will in general 
denote the Fourier Transform of a function y(t) by y”cf), and the 
steady state by p(O) or simply jj). In the frequency domain &(f) 
is in general a complex number even though in the time domain 
KG(t) is real. 

For many purposes the quantities of primary interest are the 
steady-state values v,(O) and J(O). For transient signals p;(O) is 
the integral of voltage at the point i, that is, the area under the 
voltage transient. Similarly, J(O) is the integral of injected cur- 
rent at the point i, that is, the total injected charge. At the point 
of current injection the Green’s function takes a special name, 
the input resistance, given by R,, = &(O). 

Log-attenuation. The voltage attenuation between two points 
i and j (Fig. 1A) is defined as (Koch et al., 1982) 

- - 

(7) 

The first subscript i gives the location of the current input, and 
the second subscript j the location of the recording electrode. 
Taking the logarithm, we then define the log-attenuation as 
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L, = log A, = log;. 
/ 

Since the response is always greatest at the site of injection, vi 
2 vj so that L,, 2 0. 

The formalism developed below applies without modification 
to the frequency dependent attenuation, AJf) = &(f)/KJf), 
and the frequency-dependent log-attenuation L,(f) = logb,cf)l. 
Note that in general A,(f) is a complex number, but L&f) is 
real. For completeness we observe that the phase-lag TV(f) = 
arg(A,(f)) has entirely analogous properties, but we will not 
develop them further in this article (Zador, 1993). 

An expression for L, analogous to Equation 4 is 

(9) 

where the effective space constant X, = lv(f = 0, x)l(dv(f = 
0, x)/&)1 (Agmon-Snir, 1994) is the functional generalization of 
the classical definition for X. 

Centroids and delays. Centroids and delays are useful mea- 
sures of the effect of electrotonic structure on the timing of 
signals (see Agmon-Snir and Segev, 1993, for details). We de- 
fine the centroid & (Fig. IB) of a transient signal s,(t) at a point 
i as 

I 

m 
ts,(t) dt 

-m 
fix 

l I 

a (10) 
s,(t) dt 

-m 

The centroid can be interpreted as the “average” or the “center 
of gravity” of the signal. We will use the subscript to denote 
the spatial location at which the centroid is computed, and the 
superscript to denote the signal type. Thus, t^i is the centroid of 
some transient current Z,(t) applied at i, and t”r the centroid of 
the voltage response at that point. As an example, Figure 1B 
shows the centroid fv of the voltage response to a transient cur- 
rent input at the point of injection, and the centroid f; at some 
other point j in the tree. 

We define delay as the difference between centroids. By anal- 
ogy with the transfer impedance, we define the total or transfer 
delay as the difference between the input centroid t”i at i and the 
response centroid iy at j, 

D, = iy - f!. (11) 

In a passive neuron D, is always positive. The local or input 
delay is defined by analogy with the transfer impedance as Di,, 
that is, the transfer delay at the point i. The propagation delay 
P,, is defined as the difference between voltage centroids at two 
points i and j, 

p, = ;; - fy 

= D, - D,i (12) 

It is a measure of the propagation rate of the voltage centroid 
along the tree. 

By analogy with Equations 4 and 9 we can express the prop- 
agation delay in integral form, 

(13) 

where e(x) = XJx)I7&x) is the propagation velocity at x. The 
effective time constant T,~ is the functional generalization of the 
classical 7, (Agmon-Snir, 1994). 

The total delay and the propagation delay between two points 
in a passive structure are independent of the shape of the tran- 
sient signal (Property 9 below). Also, P, has structural invari- 
ance property (Property 4 below) and additivity property (Prop- 
erty 5 below). Without these properties, the MET could not be 
applied to delay analysis. If the peak time, for example, were 
used in the definitions of the delay, these properties would not 
hold. In the Results section below, we show that these delays, 
defined with respect to the centroid, have an interesting physi- 
ological interpretation. A fuller discussion of the relationship 
between the centroid and classical measures of dendritic tran- 
sients (e.g., time-to-peak, half-width) can be found in Agmon- 
Snir and Segev (1993). 

Properties of transfer impedance, log-attenuation, and delay 

Here we catalog briefly some important properties of the quan- 
tities defined above that will be useful in interpreting the mor- 
phoelectrotonic transform. Detailed references and proofs may 
be found in (Torre and Poggio, 1978; Koch et al., 1982; Agmon- 
Snir and Segev, 1993; Zador, 1993). 

The first two properties describe the symmetries and asym- 
metries of these measures within the tree. 

Property I (asymmetry). The propagation delay and the log- 
attenuation are not in general symmetric: 

L, # Lji 

P, # P,,. (14) 

These can be verified by applying the definitions ofhU (Eq. 7) 
and P, (Eq. 12). Inequality holds whenever (for L,) Kii # K;, or 
(for P& D,i # 3,. Infinite cylinders are an exception, since in 
this case $, = Kjj and D, = 0,. 

Property 2 (symmetry). The transfer impedance Kij and the 
transfer delay D, are symmetric: 

R, = Rji 

D, = Dji. 

The next three properties relate these quantities at one position 
along the cable to other positions. 

Property 3 (on-path impedances). Zf j is a point on the path 
between i and k, then the transfer impedance from i to k can be 
computed directly from the transfer impedances from i to j and 
j to k: 

(16) 

This is easily shown by algebraic manipulation of Equation 6. 
Property 4 (structural invariance). Let j be a point on the 

path between i and k. Then Pi, and L,-the measures directed 
toward k-depend on the electrotonic properties at k, but Pji and 
L,,the measures directed away from k-do not. This property 
says that the L, and P, depend on the electrotonic structure “in 
front” of i but not “behind” i. 

Property 5 (additivity). If a point j is on-path from i to k, then 
the total log-attenuation and the total propagation delay are just 
the sum of the respective partial measures. That is, the log- 
attenuation and the delay are additive for j between i and k, 
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L,, = L, + L,k 

P,k = P, + Pik. (17) 

These expressions can be verified from the definitions (Eq. 16 
and Eqs. 11 and 12). In this respect, these measures behave as 
a Euclidean distance metric between collinear points. However, 
because of asymmetry (Property l), neither is a true distance 
metric in the mathematical sense (except in the case of an infi- 
nite cylinder), since the “distance” from i to j is not equal to 
the “distance” from j to i. 

