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Naive scale invariance is not a true property of natural images. Natural monochrome images possess a much
richer geometrical structure, which is particularly well described in terms of multiscaling relations. This means
that the pixels of a given image can be decomposed into sets, the fractal components of the image, with
well-defined scaling exponents [Turiel and Parga, Neural Comput. 12, 763 (2000)]. Here it is shown that
hyperspectral representations of natural scenes also exhibit multiscaling properties, observing the same kind of
behavior. A precise measure of the informational relevance of the fractal components is also given, and it is
shown that there are important differences between the intrinsically redundant red-green-blue system and the
decorrelated one defined in Ruderman, Cronin, and Chiao [J. Opt. Soc. Am. A 15, 2036 (1998)].

PACS number(s): 42.66.Ne, 87.19.Dd, 47.53.+n, 47.54.+r

I. INTRODUCTION

The description of the early stages of the visual pathway
in mammalians and other animals must be addressed from
the knowledge of the properties of the signal that this system
is intended to encode: natural images [1-4]. These are very
complex objects, and truly random from the point of view of
the observer. However, natural images are structured, highly
redundant objects, a fact that becomes clear, for instance,
when the luminosity changes smoothly over the reflecting
surfaces. This redundancy, which should be used as a priori
knowledge about the signal, is useful to develop optimal
coding strategies, which are learned by the sensory system.

Finding structure in natural scenes is not a trivial problem,
and the description of the relevant regularities requires first
of all to define the variables where these regularities manifest
themselves. One such variable is the contrast, and the analy-
sis of its second-order statistics [5,6] reveals that there is no
characteristic scale in the problem [6]. Following this fact,
several authors [3,4,7,8] have described natural image statis-
tics in terms of a Gaussian with a 1/f% power spectrum. This
was then used to predict the receptive fields of cells in the
early visual system. However, it is clear that a Gaussian sta-
tistics leaves aside a large amount of qualitatively important
structure. This is noticed, for instance, in that once the image
is whitened (i.e., the correlations between pairs of pixels are
eliminated), the scene can still be recognized thanks to the
fact that the borders of the objects are still present [9]. An-
other piece of evidence against the Gaussian statistics is the
presence of long tails in the contrast distribution [10,11].

As it was emphasized in [11-13], a better understanding
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of the statistics of images should be achieved to define what
a natural scene is. This implies the necessity of looking for
more regularities. As it was noticed in [12,14], there is fur-
ther structure that can be detected in the statistics of a quan-
tity related to local changes in contrast. The study of its
properties revealed the existence of multiscaling properties
in natural scenes: images do not have uniform scale proper-
ties, but they can be decomposed in sets of pixels (fractals)
such that only those in a given set have similar scale prop-
erties. The scaling properties associated with the power spec-
trum are usually related to the fractal character of images.
The new scaling laws observed in monochrome natural im-
ages refer to a more detailed structure that reveals that im-
ages are not simple fractals (for this notion see, e.g., [15])
but rather multifractal objects (a mathematical concept that
was introduced in [16]) which can be split into different frac-
tal sets that transform differently under changes in the scale.
The hierarchical structure of the fractal components has been
proposed as a natural way of classifying the information con-
tent of the visual scenes [13]. Image structure in scale-space
has been considered by several authors, although from a dif-
ferent point of view [17,18].

Interestingly enough, these properties can be explained
[14,12] by means of a simple model, which obtains the sta-
tistics of the contrast gradient at a scale r in terms of an
independent multiplicative process applied to the statistics of
the contrast gradient at a larger scale L. This multiplicative
stochastic variable follows a log-Poisson distribution. The
events it generates give a statistical description of the way
that contrast differences present at the scale L are seen at the
finer scale r. In particular, a sharp change (modulation) of the
contrast gradient is represented in terms of a larger intensity
of the multiplicative event. The robustness of the multiscale
properties of natural images has been thoroughly tested in a
recent work that showed that a wide variety of different im-
age ensembles exhibits a multiplicative process of the log-
Poisson type [19].
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The power of the statistical regularities of images detected
with these techniques can be appreciated in that they are
enough to predict an intrinsic wavelet filter in natural scenes
[20]. In fact, the non-Gaussian statistics implied by the log-
Poisson process uniquely define a wavelet filter that decom-
poses the image in a set of statistically independent resolu-
tion levels, and although it still leaves some spatial
dependences, these are extremely short-ranged [20]. This has
to be contrasted with the ambiguities that the use of only the
power spectrum still leaves in the definition of an optimal
filter [3].