The next two properties describe dependencies on fiber size 
and input frequency. 

Property 6 (high-pass jiltering). Since the transfer impedance 
acts as a low-pass jlter, higher frequencies are more attenuated 
than lower: 

IL,(f)1 2 ILtj<f'>l for f > f’. (18) 

That is, the log-attenuation is a monotonically increasing func- 
tion of frequency. 

Property 7 (dendritic size effects). If the input impedance is 
higher at a point i (e.g., in the dendrites) than at a point j (e.g., 
at the soma), I?;, =C Eii, then 

L, > L,i. (19) 

Similarly, if the local delay is shorter at a point i (e.g., in the 
dendrites) than at a point j (e.g., at the soma), Dii < D,j, then 

'3j ’ ‘p’ (20) 

These properties imply that if the typical size relations between 
the soma and dendrites pertain, then signal transfer is more ef- 
fective away from than toward the soma (Rall and Rinzel, 1973; 
Nitzan et al., 1990). 

We conclude with two properties that emphasize that appli- 
cability of these measures to arbitrary transient signals. 

Property 8 (log-attenuation of transient signals). The log-at- 
tenuation from i to j of total charge for any transient signal is 
Lji9 

I 

m 
Zi(t) dt 

Lji = log O_ 

I 

. (21) 

I , ( t )  dt 

0 

Similarly, the log-attenuation for i to j of the area under the 
voltage transient is L,j, 

I 

m 
v,(t) dt 

L,, = log O_ 

I 

. (22) 
y(t) dt 

0 

The numerator on the right side of Equation 21 is the total 
charge injected by the transient signal at i, and the denominator 
is the total charge received at j when the potential at j is 
clamped. The logarithm of their ratio, which is independent of 
the time course of the injected signal, is just equal to the voltage 
transfer in the opposite direction (Koch et al., 1982). From the 
Properties 6 and 7, it follows that the charge attenuation will 
typically be the best somatic measure (i.e., the minimum atten- 
uation) of a synaptic event (Rinzel and Rall, 1974). 

Property 9 (shape invariance). The delay D, and P,, of a tran- 

The Morphoelectrotonic Transform 

Anatomy 

MET 

Figure 2. The morphoelectrotonic transform (MET) maps from ana- 
tomical to functional space. A neuron can be represented as a collection 
of line segments of known lengths and diameters, connected at fixed 
angles. In a MET, the angles and diameters are retained, but the ana- 
tomical lengths are replaced by some functional lengths. Typically the 
functional length depends on the site of current injection, as indicated 
by I,,. 

sient signal are independent of the shape of the signal and de- 
pend only on the properties of the dendritic tree. This property 
is proved in Agmon-Snir (1994). 

Morphoelectrotonic transform 

In the last several years it has become possible to obtain very 
detailed three-dimensional reconstructions of the branching 
structure of a dendritic tree (Fleshman et al., 1988; Douglas et 
al., 1991; Rapp et al., 1994). In such a reconstruction, neuronal 
morphology can be described as a set of short segments, with 
some measured length and diameter, which when connected and 
placed in the proper spatial orientation produce the complete 
dendritic tree. If we make assumptions about the membrane and 
cytoplasmic parameters R,, C,,,, and R,, the reconstructed neuron 
provides a full description of its passive properties (Rall et al., 
1992). 

Because of the tremendous wealth of data made available by 
a reconstructed neuron, it is often difficult to infer electrotonic 
function from morphological structure. We have therefore de- 
veloped a method that exploits the additivity (see Property 5) of 
the log-attenuation and the propagation delay as the basis for a 
graphical transformation, the morpho-electrotonic transform or 
MET The MET permits direct visualization of functional im- 
plications of electrotonic structure. In a MET, the anatomical 
length of each of the vectors comprising the dendritic tree is 
replaced by one of the additive measures, either P, or L,, while 
the diameter and orientation of the segment are preserved (see 
Fig. 2). In this way different aspects of electrotonic structure can 
be instantly appreciated, and need no longer be inferred indi- 
rectly from the morphology. 

In this article we will consider two primary MET subtypes. 
The attenogram shows signal attenuation L,,, while the delayo- 
gram shows signal delay P,. In the attenogram each unit length 
represents e-fold voltage attenuation; in the delayogram, each 
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unit length represents a fixed propagation delay (in msec). Since 
these measures are directional, each subtype is either centrifugal, 
showing signal transfer away from some reference point, or cen- 
tripetul, showing signal transfer toward some point. Complete 
specification of the MET therefore requires at least three param- 
eters: the reference point, the direction, and the subtype. For 
example, a centrifugal somatic attenogram shows log-attenuation 
of voltage away from the soma. Note that in some cases it may 
be necessary to specify additional parameters, such as the fre- 
quency of the sinusoidal current injected at the reference point. 

Implementation of the MET 
Morphological measurements of reconstructed neurons were ob- 
tained from several different laboratories in the form of com- 
puter files. From these files, generation of a MET required two 
steps: a calculation step to compute the electrotonic properties 
such as input and transfer impedances, and rendering step to 
display the result graphically. 

For preliminary work (Zador, 1993) on the attenogram, a ma- 
trix algorithm was developed to calculate only the requisite el- 
ements of the impedance matrix K (Zador and Pearlmutter, 
1993). The algorithm scales linearly with the spatial discretiza- 
tion n (O(n) in runtime and memory) and has an error propor- 
tional to 0(Lx2). However, in this article all attenograms were 
produced using a now standard recursive algorithm developed 
by Rall (1959) (see also Koch and Poggio, 1985) that scales 
linearly with the number of neuronal branches. For the delayo- 
gram an analogous recursive algorithm was developed in (Ag- 
mon-Snir, 1994). The implementations were verified on branch- 
ing structures for which the analytic solutions were known, and 
results agreed to within machine error. Unless otherwise speci- 
fied the following default membrane parameters were used: R, 
= 20 kfl cm’, R, = 100 fi cm, and C,n = 1 FF/cm*. 

All calculations and renderings were done in MATHEMATICA 

(Wolfram, 1992). Code is available upon request from the au- 
thors. Comparable tools are being developed for NEURON (Hines, 
1989). 