It is then relevant to ask whether similar non-Gaussian
statistics is also present in color images. In this case, how-
ever, one is faced not only with the types of geometrical
redundancy mentioned above for monochrome images
[5,6,12], but also with chromatic redundancy [7,21]. The in-
formation conveyed by color images is obviously very re-
dundant, particularly for those spectral channels with the
closest wavelengths. One expects that each channel behaves
statistically much like a single monochrome channel, with
similar geometrical redundancies and strong mutual depen-
dences. Taking as a starting point the usual three-channel
red-green-blue (RGB) representation (that we will hereafter
call the chromatic system RGB) according to the human sen-
sory receptor classes, Ruderman et al. [21] developed a chro-
matic system of three new variables (called [afB). As de-
fined, this chromatic system decorrelates the three signals at
each point in the image. Thus, these signals define a more
compact codification of the RGB images. Moreover, the

. variables these authors obtain are reminiscent of the chro-
matic channels of human color vision.

~ The aim of this work is to explain the chromatic systems

* both from the geometrical meaning of the fractal components

~ of color images and from the evaluation of the information

.. conveyed by each chromatic channel over the fractal compo-

. nents. We will present the following.

“" (i) Verification of the log-Poisson multiplicative process

. for each channel of the two chromatic systems [that is, the

" standard red-green-blue and the decorrelating one (laf)]

o 21,

' y'(ii) Performance of a multifractal decomposition of im-

" ages for the two chromatic systems and a classification of the

_-Tesulting fractal components, emphasizing the importance

‘ 'foﬁlhd the interpretation of the most relevant of them, the most

% Singular manifold (MSM).

“-"" (iii) Determination of the information content and the mu-
lual information among the three components of a given
# chromatic system, for different sets of pixels (whole image,

-r - MSM, and second MSM).

,, The paper is structured as follows. In Sec. II the instru-

“'mental and processing methods used in the elaboration of

¥ ﬂ'US work are summarized. The concepts of multlscahng laws

i iid their experimental validations are given in Sec. III. Sec-

n IV explains the log-Poisson model which is used to

scribe the non-Gaussian image statistics. In Sec. V our

atistical results are interpreted in geometrical terms, and the

‘composition of the images into their fractal components is

own. In addition, the differences between the two chro-

atic systems are also observed and explained. In Sec. VI a

Z@Precise measure of the information content and mutual infor-

Sliation of the variables are given and interpreted. Finally, the
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main conclusions are presented in Sec. VIL.

II. METHODS

The data-gathering methods were as in [21]. Briefly, spec-
tral images were captured using an Electrim EDC-1000TE
camera with a resolution of 192X 165 (horizontal X vertical)
eight-bit pixels. Light reaching the CCD array was passed
through a variable interference filter with a wavelength range
of 400-740 nm of bandpass typically 15 nm. In each image,
43 successive images were taken of each scene at 7-8 nm
intervals from 403 to 719 nm. Each pixel subtended a rect-
angle of 0.047X0.055 degrees (horizontal X vertical). No
corrections for optical or CCD-element spatial filtering were
made; however, the estimated dark noise was subtracted
from each CCD image on a pixel-by-pixel basis. In attempt-
ing to select a diversity of typical foliage-dominated scenes,
images were collected in several locations around Baltimore,
Maryland (temperate woodland) and Brisbane, Australia
(sclerophyll forest, subtropical rainforest, and mangrove
swamp). Selected scenes contained numerous natural ob-
jects, including leaf foliage, bark, rocks, herbs, streams, bare
soil, etc. In one comer of each imaged scene small reflec-
tance standards were placed for calibration purposes: a Spec-
tralon 100% diffuse reflectance material (Labsphere) and a
nominally 3% spectrally flat diffuse reflector (MacBeth).

We collected images of 12 such natural scenes, and fur-
ther analyzed the central 128X 128 pixel region. Each of the
(128X 128X 12=196 608) pixels was converted to three the-
oretical cone responses as 2, Q(N)R(N)I(N), where Q(MN) is
the Stockman-MacLeod-Johnson cone fundamental [22] for
the given cone type, R(\) is the measured image reflectance
data, I(\) is the standard illuminant D65 (which is meant to
mimic a daylight spectrum [22,23]), and the sum is over
wavelengths represented in the spectrum. Our results depend
only very weakly on the choice of illuminant, so long as it is
broadband. This procedure provides the cone response data

L(;), M (f), and § ()?), proportional to the number of quanta

absorbed in an L, M, or S cone at spatial location % within the
image. The raw reflectance data for the 12 images are avail-
able via anonymous ftp at ftp://sloan.salk.edu/pub/ruderman/
hyperspectral/.

We will make use of two different chromatic systems of
cone response variables to represent each image, the RGB
system and the /a8 system. The RGB system is formed by
the raw L (red), M (green), and § (blue) responses and is
intended to be an unprocessed representation of the image.
The laB system is formed by the variables obtained in [21],
which is defined as follows:

1
I=—=(InL+InM+1InS)—1I,

V3

1
a=—=(InL+InM-21InS)— ay, (1

V6

1

=—(InL—-InM)-B,,
where [y, @, and B, are appropriate constants verifying that
the average of each variable over each image is equal to zero.
These variables are decorrelated, that is, the average of the
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product of any two different variables vanishes (see [21]).
This decorrelation property is a weak kind of independence
(if the variables are independent, then they are decorrelated).

III. STATISTICS OF IMAGES: MULTISCALING

It is believed that natural images behave like ‘‘fractal’’
objects: they do not possess a scale of reference and they are
self-similar [6], each small portion of them behaving in the
same way as the whole image (in a statistical sense). How-
ever, the kind of self-similar behavior shown by the power
spectrum is insufficient to provide a detailed description of
the local structure of natural scenes [10—13]. This is because
it assigns the same scaling exponent to every image pixel. To
obtain a better description of the image, it is necessary to
define a variable with a local scope, able to detect its local
features. The hope is that a variable like this could assign
distinct self-similar behaviors to different pixels, which in
turn could be used to detect and classify its local features.
Examples of this approach can be found in [12,13,19], where
dealing with gray-scale images a whole hierarchy of image
features, from sharp edges to textures, has been put in cor-
respondence with local scaling exponents.

In this work the approach is extended to color images.
The existence of a hierarchy is explored and explicitly
checked for all the components of the chromatic systems
presented in the preceding section. In analogy with the vari-
ables defined in [12,13], given any of the chromatic compo-
nents presented in Sec. II, the edge content (EC) of this com-

ponent at the point x and at the scale 7, e,(f), is defined as
- 1 - -
6,(x)=—zj _dx'|VC|(x"), (2)
reJ B (x)

r

where C ()_E) denotes the selected chromatic component (e.g.,
R, G, B, [, @, or B). The bidimensional integral is defined

over B,(x), which represents a square of linear size r cen-

tered at x. We will often use one-dimensional surrogates of
the EC, which are statistically less demanding. These are

defined as integrals along a direction given by a vector r of
length r:

L1
6;(X)=7f ds (3)

—ri2

As noted before, these variables compute the average over a
scale r of a quantity that compares two neighboring points. It
is then clear that even its marginal distribution contains in-
formation about the local structure of the image. This is not
the case for the more usual average over the same scale of
the chromatic components themselves.

We now introduce the important concepts of self-
similarity (SS) and extended self-similarity (ESS) (see [12]).
Given a random variable €, defined on a local area of size r,
we would say that this variable has SS if its statistical mo-
ments of order p obey a power law with exponent 7, :

() =a,r', - @)

PRE ¢)

where «, is a geometrical factor. The angular bracke
() represent the average over all the points .x belonging t
each image for all the images in the ensecmble considereq
Since 7, is an arbitrary function of p. this is 4 more genery
type of scaling than the one observed in the power spectrup
The simplest possible system exhibiting SS is that in which
7,%p. In that case, the dependence on the scale parameter ,
is trivial: it simply implies that the moments of the norma].
ized variable €,/(€,) do not depend on r. The most interegt.
ing cases are those in which 7,# 7p, and this deviation jg
known as anomalous scaling.

The concept of’ ESS requires that the moments verify 4

weaker identity:
(e)=Alp.q){e)rm"". )

Any moment of order ¢ could be used (provided 7,# 0 if §§
holds); we will always use the moment ¢=2. If €, has SS, it
also has ESS, and the relation between the exponents 7, and
p(p.2) is

p(p2)=—". ©)

We can now verify if SS and ESS hold for color-natural
images using the dataset presented in Sec. II. For this pur-
pose we have used the variables €x(x) [(Eq. (3)] taking rin
both the horizontal and the vertical directions. The numerical
analysis was done over the six EC variables built on the six
chromatic components RGB and /«a . The scale r was taken
small compared with the total size of the image (r=< 64 pix-
els) and p was taken up to p=10. It is remarkable that both
SS and ESS hold for all of these cases. The test for ESS is
presented for the horizontal EC of the chromatic components
RGB in Fig. | and for the chromatic components /a3 in Fig.
2. The ESS exponents p(p,2) are shown in Fig. 3, again for
the three components of the two chromatic systems.

The exponents 7, do not behave linearly with p. This
proves that natural scenes possess nontrivial scaling laws,
and that more complex regularities are present in the image
ensemble. The next section describes a model that predicts
the correct exponents and consequently contains those regu-
larities. After that, the statistical approach followed here will
be related with a local approach, this will allow us to predict
geometrical properties of natural images from the knowledge
of 7,.

IV. MULTIPLICATIVE PROCESSES: LOG-POISSON
MODEL

The data presented in the preceding section show that
ESS holds for the six chromatic components discussed in this
work. We show here that a very simple model, based on 2
log-Poisson multiplicative process [24-26,12], is able to fit
these data. The existence of such a process means that the
EC at a scale r is obtained from the EC at a greater scale L
by multiplying it by a random variable «,, :

ér: Ar €L, ™
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FIG. 1. Verification of ESS for the third- and fourth-order moments of the horizontal EC in the RGB chromatic system (diamonds, red;
crosses, green; boxes, blue). The best linear fits are also represented. Each data point corresponds to a fixed value of r, from 4 to 64 pixels.