Results 
Analytical results 
Injinite cylinder. In an infinite cylinder, the log-attenuation L, is 
identical to the electrotonic distance X between i and j. This 
observation provides an intuitive basis for interpreting L,. The 
proof is straightforward and helps makes the relationships clear. 
We begin with the standard expression for the steady-state 
spread of voltage in an infinite cylinder (Rall, 1989), 

V; = ViemX (23) 

where v, is the steady-state voltage at the point of current injec- 
tion, q is the steady-state voltage at some point j, and X is the 
electrotonic distance between i and j. Rearranging and substi- 
tuting the definition of the voltage attenuation, we have 

Finally, by taking the logarithm of both sides and substituting 
the definition of the log-attenuation, we obtain the equivalence 

L,, = x. (25) 

This equation provides an intuitive basis for understanding the 
attenogram: for the case of an infinite cylinder, the log-attenu- 
ation is just the electrotonic distance. The attenogram rescales 

the dendritic tree so that each unit length behaves like a segment 
of an infinite cylinder, across which there is an e-fold attenua- 
tion. Similarly, in the delayogram the tree is resealed so that 
there is just a X7,/2 (Agmon-Snir and Segev, 1993) delay across 
each unit distance. 

Finite cylinder. Consideration of L, and P,, in a short terminal 
branch of length L attached to a thicker branch provides a step- 
ping stone to understanding their properties in complex dendritic 
trees (Fig. 3A). Transfer in two directions must be considered. 
Analysis of current injection at the branchpoint-ut toward the 
tip-helps explain the case of centrifugal transfer, while injec- 
tion at the distal tipin toward the branchpoint and the soma- 
corresponds to centripetal transfer. The case of an infinite cyl- 
inder is included for reference. 

Figure 3B shows the dependence of L, on L. For the infinite 
cylinder the plot is just a straight line with slope of unity, since 
as discussed above L,, = L across any segment of length 1. In- 
jection into the branchpoint yields the lower curve, always less 
than the reference curve. This curve shows that attenuation 
across a terminal fiber of length L is less than across a distance 
L in an infinite cylinder. For example, for a terminal segment 
with L = 0.5, L, = 0.12, so that in a MET the segment will 
appear only about a quarter of its size as predicted from the 
classical measure of electrotonic length. By contrast, injection 
at the distal tip of this same branch yields the upper curve which 
is always greater than the reference case. For the same L = 0.5 
fiber, the log-attenuation is now L,, = 1.8, so that in a MET the 
fiber appears longer. Figure 3C illustrates comparable effects of 
asymmetric signal transfer on P,. 

In Figure 30, the ratio L,IP, is shown for both directions and 
the reference infinite cylinder. For the infinite cylinder the ratio 
is just 2/r,,,, since in this case P, = L7,,,/2 and L,, = L. For transfer 
out across short terminal segments (lower curve) the ratio is 
l/r,, and climbs with increasing L only very gently to its lim- 
iting value of 2/7,. If the terminal branches of a neuron are short 
(L < l), then the ratio of the two measures is almost constant 
for transfer out. By contrast, the ratio in the case of transfer in 
is highly dependent on segment length, and (data not shown) on 
the relative diameters of the parent branches. Thus, for this latter 
case the attenogram can differ markedly from the delayogram. 

Functional views of a single pyramidal cell 

Voltage transfer from the soma. Figure 4 (left) shows an ana- 
tomical reconstruction of a layer 5 pyramidal cell from cat visual 
cortex (Douglas et al., 1991). It consists of a relatively short 
bushy basal tree, with fine processes terminating about 200 pm 
from the soma, and a bifurcating apical tree with fine processes 
terminating about 1000 pm from the soma. The diameters of 
the finest processes are near the limit of light microscopy, ta- 
pering down to about 0.2 p,m. 

In Figure 4 (middle), the physical length x of each segment 
has been replaced by its electrotonic length, X = x/X. We call 
this the “classical attenogram” because it replaces the anatom- 
ical distance with the classical measure A. It does not provide a 
direct measure of the efficacy of signal transfer, since only in 
an infinite cylinder does the attenuation of voltage bear a simple 
direct relationship to the electrotonic length. This is not, there- 
fore, a functional transformation. Since A depends only on the 
fiber diameter-thinner processes have shorter space constants 
so they are electrotonically longer-this transformation is mere- 
ly a way of representing the relative fiber diameters. Therefore, 
the fine processes in the basal and the distal apical trees are 
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Figure 3. L,, and P,, can be under- 
stood in terms of a short segment at- 
tached to a larger branch. In the sim- 
plified model considered here (A), 
current was injected into either the dis- 
tal end (in) or proximal branchpoint 
(out) of a short segment of length L 
attached to a larger branch which acts 
as a current sink. For comparison, a 
third case of an infinite cylinder (L -+ 
to) is also included. In mathematical 
terms, these cases can be considered 
boundary conditions parameterized by 
p- and E (see Eq. 25 in Rall, 1989, and 
Eq. 15 in Agmon-Snir and Segev, 
1993). Injection at the branchpoint cor- 
responds to the sealed-end case (pm 
00 and E = 0.5). Injection at the distal 
tip looking toward the soma corre- 
sponds to the leaky-end case (pz = 0.1 
and E = 0.5). For the reference case we 
used px = 1 and l = 0.5. B shows the 
dependence of L,, on L for injection at 
the branchpoint (lower curve), at the 
distal tip (&per curve), and for L + 
(dashed line). Similarlv. C shows the 
dependence of P,, on L’for injection at 
the branchpoint (lower curve), at the 
distal tip (upper curve), and for L + 
(dashed line). In D, the ratio of L,/P,, 
is plotted for injection at the junction 
(lower curve), at the distal end (upper 
curve), and into an infinite cylinder 
(dashed line). 
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relatively elongated, while the thick apical trunk is relatively 
compressed. This transformation is a useful bridge between the 
real morphology and the functional transformations to follow. 

Figure 4 (right) shows the centrifugal attenogram (L, from 
the soma to the dendrites). For each segment, the anatomical 
length has been replaced by the corresponding log-attenuation 
of voltage away from the soma. This is a truly functional trans- 
formation, in that the voltage transfer can be read directly from 
the figure. By the asymmetry property (Property l), the atteno- 
gram is directional; this one illustrates only the transfer of po- 
tential away from the soma. The scale, in units of A, is shown 
in the figure (see calibration bar): for each O.lh, unit length, 
the voltage decreases by a factor of e-“-i = 0.9 relative to the 
soma. The tips of even the most distal basal processes are close; 

2 2.5 3 

B 

‘5~ 
L 

the attenuation is no more than about e-O.Os = 0.95. By contrast, 
the tips of the most distal apical processes are about 0.6 units 
from the soma, so that the voltage attenuation from the soma to 
these distal dendrites is about a factor of two (e-“.6 = 0.55). For 
example, if a hyperpolarizing stimulus at the soma causes a -20 
mV drop there from -70 mV to -90 mV, the distal tips can be 
expected to drop only by -10 mV, to -80 mV. Nevertheless, 
the overall scale suggests that, with respect to this measure, the 
neuron is electrotonically compact. 

Figure 4 (right) reveals that transfer of somatic voltage is very 
effective to the basal tree, but less so to the apical tree, partic- 
ularly along the fine distal apical branches. This contrast is not 
immediately apparent from the original morphology (Fig. 4, 
left), in which the basal tree is relatively longer, and the distal 

Figure 4. The centrifugal attenogram of a cortical pyramidal neuron differs from its classical transformation. A three-dimensional reconstruction 
of a pyramidal cell from layer 5 of cat visual cortex (left; from Douglas et al., 1991) was transformed according to two different measures. Color 
here is a visual aid that helps identify corresponding segments in the two transforms and the original anatomy. In the classical transformation 
(middle), the anatomical length of each process was replaced by its electrotonic length L = l/A, which depends only on the fiber geometry. This 
shows how the neuron would behave in the absence of boundary effects, that is, if every process were an infinite cylinder. Thinner processes in 
the basal tree and the distal apical tree are relatively elongated. This is ltot a functional transformation. By contrast, the centrifugal (out away from 
the soma) attenogram (right) is a functional transformation that illustrates the log-attenuation L,, = log(vJvd) of voltage from the soma at s (arrow) 
to every other point d. The somatic view (input to the soma, looking out) is indicated by the schematic current electrode (I,,). The scale of the 
classical transformation is in units of X while for the attenogram it is in units of X, (see text). Since the two transformations are drawn to the same 
scale, the smaller size of the functional attenogram reflects greater electrotonic compactness due to boundary conditions. The architecture of the 
two transforms are also markedly different, particularly with regard to the relative sizes of the apical and basal trees. Default parameters were used: 
R, = 20 kfI cm?, R, = 100 fi cm, and C, = 1 pF/cmZ. 

Figure 5. Centripetal transforms differ in form and scale from their centrifugal counterparts. On the lej?, the centripetal somatic attenogram (in 
toward the soma) shows L,, from every point to the soma. The somatic view is indicated by a schematic recording electrode (arrow) at the soma 
for the hypothetical experiment of injecting current independently at each of the dendritic tips. The lo-fold larger scale compared with the centrifugal 
transform (included to scale from Fig. 4, right; see inset) indicates that transfer of voltage toward the soma is much less effective than away from 
the soma. The form also gives greater emphasis to the basal tree relative to the apical tree. Similar changes can be observed in the centripetal 
somatic delayogram (right), shown with its centrifugal counterpart to scale (inset; see Fig. 6). As above, color is used as a visual aid to help 
identify corresponding segments in the two transforms. Default parameters were used: R, = 20 kQ cm*, R, = 100 0 cm, and C, = 1 pF/cm*. 
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Classical delay Delay (out) 

Figure 6. Centrifugal delay in a cor- 
tical neuron differs from its classical 
transformation. In the classical trans- 
formation (left), anatomical length was 
replaced by the delay (X7,/2) assuming 
each segment behaves as an infinite 
cylinder. This view is identical to Fig- 
ure 4 (middle) times a scale factor 
(7,/2). In the centrifugal delayogram 
(right), the length was replaced by the 
propagation delay P,, OUT away from 
the soma across each segment. Note 
that the form of the delayogram is al- 
most indistinguishable from that of the 
attenogram, with the same effects on 
the apical and basal trees. Default pa- 
rameters were used: R, = 20 kR cm2, 
R, = 100 R cm, and C, = 1 pF/cm*. 

processes are of different proportions. What accounts for these 
effects? The interplay of two factors give rise to the final picture. 
First, distal processes tend to be finer, which increases their ef- 
fective length; only this effect is captured in the classical atten- 
ogram (4, middle). Second, boundary effects on short terminal 
tend to decrease their effective length (see Fig. 3). Figure 4 
(right) shows that in the basal tree the boundary effects domi- 
nate, resulting in a marked contraction with respect to the clas- 
sical attenogram, while in the apical tree diameter plays a greater 
role because the processes are longer and thinner. 

This MET also has another interesting functional interpreta- 
tion: it illustrates the cost in terms of somatic efficacy of moving 
an input from the soma to any dendritic site. Formally, the re- 
sponses at the soma due to the inputs at the soma and the den- 
drite is v\ = EYJ5. When the same current is applied to the 
dendrites (l, = 1,) the resultant voltage at the soma is q = && 
= l?Yg,. Then their ratio is just VJE = &‘,,I&,, = A,,. For ex- 
ample, suppose that at the distal tip there is a twofold attenuation 
of voltage. Then if some current input & applied at the soma 
produces a somatic depolarization of 1 mV, then the same cur- 
rent applied at the distal tip produces only half the somatic de- 
polarization. Thus this attenogram shows how much less effec- 
tive an input is in the dendrites than it would have been if placed 
directly at the soma. In the case of Figure 4, the cost of placing 
the input on the basal tip is about 5% and on the apical tip about 
45%. 

Propagation delay from the soma. Figure 6 (right) shows the 
propagation delay P,T,l for a signal applied at the soma. The most 
straightforward interpretation of this delayogram is similar to 
that of the corresponding attenogram, except that here the scale 
has units of time (calibration is 1 msec) while in the attenogram 
the scale is unitless. The figure shows, for example, that the 
centroid of a somatic signal takes about 20 msec to propagate 
to the most distal apical tips, but only about 1 msec to the basal 
tips. 

This delayogram also has two other interesting interpretations. 
First, as in the case of the centrifugal attenogram, it represents 
the cost in terms of delay of moving a stimulus from the soma 
to any site in the dendrites. For example, if the input delay D,, 
at the soma is 14 msec, and the transfer delay D,, from some 

1 msec 

point d to the soma is 22 msec, then by Equation 12 the addi- 
tional delay (8 msec) that results from moving the input from 
the soma to point d is precisely the propagation delay from the 
soma, P,, (Agmon-Snir and Segev, 1993). Second, this delayo- 
gram also provides an approximation to the propagation delay 
of the signal peak, in the opposite direction, from the dendrite 
to the soma. This interpretation can be very useful, since the 
peak is so much easier to visualize than the centroid (Agmon- 
Snir and Segev, 1993). 