Although not shown here, the vertical EC gives an equally good fit.

where «,; is independent of ¢€; . The random factors «,;
define the multiplicative process, and for any intermediate
scale r', r<r'<L, the following relation must hold:

Q= Qppr Ay . 8)

This implies that the process can be infinitely split into many
intermediate stages, and it is thus said to be infinitely divis-
ible. The factor «,, takes account of the consecutive transi-
tions of the EC from a large scale in the image to smaller
ones. Knowing the process and the probability distribution of
the EC at the largest scale L, the probability distribution of
the EC at any other scale r<<L can be computed.

Under an infinitesimal change in the scale (when the EC
at scale r is generated from the EC at scale r+dr), the
log-Poisson model is a binomial distribution with one event
infinitely less probable than the other. The most probable

Ine?)

0.5

0.1 0.35 0.6

In(e?)

event corresponds to smooth transitions in the contrast (e.g.,
the surface of an object), whereas the infinitesimally rare
event indicates a sharp transition (e.g., an edge). The sharp-
ness of the transition is observed as a finite change of the
value of «,; under an infinitesimal change in the scale r; we
will characterize this finite change by means of a modulation
parameter, 0=<f3=1, which measures the fraction of the
value of a,; which remains after that transition. More pre-
cisely, the «@,;’s are obtained by

dr i o dr
1+A - with probability 1 — [d—Dw]~r—
Qr rtdr= dr dr
Bl1+A - with probability [d— Dw]T,
)
In{e?)
6 . : .
,//
| S
o 7
4 . L’//
K el
/
3 - -
2| ]
05 ors
2
In(é2)

* FIG. 2. Verification of ESS for the third- and fourth-order moments of the horizontal EC in the [a system. (Diamonds, /; crosses, «;
boxes, B8.) The best linear fits are also represented. It is observed that the 8 component (boxes) deviates significantly from the others,
Probably because this component lacks numerical accuracy (it is given by the difference between the color channels with the nearest
Wavelengths). Each data point corresponds to a fixed value of r, from 4 to 64 pixels. Although not shown here, the vertical EC gives an

equally good fit.
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p

FIG. 3. ESS coefficients p(p,2) for the RGB (left) and the laB (right) chromatic systems, and the horizontal EC (symbols as in Figs. 1
and 2). The comparison with the log-Poisson model prediction (as described in Sec. IV) is also represented for each component. RGB
system: Bp=0.45, B;=0.45, and Bg=0.46; laB system: §,=0.50, B,=0.50, and B5z=0.73.

where the parameters A and D,, can be expressed in terms of
the SS exponent 7, and the modulation parameter 3 by (for
details, see [13])

d—Dy=— ———. (10)
(1-B)?

Here d is the dimensionality of the system; d=2 for our
images. When a noninfinitesimal change in scale is consid-
ered, this formula leads to a log-Poisson distribution for the
multiplicative process «,;. The probability distribution of
a,r, parL(a), is given by

n
T,

. s
pa,L<a>=e“ergoi—fa(a—ﬁ"{;} ) ay

where s,; =(d—D)In(L/r) is the average number of modu-
lations between the two scales. Notice that this distribution
depends only on the ratio between the two scales. This model
has been used previously to describe turbulent flows [27] and
gray-scale natural images [12,13].

It is now easy to compute the SS exponents 7, : from Egs.
(7) and Egs. (5) it follows that { &, )={r/L]"». The moments
of a,; can be computed using Eq. (11) as

0 n A
SL L|°P
P \N=,p"5/L .L npl
o e °r
{ar ,Z‘o n!B [r}

{L}Ap—u—Dw)(l'—ﬂP)

(12)

r

using e *rt=[L/r]9"P= It follows that 7,=—Ap+(d
—D.)(1— 7). The ESS exponents are then calculated using
p(p,2)=T,/7, and the definitions of A and D.., Eq. (10);

they are given by

p 1=

P(P,Z)IT:“B— (-7

(13)

It is remarkable that the ESS exponents depend only on the
modulation parameter 3. Besides, using Eq. (6) one sees that
the set of SS exponents 7,’s can be computed with only two
parameters (namely, 8 and 7,). The validity of the model
can be tested by fitting the ESS exponents p(p,2) with Eq.
(13). The agreement between model and data for the two
chromatic systems is shown in Fig. 3.