It is striking how similar the centrifugal delayogram and at- 
tenograms are (cf. Figs. 4, right, and 6, right). Because of this 
similarity, the analysis of the attenogram-where the trade-off 
between processes diameter and boundary effects was consid- 
ered--can be applied directly to the delayogram. But why are 
the two transformations so similar? The explanation lies in the 
ratio LJP,, between the delay and the log-attenuation across each 
segment. To the extent that this ratio is constant for all segments, 
the relative sizes of the segments are preserved and the trans- 
formed trees are similar up to a scale factor. As shown in Figure 
30 (lower curve), in a terminal segment this ratio starts at l/r, 
and increases gradually with electrotonic length to 2/r,. For 
small L (e.g., <I) P,IL, is close to unity. Thus, most processes 
appear identical in the two views. By analogy with the classical 
attenogram we include for comparison a “classical delayogram” 
(Fig. 6, left), in which each segment is treated as part of an 
infinite cylinder. This transformation was obtained by resealing 
the classical attenogram by 7,/2. 

Signaling toward the soma. We have emphasized that voltage 
transfer is asymmetric (Property l), and that in general, the volt- 
age transfer out from the soma is more effective than the voltage 
transfer in to the soma (Property 7). These principles are illus- 
trated dramatically in Figure 5 (left). The overall structure is 
markedly different from its complement (Fig. 4, right), and the 
scale has increased an order of magnitude (see inset). The pre- 
vious centrifugal attenogram showed voltage transfer toward the 
tips, and therefore was dominated by the sealed-end boundary 
effects shown in Figure 3B. Here, the transfer away from tips is 
dominated by the electrical load that the rest of the tree imposes 
on each process. Since the basal processes are electrically close 
to the soma, they experience a large electrical sink due to the 
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soma and other basal dendrites and so tend to become relatively 
lengthened. Thus, the apical stalk has become very short, and 
the basal tree has blossomed from a tuft of almost insignificant 
proportions to rival the apical tree. 

The net result is very surprising if we base our intuitions on 
either the morphology or the classical attenogram (Fig. 4), which 
would seem to suggest that apical inputs should be far less ef- 
fective than the basal inputs since they are so much farther away. 
In this functional transform, inputs to the basal and apical trees 
have comparable effects at the soma. Why are the differences 
between the basal and apical trees so much less marked in this 
attenogram than in the original morphology? How can we rec- 
oncile this functional view with the original morphology? The 
answer rests in part with the scale of the figure. Careful exam- 
ination reveals that the most distal apical tips still remain farther 
than the most distal basal tips, by a factor of e’ = 3 (see scale 
bar) or more, so that these most distal apical tips are indeed less 
effective. Nevertheless, there is substantial overlap between the 
efficacies of the two trees. This attenogram emphasizes how 
wary we must be of drawing inferences directly from the mor- 
phology. 

The delayogram (Fig. 5, right) shows the propagation delay 
toward the soma. The main result is similar to the corresponding 
attenogram (Fig. 5, left): the differences between the basal and 
apical trees have been diminished, so that the most distal tips in 
either tree have propagation delays of about 20 msec. But in 
contrast to the centrifugal transforms, where the attenogram was 
almost indistinguishable from the delayogram, in the present 
case the two transforms are appreciably different. The explana- 
tion rests once again in the ratio LJP,,: in the centripetal trans- 
form this ratio is dominated by the electrical load. As shown in 
Figure 30 (upper curve), for centripetal transfer this ratio is 
steeply dependent on L [and on the load itself (not shown)]. 
Since the ratio is not constant there is no reason to expect that 
the two transforms should be similar in their details. 

Electrotonic structure depends on the viewpoint. The previous 
two METS were somatocentric in that the transformation was 
performed with respect to a stimulus or observation site at the 
soma. This initial choice of the soma was convenient but arbi- 
trary, since within the two-port framework the soma has no priv- 
ileged status. Each site in the tree has a unique perspective on 
the electrical activity in the neuron. This is demonstrated in Fig- 
ure 7 (left), which shows the attenogram from a tip in the basal 
dendritic tree. This view appears at first radically different from 
the somatic centrifugal attenogram: a long tail now seems to 
extend from the soma, and the rest of the neuron appears to 
have shrunk. Similarly, the centrifugal attenogram from a point 
in the apical tree (Fig. 7, right) shows a long apical tail several 
times the length of the rest of the neuron. In both cases the 
neuron to which the tail is connected appears rather like the 
centrifugal somatic attenogram, but smaller. These tails empha- 
size how poor voltage transfer is to the soma, and to points 
beyond the soma. 

The transform from each of the 100 or so tips yields a dif- 
ferent attenogram. Must we therefore generate separate atteno- 
grams from each tip-or worse, from every location in the neu- 
ron-in order to fully appreciate the neuron’s electrotonic 
structure? We need not, for in fact the attenogram from any tip 
can be deconstructed into two components: the path from the 
tip to the soma, and the path from the soma out to every other 
tip. But we already know how long these paths are, for the 
former is just the length of centripetal dendrosomatic segment 

Attenuation (in) 
basal tip 

Attenuation (in) 
apical tip 

1 bff 

Figure 7. Voltage transfer depends on the viewpoint. Centrifugal L, 
in to the soma is shown from a point in the basal tree (left) and the 
apical tree (right). The site of current injection is indicated by the sche- 
matic electrode (I,,,). In both cases, the attenuation from the tip to the 
soma dominates the transform. The attenogram from any point can be 
constructed from pieces of the (centrifugallcentripetal) attenogram pair 
from one point (see text). The dendrosomatic segment of each figure is 
taken from the centripetal attenogram, while the rest of the figure is just 
the centrifugal attenogram redrawn to the appropriate scale. Default 
parameters were used: R, = 20 kR cm*, R, = 100 0 cm, and C, = 1 
pF/cm2. 

in Figure 5 (left), while the latter is the rest of the centrifugal 
tree shown in Figure 4 (right). As noted above, the scales of the 
two figures differ markedly. Thus, on the scale appropriate for 
the single inserted dendrosomatic segment, the attenuation 
across the rest of the neuron is small; the inserted segment dom- 
inates the attenuation to all other locations. The argument for 
the delayograms are completely analogous. The key point is that 
a centrifugaVcentripeta1 pair of METS from any point completely 
and conveniently specifies all the possible METS from every 
other point. 