To conclude this section, let us notice that Eq. (7) allows
us to compute the distribution of «,; from the distributions
of the EC’s at the scales L and r, by deconvolution. (Notice
that this deconvolution problem is numerically ill-posed. As
a consequence, the distribution of «,; so obtained is less
precise than the one inferred by fitting the moments of the
EC.) Two examples of these distributions are shown in Fig.
4, together with the log-Poisson distribution [Eq. (11)]. No-
tice that a log-Poisson distribution becomes eventually log-
normal. The reason is that the infinitely divisible character of
a, , expressed in Eq. (8), implies that In «,, is the sum of an
infinite number of independent random variables. Provided
that the dispersion of that sum is small compared with its
mean, this process will get closer to normal. This is not seen
in Fig. 4 because at the two considered scales the average
number of transitions is rather small. This is a manifestation
of the fact that natural images present far-from-Gaussian be-
havior.

V. GEOMETRY OF CHROMATIC COMPONENTS: THE
MULTIFRACTAL REPRESENTATION

The anomalous scaling laws for the moments of the chro-
matic EC’s can be explained on the basis of local anomalous
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FIG. 4. Experimental distributions (diamonds) of In a,; for (a) the horizontal red EC and (b) the horizontal ! EC; r=4 pixels, L= 64
pixels. Both distributions are far from Gaussian, but very close to a Poisson distribution with the appropriate parameters (crosses). The
average number of transitions (8 modulations) for both processes is the same: s=(d — D,)In(L/r)=2.77. This number is rather small to yield

a Gaussian behavior.

scaling exponents. We define the edge measure (EM) for a
given chromatic component of a square of side r centered

around a point x, M(B,(;)), as

1B (x))=r"€,(x), (14)

so the EC is just a comparison between the EM of a square
and its standard area 2. The convenience of the definition of
the EM with respect to that of the EC is given by the fact that
the EM is additive: if, for instance, a square is split in several
pieces, the EM of the square is the sum of the EM’s of its
parts. It is natural to ask whether the EM of a square shows
a local power-law scaling as

(B, (%)= a(x) "2, (15)

where h(x) is the local scaling exponent of a chromatic com-
ponent at the point x. A negative value of A(x) means that

the gradient of the contrast possesses a singularity at x, and
its numerical value characterizes the type of the singularity.

If h(£)>0, the gradient is continuous at )Z; if h(;)>1, it is
differentiable; etc. The exponent h(;) will be referred to as

the singularity exponent at x (understanding that positive
values are a measure of the degree of ‘‘regularity’’). A mea-
sure verifying Eq. (15) is said to be multifractal. The reason
for this name is that any image with a multifractal measure
can be decomposed in sets F;, which will be observed to
have nontrivial fractal dimensions. For each chromatic com-
ponent, F;, is the set of points with the same exponent 4, and
will be referred to as the fractal component of exponent A.
The fractal dimension of each set will be denoted as D (k)
and this function is called the singularity spectrum [16] of
the multifractal.

The characterization of a multifractal system by means of
its fractal components has been shown to be a powerful tool
in multiscaling systems [30,13]. In fact, there exists a strong

link between the statistical property of SS and the geometri-

cal one of multifractality. It is a well-known fact [16] that
D(h) is the Legendre transform of T, and vice versa, that is,

D(h)=inf, {ph+d—1,} (16)

(inf stands for the infimum; here d =2). This allows not only
the computation of the singularity spectrum from the statis-
tical data, but also the determination of the range of observed
local singularities 4. In the log-Poisson model, the whole
singularity spectrum is determined by only two parameters.
For instance, these can be chosen as 8 and 75, and so it reads
[27,13]

h Ty h— Ty

T T ] I B
P(h)—d+(l_ﬂ)2 g |l e
(1-p)°

It is remarkable that according to Eq. (17), the fractal dimen-
sions of the components Fj, in a log-Poisson SS are non-
trivial; moreover, the observed values have a continuous
range. On the other hand, the singularity spectrum can be
more compactly expressed in terms of the free parameters A
and D., defined in Eq. (10) as

D(h)=Dyo+(d—Dg)w(h)[1—1Inw(h)], (18)

where w(h)=—(h+A)/{(d—Ds)In[1—(A/d—Dy)T}, a lin-
ear function of 4. The fractal component with smallest expo-
nent, F,, is called the most singular manifold (MSM). Tt
turns out that —A is the exponent characterizing the MSM
(Fo=F_,) and D,=D(—A) is its dimension [12]. For ex-
ample, for a log-Poisson model with 8=0.5 and 7,=
—0.25 (which are close to the values experimentally ob-
served in our data set) one obtains that A=0.5, D,=1.0.
Let us remark that A and D, can be chosen as the two
free parameters of the model [see Eq. (10)]. This means that
the fractal dimension and the singularity exponent of the

m -



W

1144 TURIEL, PARGA, RUDERMAN, AND CRONIN

G

PRE 62

FIG. 5. Gray-level representations of the RGB system (top) and the associated MSM’s (bottom) on Park2 image. The MSM’s were taken
as the sets of points having exponent #=—0.5%0.1. The blue component has significantly less contrast than the others, which makes it
difficult or even impossible to detect some of its edges. The MSM’s of all members in the RGB system are, however, very similar.