Membranes act as low-pass Jilters. Propagation of sinusoidal 
inputs can also be analyzed. From Fourier’s theorem we know 
that any physically relevant signal can be completely decom- 
posed into a sum of sinusoids. We can therefore consider the 
effect of the tree on each sinusoid independently by generating 
its characteristic attenogram. 

Figure 8 shows somatic centrifugal attenogram in response to 
a sinusoidal current (f = 100 Hz and f = 500 Hz) injected at 
the soma. Here attenuation refers to the peak-to-peak height of 
the sinusoidal, which is maximal at the point of injection (the 
soma). The overall form differs little from the analogous steady- 
state attenogram, but the scale has increased dramatically. This 
is a direct consequence of the filtering characteristics of dendritic 
membrane: high-frequencies are more attenuated than low. As 
the space constant decreases with frequency, boundary effects 
become less important and the form of the MET approaches the 
classical transform, but with a much longer space constant. In 
the limit as f + 00, boundary effects vanish and the centrifugal 
and centripetal transforms converge. 

Comparing difSerent neurons 

The morphoelectrotonic transform also provides a rapid and di- 
rect means for comparing different classes of neurons. We com- 
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Attenuation (out) - sinusoidal input 

Figure 8. Attenograms in the fre- 
quency domain reflect low-pass filter- 
ing by the membrane. Sinusoidal cur- 
rents injected at the soma were used to 
construct centrifugal attenograms. The 
attenuation is defined with respect to 
the peak-to-peak height of the sinusoi- 
dal response. Because of low-pass 
membrane filtering effects, the scale of 
the attenuation is much greater forf = 
500 Hz (right) than for f = 100 Hz 
(Iefi). As f increases, the frequency de- 
pendent space constant decreases and 
boundary effects become less impor- 
tant. In the limit f + ~0, the transform 
converges to the classical transform in 
its shape. 
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pared the layer 5 cortical cell discussed above with neurons from 
three widely disparate classes-layer 2/3 cortical pyramidal, cer- 
ebellar Purkinje, hippocampal CA1 pyramidal-to provide a 
broad overview (Fig. 9). Our goal here is not an exhaustive 
analysis of the differences between these classes, so we point 
out only the highlights based a single view, the somatic centrif- 
ugal attenogram. 

Figure 9 shows the four classes drawn to anatomical scale 
(left column), morphoelectrotonic scale (middle column), and 
normalized for comparison (right column). The differences in 
scale between the four classes is striking. The Purkinje cell has 
been reduced almost to a point while the apical stalk of hippo- 
campal pyramidal cell has sprouted. The cortical cells are inter- 
mediate. The scaled view is a convenient way of assessing the 
relative electrotonic compactness of different neurons. 

The normalized view (right column) emphasizes the variable 
degree to which neuronal architecture is distorted by the MET 
In some (e.g., layer 2/3 pyramidal) the morphology does not 
differ dramatically from the attenogram. In others (e.g., Purkinje, 
CA1 pyramidal) the difference is striking. In these latter atten- 
ograms the complex trees have been stripped down to just a few 
primary and secondary branches. The explanation rests in the 
tradeoff between terminal process diameter and boundary ef- 
fects, discussed above (see Voltage transfer from the soma). 

Electrical and calcium signaling in spines 

The function of spines remains a mystery. One longstanding 
hypothesis has been that attenuation across the spine neck 
sculpts the signal generated at the synapse: “. . .[the postsynaptic 

100 Hz 

1 hefl 

potential] must be greatly attenuated during its passage through 
[spine necks] which probably offer considerable ohmic resis- 
tance because of their extreme slenderness” (Chang, 1952). This 
idea has been analyzed and refined over the years by a number 
of authors who found that if the synaptic conductance is small 
(e.g., CO.5 nS; see Bekkers and Stevens, 1990), then under rea- 
sonable assumptions the synapse behaves as a current source. In 
this case the high input resistance at the spine head causes a 
substantial local boost leading to substantial voltage attenuation 
from the spine head, but the passive electrical role of the spine 
in modulating synaptic efficacy is negligible (Rall and Rinzel, 
1971; Rall, 1974; Koch and Poggio, 1983; Segev and Rall, 1988; 
reviewed in Koch and Zador, 1993). 

The MET can be used to develop intuitions about the electri- 
cal role of spines. Figure 1OA (left) shows voltage attenograms 
of a model spine. In the centripetal view-log-attenuation to- 
ward the dendrite (bottom left)-the spine neck has sprouted 
considerably relative to the dendritic shaft, reflecting the ampli- 
fication of the subsynaptic voltage relative to the dendritic; the 
spine head has been reduced to a sliver. But this view must be 
interpreted carefully. This centripetal view does not tell us the 
effect, or cost, of moving a synapse from the dendritic shaft to 
the spine head. As explained above, for this we must consider 
the centrifugal view (top left), which gives the cost of moving 
an input from one site to another. In this attenogram the entire 
spine has been reduced to a sliver, reflecting the efficacy of 
voltage transfer from the shaft to the spine head. It is this view 
that illustrates why a passive spine can be expected to play little 

Figure 9. METS of four neuronal classes emphasize electrotonic variety. The same pyramidal cell from layer 5 of cat visual cortex considered in 
Figures 4-8 is compared with a layer 2/3 pyramidal cell, a cerebellar Purkinje cell from the guinea pig and a region CA1 hippocampal cell. The 
anatomical reconstructions are shown on the left column. Only attenuation out is considered, drawn to scale in the middle column and normalized 
for easier comparison in the right column. The scale representations emphasize the wide range of electrotonic compactness, from the Purkinje cell 
that shrinks to a point, to the CA1 cell with its sprouting central stalk. The normalized representations emphasize the variable degree to which 
neuronal architecture is distorted by the MET, from the practically unchanged layer 2/3 cell to the Purkinje and CA1 pyramidal, whose complex 
trees have been stripped down to just a few primary and secondary branches (their somas vanish altogether because they are essentially isopotential). 
For all cells, default parameters were used: R, = 20 kR cm2, R, = 100 R cm, and C,,, = 1 kF/cm2. 
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Figure IO. METS provide insight into 
the function of spines. A model spine A B Calcium Concentration 

was used to explore electrical (A) and 
chemical (B) signaling in spines. The 
model spine was the same used in Za- 
dor and Koch (1994). Its anatomical di- 
mensions (center) were: 0.05 km (neck 
radius), 0.25 p,rn (head radius), 1.0 pm 
(neck length), 0.3 pm (head length). A, 
In the top METS show centrifugal -, \ - T T 
transfer. The spine has been reduced to Attenuation (ou;) Delay (out) 

a sliver, indicating that there is essen- 
tially no cost (see text) for placing an 
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input on the spine head rather than at \ / 

Attenuation $ /’ ’ Delay (out) 

the dendrite. The bottom METS show 
centripetal transfer. Here, the atteno- 
gram is much longer because of the 
boost provided by the high input resis- 
tance at the spine head, while the de- T T T 
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layogram is longer because of Q, is _‘_ \ 

much greater at the dendritic shaft than 
the spine head (at the shaft, R, = 260 
MCI and D, = 5 msec). B, In the chem- 
ical METS, both the centrifugal and the 
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centripetal representations are of sig- 
nificant size. This shows that the cost T, 
of placing an chemical input at the Attenuation (in) 

spine head is substantial, both in terms 
of attenuation and delay. 
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role in modulating synaptic efficacy of small inputs: there is no 
cost at all for moving the input from the shaft to the head. 

Just the same principles apply to the propagation delay (Fig. 
lOA, right). As anticipated, the delay from the head to the neck 
is much longer than from the neck to the head. But if we are 
interested in the effect of the spine, then as before we must 
consider the cost, or additional delay, of moving the synapse to 
the spine head. In this delayogram, just as in the corresponding 
attenogram, the spine has shrunk to a sliver, showing that from 
an electrical point of view the delay due to a passive spine is 
negligible. 

An alternative hypothesis of spine function has emerged that 
focuses on a possible biochemical role. As first proposed by 
Shepherd (1974), spines may serve to compartmentalize calcium 
and other second messengers (reviewed in Koch and Zador, 
1993). Computer models of nonlinear spine calcium dynamics 
(Gamble and Koch, 1987; Holmes and Levy, 1990; Zador et al., 
1990) have validated the reasonableness of this hypothesis. 
While direct experimental approaches have only recently be- 
come feasible, preliminary results are promising (Guthrie et al., 
1991; Miiller and Connor, 1991). 

Recently, a linearized model of calcium dynamics in a spine 
has been constructed that retains the key qualitative features of 
the nonlinear model from which it was derived (Zador and Koch, 
1994). The linearized equations that govern calcium dynamics 
are formally equivalent to the cable equation, so that quantities 
such as the chemical input and transfer resistance, and chemical 
attenuation can be defined. We can therefore generate morphoe- 
lectrotonic transforms to explore the effects of spines on chem- 
ical signaling (Fig. lo@. 

Although the equations governing calcium and electrical sig- 
naling are identical, the parameters are so different that very dif- 
ferent behavior emerges. As in the electrical case, attenuation in 
is much larger than attenuation out. But in contrast to the electrical 
case, both directions show substantial attenuation. While the ac- 
tual magnitudes of the attenuation depend on several parame- 

. 
Delay (in) Altenuation (in) Delay (in) 
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ters-most notably the pump density in the spine neck (see Zador 
and Koch, 1994)-the qualitative result is valid over a wide pa- 
rameter range. Similarly, the delayograms show that spines add a 
several millisecond delay in both directions. It is interesting that 
the inward delay is of comparable magnitude in both the chemical 
and electrical transforms, but the outward delay is much larger in 
the chemical transforms. These calcium attenograms vividly re- 
inforce the idea that spines may play a much larger role in mod- 
ulating chemical than electrical signaling. 

Discussion 
Visualization of electrotonic structure 
The central contribution of this article is the development of the 
morphoelectrotonic transform (MET), a tool for visualizing the 
functional implications of electrotonic structure. The MET per- 
mits the complexities of intraneuronal signaling to be rapidly 
and intuitively grasped. It provides a compact representation of 
a tremendous quantity of data: the functional relationship of each 
point to every other point in the neuron. Where the efficacy and 
rate of signal transfer must be inferred from the morphological 
representation of the neuron, the MET represents these quantities 
directly. 

The MET is not a substitute for cable theory (Rall, 1959, 
1977); rather, it is an aid that makes it easier to understand. 
While it is true that the transformations stand on their own- 
they can be interpreted without delving deeply into cable theo- 
ry-we have tried here to extract the real insights that come 
from explaining the transformations in terms of basic principles 
of electrotonus. In interpreting the transformations, we are led 
to draw connections that we might not otherwise have made. 

Novel measures of electrotonic structure 
The MET is based on two novel measures of electrotonic struc- 
ture, L, and Pi,. The log-attenuation L, is a generalization of 
electrotonic distance to arbitrarily branched passive neurons. In 
an infinite cylinder, the electrotonic distance X is convenient 
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because it bears a simple and direct exponential relation to the 
voltage at any point: V(X) = V,,emx. For each unit of X from a 
stimulus there is an e-fold drop in voltage. In the case of an 
infinite cylinder, and in this case alone, L,, and X are identical. 
In all other structures the two measures differ; only L, preserves 
the e-fold relation. 

L, is a direct measure of the efficacy of intraneuronal signal- 
ing, and its fundamental unit is the e-fold drop. Specifying L,j 
permits the voltage at j to be expressed as a simple exponential 
function of the voltage V, at i: V, = V+I. Thus, even in a 
complex dendritic tree the voltage at any point can be related to 
the voltage at any other point by a simple exponentiation. 

If the e-fold drop is taken as the defining feature of electrotonic 
distance, then L, represents its most natural generalization to com- 
plex structures. The conventional measure X takes the morpho- 
logical definition as the defining feature: it is the physical distance 
x scaled by the space constant A. This generalization has the ad- 
vantage of being easy to compute, but in structures more complex 
than an infinite cylinder the relation of X to intraneuronal electri- 
cal transfer is not straightforward because the boundary condi- 
tions strongly affect signal transfer. For example, even in the sim- 
plest of structures, the finite cable of length L, the voltage at X is 
given by V(X) = V(O)cosh(L - X)lcosh(L), and in more complex 
structures the expressions rapidly become more cumbersome. Yet 
to infer the efficacy of signal transfer from X requires evaluation 
of such expressions. Because the log-attenuation L, preserves the 
intuitively appealing exponential relationship in arbitrary 
branched structures, it effectively shifts the computational burden 
to the computer that must evaluate these expressions. As dem- 
onstrated here, the availability of fast computers and efficient al- 
gorithms makes this task easily manageable. 