MSM determine all the multifractal properties. This fact
stresses the relevance of this particular set of pixels and sug-
gests that it may contain enough information to reconstruct
the whole image [28].

There are several ways of computing explicitly the local
exponents h(x) at a given pixel (which in turn gives the
fractal components). The most convenient method, from the
numerical point of view, is that of the wavelet transform (see
[29,18,13)). It is based on the convolution of the EM density
with an appropriate function \If();), the wavelet, which is
resized using a scale variable 7 to focus the convenient de-
tails at each scale. We thus define the wavelet projection

Thydu(x) at the point x and the scale r as
rapi)= [ $IVCIGW, G-, (9

where W ,(x)=(1/r2)¥(x/r). It can be proven [30] that the
EM verifies the multifractal scaling, Eq. (15), if and only if

Thyd (%) = (%) r"®, (20)

where h();) is the same exponent as in Eq. (15) and &(;) is
a suitable function. This multiresolution method allows for a
very good discrimination of the sets F,; once they are ob-
tained, their irregular (fractal) nature is clear by simple visual
inspection.

Applying the theory to the data, using the previously com-
puted values of 7, and B (Fig. 3), it is obtained that the
MSM has a dimension D~ 1, which makes plausible that it
consists of segments of curves. Visual inspection of this set
(Figs. 5 and 6) reveals that it is rather close to the edges
present in the chromatic components.

Comparison of the MSM’s of the two chromatic systems,
RGB and /a3, shows that they have qualitatively different
geometrical contents. Figures 5 and 6 exemplify the question
on a representative image.

(i) The RGB system is highly geometrically redundant.
Simple visual inspection of the gray-level representations of
the three chromatic variables (first row of Fig. 5) shows three
very similar scenes. This fact is confirmed by the multireso-
lution analysis (second row of Fig. 5). To characterize this
geometrical redundancy, we measured the relative density of
the different MSM’s and of their intersection across the
whole ensemble. The values obtained are red MSM: 29.95%;
green MSM: 29.89%; blue MSM: 23.75%. The relative den-
sity of the intersection of the three sets is 19.60%. This
means that the intersection contains 65.44% of the red MSM,
65.57% of the green MSM, and 82.53% of the blue MSM, so
it is clear that the three MSM’s share a significant amount of
geometrical content. In other words: the luminosity edges
typically occur simultaneously in all three chromatic compo-
nents in this representation.

(ii) The lafB system has significant geometrical differ-
ences among its chromatic variables. There are very well
defined borders that are shared by all the variables; however,
several geometrical structures are apparent only in one of the
three chromatic components of the image. It seems that this
representation could enhance the separation of different
types of objects attending to their color distribution. This
result seems very appealing. We computed again the densi-
ties of the different sets (each MSM and the intersection of
the three) across the whole ensemble of images. The values
are the following: | MSM: 40.96%; o MSM: 45.30%; B
MSM: 44.65%. The set resulting from the intersection of the
three has a density of 13.93%, which means that it contains
34.01% of the I MSM, 30.75% of the & MSM, and 31.20%
of the 8 MSM. In this sense, these chromatic variables pos-
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FIG. 6. Gray-level representations of the [af system (top) and the associated MSM’s (bottom) of the Park2 image. The MSM’s were
taken as the sets of points having exponent A= —0.5+0.1. The 8 component appears rather saturated. Although the most important
transitions are present in the three chromatic variables, there is a significant amount of structure detected by only one of the three, reducing

the geometrical redundancy.

sess less geometrical redundancy than those in the RGB sys-
tem. This is explained by the fact that there are sharp edges
which belong just to one of the spaces and not to the other
two, in contrast with the situation of the RGB system.

The inspection of these results reveals two interesting fea-
tures; first, the MSM’s associated to the /a8 system are
denser than those of the RGB system. This is mainly caused
by the logarithmic transformation from RGB to a8, which
increases the contrast on average and so enhances details.
Second, for the /a8 system, the ratio between the number of
pixels in the intersection and in each of the MSM’s is less
than half of the same ratio in the RGB system. This makes
more evident the appearance of different geometrical struc-
tures. The higher degree of independence in the la system
* is rather natural because of their construction: they are decor-
related variables (see [21]).

V1. INFORMATION CONTENT

The classification of the points in the images according
their multifractal structure has revealed significative differ-
ences between the RGB and the [« schemes. Although the
geometrical coincidences and the separation of features seem
very informative, it is convenient to have a more quantitative
criterion than the rather coarse density estimation. In particu-
lar, it would be desirable to characterize the amount of in-
formation conveyed by the MSM’s and the degree of redun-
dancy among them. This characterization can be done by
using the concepts of entropy and mutual information.

Given a random variable X with a probability distribution
px(x), its entropy (or total information) Hy is defined as

Hy=— f dx px(x)log,px(x). (21)

It has no actual units, but depending on the basis b of the
logarithm a unit name is usually given. For 5=2, which we
will use, it is expressed in bits. For discrete variables this
quantity is always a finite, positive number, which is maxi-
mum for uniformly distributed variables. For continuous
variables it does not even need to be defined, and can have a
positive or negative value. For this reason, when a discreti-
zation of a continuous variable is considered, the discretiza-
tion range is very relevant. It can be proved (see, for in-
stance, [31]) that for discretized variables the entropy
represents an optimal bound for the average amount of digits
to be used in the encoding of events described by X.

Given two random variables, X and Y, with marginal
probability distributions px(x) and py(y) and joint probabil-
ity distribution pxy(x,y), we define the mutual information
between X and Y, Ixy, as

pxr(x,y)

px(x)py(y) 22)

Ixy=f dxf dy pxy(x,y)log,

It is expressed in the same units as the entropy. It can be
proved that it is always a positive quantity which only van-
ishes when pyy(x,y) = px(x)py(y), so in a sense it is a mea-
sure of the statistical independence of the variables X and Y.
In fact, it gives the amount of information shared by the two
variables:

Iyy=Hx—Hyjy=Hy—Hy|x, (23)
where Hyjy is the conditional entropy, defined as

HXIYEJ dy Py(y)(—f dx py|y(x|y)logypx r(x|y) ],
(24)
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and py|y(x|y)=pxy(x,y)/py(y) is the distribution of X con-
ditioned by Y. The conditional entropy is the average of the
entropy of X for fixed values of Y. It is the part of the entropy
of X which is independent of Y: O<Hyy<Hy and Hyjy
=Hy only if X is independent of Y. Thus, the mutual infor-
mation, according to Eq. (23), measures the amount of bits of
X which can be predicted by the knowledge of Y and vice
versa.

The definition of mutual information can be extended to
more than two variables, although not in a unique way. We
will work with the information shared by three variables X,
Y, and Z, which can be expressed as

Ixyz=Ixy—Ixy|z, (25)

where Iyy|7 is the averaged mutual information between X
and Y for fixed values of Z [that is, it is computed using
Pxy| 2(x,y|z)]. The interpretation of this quantity is similar to
that of Eq. (23). The last term is the amount of information
between X and Y which is not shared by Z, while the differ-
ence gives the information shared by the three variables.
Contrary to the mutual information of two variables [Eq.
(23)], which is always positive, Iyy; can be negative. This
happens when fixing the value of Z causes the relation be-
tween X and Y to become less random, increasing their sta-
tistical dependence. As an extreme case we consider X=1Y
+Z, with Z independent of Y. Fixing Z, the quantity Ixyz
takes its maximum value Hy, and Ixy;= —Hyjx. On the
other hand, a positive value of /yy; indicates that fixing Z the
other two variables become more independent.
It can be proved that

Ixyz=1lyz—lyzix=Ixz—Ixzy, (26)

‘that is, the difference between the two mutual informations is
independent of which variable is kept fixed. An explicitly
symmetric expression is given by

Iyyz=IxytIxz+1yz—Kyyz, 27

where

pXYZ(-xsy’Z)

We now start the information analysis of the multifractal
densities |VC |(;) of the chromatic components, when the

point x runs across particular geometrical sets. We are inter-
ested in measuring entropies and mutual information among
the three variables of each chromatic system, at the same

pixel x, averaging over all the pixels of the image ensemble.

For each chromatic system we consider three different
geometrical sets. The first is obtained from the whole im-
ages; the second contains the pixels common to the MSM’s
of the three components; and the third is given by the pixels
common to the second MSM’s. The comparison between
these sets will give valuable knowledge about the distribu-
tion of information in the image.

We obtained the following results.

(i) RGB system. The results are summarized in Table 1. It

is observed that the entropic content of the MSM is larger

TABLE L. Entropies and mutual informations in the RGB sys.
tem, arranged in columns. The first three columns represent the
entropies of the red, green, and blue variables. The next three co)-
umns represent the mutual information between the different pairs,
The last two columns represent the two definitions we have givep
for the mutual information of the three variables altogether. The
rows refer to the spatial extent of the sampling: the whole image
(top), the intersection of the three MSM’s (middle), and the inter-
section of the three first manifolds (bottom); here, h;=—0.3+0.1.
All the data are expressed in bits. The bit depth of |V C|(x) for each
component was taken to be eight bits, which means that it has been
discretized in 28=256 values; thus the maximal possible value of
each entropy is 8.