The second measure used here is the propagation delay P,, 
which reflects the rate at which transient signals such as synaptic 
impulses propagate along the dendritic tree (Agmon-Snir and 
Segev, 1993). P,, has no analogy in classical cable theory; it is 
an entirely new measure. P,, is based on the centroid of a signal, 
which unlike other measures such as the peak admits an elegant 
analytic treatment even in complex dendritic trees. P, opens up 
a host of questions for discussion which could not previously be 
broached in a rigorous fashion. 

The key property of L,, and P, that make them a suitable basis 
for the MET is their additivity. If j is a point between i and k, 
then L,, = L,, + L,, and likewise P,, = P,, + P,k. In this sense 
they behave as true distances. Because they reflect function, they 
are a natural substitute for the physical distances of three-di- 
mensional morphological rendering. 

In contrast to true distances, L, and P, have direction. They 
are asymmetric, so that the distance from i to j is in general not 
equal to the distance from j to i. This asymmetry implies that 
the view from each point in the neuron is unique. This asym- 
metry is not some unfortunate consequence of the definitions. 
Rather, it reflects a real and inescapable property of dendritic 
trees: each point bears a unique relation to every other point. 

Scope of the MET 

The assumption of passive dendritic membrane underlying the 
present analysis is unrealistic in at least two respects. First, syn- 
aptic inputs are inherently nonlinear; they are produced by a 
conductance change that perturbs the system. Second, there is a 
growing evidence that dendrites of many neuronal classes are 
endowed with voltage-gated channels (Miyakawa et al., 1992; 
Regehr et al., 1992; Stuart and Sakmann, 1994; reviewed in Mel, 

1994). Nevertheless, any analysis of nonlinear dendritic prop- 
erties must begin with a thorough understanding of the passive 
case (Rapp et al., 1994). Further, for many experimental studies, 
particularly those involving synaptic physiology, pharmacolog- 
ical agents are employed to linearize the membrane. 

The present framework is not strictly limited to current injec- 
tion; it is valid even for the localized conductance changes un- 
derlying a synaptic or action potential. As a result, neither L, 
nor P, depend on the properties of the membrane at the input 
point, i. They do depend on the properties of the membrane in 
the direction of signal propagation; there the membrane (and 
axial) properties must be independent of voltage and time for 
the MET to be valid. This does not mean that, in principle, the 
MET can not be extended to treat nonlinear cases. However, in 
these cases the MET will vary in time and will depend on the 
input (voltage) magnitude at point i. The MET may become 
rather cumbersome to compute and will probably be hard to 
interpret. Finally, there remains the question of applying the 
MET to trees that receive multiple current inputs. The advantage 
of a single input considered in this article is that, in passive trees, 
the direction (voltage gradient) is well defined in this case. This 
is not the case for multiple inputs that, depending on input lo- 
cations and magnitude, can create many voltage maxima and 
minima in the tree. Still, for any particular distribution and mag- 
nitudes of multiple inputs, the MET can be applied in a piece- 
wise manner between the various sites of voltage maxima and 
minima in the tree. 

Applications of the MET 

We have illustrated a number of applications of the MET. First, 
it can be used to obtain a thorough understanding of signaling 
in a single neuron. In the case of the cortical pyramidal cell 
studied here, we considered both centrifugal and centripetal at- 
tenograms and delayograms from the soma, as well as additional 
attenograms from different sites and sinusoidal stimuli of dif- 
ferent frequencies. The interpretation of these METS drew heavi- 
ly upon the nine properties listed for reasoning about L,, and P,. 
With a few representative METS, a full picture of the electrotonic 
structure emerged. Parts of this picture were a surprise, at least 
to us, including the relative similarity between the apical and 
basal dendritic trees. 

The MET also provides a tool for comparing neurons from 
different regions of the brain. For this we chose a single trans- 
form, the centrifugal somatic attenogram, but for some purposes 
another MET might have been preferable. Differences between 
these cell types were vividly depicted, both in the scale and the 
form. Some neurons, such as the layer 2/3 cortical pyramidal cell, 
were almost invariant under the transformation, while others such 
as the Purkinje cell changed dramatically. Thus, the Purkinje cell, 
one of the most complex in the brain, actually appeared simpler 
than the layer 2/3 cell. Similarly the layer 5 cell, which was phys- 
ically larger than CA1 pyramidal cell, actually appeared electro- 
tonically more compact. Comparable results were obtained by 
Tsai et al. (1994) who extended the results of Zador (1993) on a 
region CA1 hippocampal pyramidal cell to a cell from region 
CA3 and another from the dentate gyms. 

The MET can also provide insight into the function of spines. 
In the case of electrical transfer, the centrifugal transforms 
showed that the spine changes essentially nothing about the sig- 
nal at the dendritic shaft. When these transforms were applied 
to calcium transfer, the role of spines appeared quite different. 

Other possible applications were not developed here. We have 
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used the MET to explore the effect of varying membrane pa- 
rameters, either locally or globally (not shown). Such studies 
help understand the effect of our uncertainty about the values 
of certain parameters, including the membrane resistivity R, 
(Rall et al., 1992). The MET can also be applied to other aspects 
of voltage transfer, including the signal width, which may have 
important consequences for input synchronization in dendritic 
trees (Agmon-Snir, 1994). Moreover, the variable viewpoint in- 
trinsic to the two-port formalism opens a broad class of problems 
for consideration. For example, the subsynaptic voltage deter- 
mines in part whether a Hebbian synapse will be potentiated. 
The impedance matrix provides the foundation for understanding 
these effects (Pearlmutter, 1994). 

We conclude that the MET is a powerful tool for appreciating 
the functional consequences of dendrites and spines. It empha- 
sizes how intraneuronal signaling is determined by both mor- 
phology and electrical properties, and how because of its inher- 
ent asymmetry signal transfer depends on the point of view. 
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