Hg Hg Hg Igg Irg Irc Kros Irgs

Whole image 4.77 478 4.13 094 090 276 376 0.84
Fo 535 534 469 130 125 322 464 1.13
Fy, 492 493 473 086 0.81 278 3.72 0.73

than that of the whole image, while for the following mani-
fold this entropic increase is not present. Besides, comparing
the entropy of the second MSM with that of the whole im-
age, it is seen that they are similar (again, the lack of contrast
in the blue component causes some of the pixels in the MSM
to be detected as belonging to the second MSM). It was also
observed that less singular fractal components have the same
entropy as the whole image. The conclusion that can be ex-
tracted from this is that the number of frequent values that

Ve |()2) takes on the MSM is greater than on the whole
image. On the other hand, sampling on the second MSM (or
in any of the next fractal components) is equivalent to sam-
pling on the complete scene. It is then concluded that this
variable distinguishes the MSM from the other fractal com-
ponents by having a greater number of useful bits on it. This
system exhibits a rather large amount of mutual information
between pairs of variables, which is maximal for the pair
Red-Green (those with the most similar wavelength ranges)
for the three geometrical sets. Related to this, one also ob-
serves that Igg=Ipp=1Iggp, that is, the information shared
by the pairs GB or RB is close to the information common to
the three variables. This shows again the strong dependence
between the red and green components. Notice that the mu-
tual information also follows the same changes shown by the
entropies over the geometrical sets.

(i1) laB system. Table II summarizes the results obtained
for this system. We first notice that all the entropies are
larger than those of the RGB components. It also exhibits an

TABLE II. Entropies and mutual information for the [aS3 sys-
tem, arranged in columns. The first three columns represent the
entropies for the I, a, and B variables, and the following are ar-
ranged as those of Table 1. The rows refer to the same geometrical
sets as in Table 1. All the data are expressed in bits. The bit depth
for each component was taken to be eight bits.

Hy H, Hg I, ILig luog Kiap liup

Whole image 645 5.84 525 0.15 0.13 0.10 0.67 —029
Fo 6.48 6.04 560 029 024 0.19 171 —099
Fy 6.44 585 522 0.19 0.15 0.13 0.97 —0.50
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entropic increment of the MSM with respect to the whole
images, although it is smaller than for the RGB system.
Again the entropies defined over the second MSM are rather
similar to those of the whole image. The two-variable mutual
information is rather limited, which is expected because of
the decorrelation achieved by this system. Contrary to the
RGB system, now /,,5<0, which yields an increase of the
mutual information between two variables when the third is
known. Let us emphasize that on the pixels common to the
three MSM’s, the value of /,,4 is still more negative: this
implies that on this set the degree of dependence of the gra-
dients is larger than over the whole image. Given that in this
system the three two-variable mutual informations are rather
close, the argument applies to the three possible pairs.

VII. CONCLUSIONS

In this work we have addressed the question of whether
color-natural scenes exhibit non-Gaussian statistics related to
the gradient of the chromatic components. This was done for
each of the three chromatic channels of two different chro-
matic systems: the cone responses RGB and their decorre-
lated version /a8 [21]. The main conclusion is that natural
color images exhibit multiscaling effects similar to mono-
chromatic images [12,13], for both chromatic systems. In
particular, it has been checked that the multiscaling statistical
properties are very well described in the context of multipli-
cative processes, with just two free parameters.

An explicit decomposition of the images in their fractal
components was also done using a wavelet technique. The
most important of these components [which we have called
the most singular manifold (MSM)] is given by the obvious
contours in each chromatic channel. It was found that the
RGB and the [« systems have rather different geometrical
structure. While the first exhibits a great deal of redundancy,
in the sense that the fractal components of the three channels
are quite similar, the decorrelated system extracts different
features in the different channels.

In addition to this, this fractal structure helps to detect the
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most informative pixels in the images. To study this issue,
we have computed several information quantities: the total
entropy, the mutual information between pairs of channels,
and the information shared by the three channels of a given
system. This analysis reveals that the MSM contains the
most informative pixels in the image, for the six considered
channels. There are differences between the RGB and the
laB systems. All the measured quantities show that the first
is highly redundant, in that a given channel contains a large
amount of information about the others. On the contrary, the
decorrelated system has eliminated some redundancy. How-
ever, there is still a substantial amount of mutual informa-
tion, which is maximal over the MSM.

The results found in this work also contribute to confirm
the robustness of the multiscaling properties of natural im-
ages. These properties are not a peculiarity of monochro-
matic images but they are also present in color images, re-
gardless of the chromatic system used.

We want to emphasize that the multiscaling properties
discussed here give a priori information about what a natural
image is, reducing the entropy of the ensemble of natural
scenes. This could be useful for explaining the processing of
color images in the early stages of the visual pathway. The
existence of such a rich structure suggests that the second-
order statistics alone do not contain all visually significant
information. Instead, as it was already found for gray-scale
images [20], color processing filters will be fully defined
once the non-Gaussian properties described here are in-
cluded.
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