Computational Model of Carbachol-Induced Delta, Theta, and Gamma Oscillations in the Hippocampus

Paul H.E. Tiesinga,1,2* Jean-Marc Fellous,2,3 Jorge V. José,4 and Terrence J. Sejnowski1–3,5

1 Sloan Center for Theoretical Neurobiology, Salk Institute, La Jolla, California
2 Computational Neurobiology Laboratory, Salk Institute, La Jolla, California
3 Howard Hughes Medical Institute, Salk Institute, La Jolla, California
4 Center for Interdisciplinary Research on Complex Systems, and Department of Physics, Northeastern University, Boston, Massachusetts
5 Department of Biology, University of California-San Diego, La Jolla, California

ABSTRACT: Field potential recordings from the rat hippocampus in vivo contain distinct frequency bands of activity, including δ (0.5–2 Hz), θ (4–12 Hz), and γ (30–80 Hz), that are correlated with the behavioral state of the animal. The cholinergic agonist carbachol (CCH) induces oscillations in the δ (CCH-δ), θ (CCH-θ), and γ (CCH-γ) frequency ranges in the hippocampal slice preparation, eliciting asynchronous CCH-θ, synchronous CCH-δ, and synchronous CCH-θ with increasing CCH concentration (Fellous and Sejnowski, Hippocampus 2000;10:187–197).

In a network model of area CA3, the time scale for CCH-δ corresponded to the decay constant of the gating variable of the calcium-dependent potassium (K-AHP) current, that of CCH-θ to an intrinsic subthreshold membrane potential oscillation of the pyramidal cells, and that of CCH-γ to the decay constant of GABAergic inhibitory synaptic potentials onto the pyramidal cells. In model simulations, the known physiological effects of carbachol on the muscarinic and K-AHP currents, and on the strengths of excitatory postsynaptic potentials, reproduced transitions from asynchronous CCH-θ to CCH-δ and from CCH-δ to synchronous CCH-θ. The simulations also exhibited the interspersed CCH-γ/CCH-δ and CCH-γ/CCH-θ that were observed in experiments. The model, in addition, predicted an oscillatory state with all three frequency bands present, which has not yet been observed experimentally. Hippocampus 2001;11:251–274. © 2001 Wiley-Liss, Inc.

KEY WORDS: acetylcholine; synchronization; neuromodulation; noise; subthreshold oscillations

INTRODUCTION

The human electroencephalogram (EEG) contains multiple synchronous rhythms that reflect spatially and temporally ordered activity (Basar et al., 1999; Glass and Riding, 1999). Delta rhythms (0.5–2 Hz) are involved in signal detection and decision making (Basar-Eroglu et al., 1992); theta oscillations (4–12 Hz) are related to cognitive processing and cortico-hippocampal interactions (Vinogradova, 1995); and gamma oscillations (30–80 Hz) can be found in a variety of structures under different behavioral conditions (Basar et al., 1999; Ritz and Sejnowski, 1997; Singer and Gray, 1995). Human performance during an alternation task can be predicted by the correlated increase or decrease of gamma and theta band activity (Makeig and Jung, 1996). The neural mechanisms for these correlated changes in EEG frequency content are unknown, but they are likely to involve the activity of neuromodulatory centers (McCormick, 1992; Stewart and Fox, 1990; Leung, 1998). For instance, in vivo microdialysis studies in cats show that the level of acetylcholine in the cortex and hippocampus is reduced during delta oscillations, and can be up to four times higher during theta activity (Marrosu et al., 1995).

Recordings from the hippocampus reveal oscillations in the delta, theta, and gamma ranges, depending on behavioral conditions (reviewed by Fellous and Sejnowski, 2000). The amplitude and frequency of hippocampal theta and gamma rhythms are correlated in anesthetized rats, indicating that the underlying neural mechanisms are not independent (Bragin et al., 1995). Furthermore, a subpopulation of hippocampal cells either discharges at low frequency or in the theta-frequency range, depending on level of cholinergic innervation of the hippocampus (Bland and Colom, 1993; Steriade et al., 1993). The theta rhythm in vivo is thought to depend on the cholinergic and GABAergic septal inputs (Brazh-
nich and Fox, 1997; Freund and Antal, 1988; Frotscher and Leranth, 1985; Stewart and Fox, 1990). The frequency of the theta rhythm is controlled by GABAergic phasic inputs from the septum, while its power is controlled by septal cholinergic afferents (Brazhnik et al., 1993; Lee et al., 1994; Soltész and Deschênes, 1993; Stewart and Fox, 1990; Ylinen et al., 1995). These mechanisms are difficult to study experimentally because they involve two interacting structures and two interacting transmitter systems.

The in vitro hippocampal preparation provides a simplified framework in which the mechanisms underlying theta, delta, and gamma rhythms, and the transitions between the rhythms, can be studied in the absence of input from the septum. Furthermore, recent experiments indicate that the intrinsic properties of the isolated CA3 region in the hippocampus contribute to theta rhythms observed in vivo (Kocsis et al., 1999). Muscarinic activation of the CA3 region, using the agonist carbachol, results in rhythms observed in vivo (Bogusiewicz et al., 1996; Fellous and Sejnowski, 2000), theta (Bland et al., 1988; Fellous and Sejnowski, 2000; Konopacki et al., 1987; MacVicar and Tse, 1989; Williams and Kauer, 1997), and gamma (Fellous and Sejnowski, 2000; Fisahn et al., 1998) bands. These intracellular studies have shown that cholinergically induced delta and theta (CCH-δ and CCH-θ) oscillations depended on the pyramidal cell network of the CA3 region, but gamma (CCH-γ) also required an intact network of GABAergic interneurons. The level of activation of cholinergic receptors in the slice determines which of the three oscillations will occur or predominate (Fellous and Sejnowski, 2000).

The biophysical effects of carbachol have been studied extensively. Carbachol blocks several potassium conductances, including I_{AHP} and I_M in a concentration-dependent manner (Madison et al., 1987; McCormick, 1989). This depolarizes the pyramidal cells, unmasking subthreshold membrane potential oscillations in the theta-frequency range (Leung and Yim, 1991; Fellous and Sejnowski, 2000). In addition, carbachol reduces the average strength of excitatory postsynaptic potentials (EPSPs) and changes their distribution (Hasselmo, 1995; Hasselmo et al., 1995; Patil and Hasselmo, 1999).

Several investigators have studied the mechanisms underlying delta- (Traub and Miles, 1991), theta- (Traub et al., 1992), and gamma-frequency range oscillations (Wang and Buzsáki, 1996) in isolation. The biophysical effects of carbachol on single-cell dynamics have been investigated in detailed models (Menschik and Finkel, 1998, 1999). However, there are no hypotheses for how the level of cholinergic activation triggers and controls the transitions between these oscillations.

The goal of this study was to determine under what conditions, and by what mechanisms, the hippocampal area CA3 can support the CCH-δ, CCH-θ, and CCH-γ oscillations, using a combined experimental and modeling approach. In particular, we investigated how carbachol induced transitions between these states in a concentration-dependent manner. Because carbachol changes the intrinsic neuronal dynamics and network dynamics, it has proven difficult to dissect these two contributions solely by experimental methods. Computer simulations were used to disentangle these two contributions and suggest further experiments.

Experimental Methods

All experiments were carried out in accordance with animal protocols approved by the NIH. Young (20–30 days) Sprague-Dawley rats were anesthetized using metofane and decapitated, and their brains were quickly removed in cold artificial cerebrospinal fluid (ACSF). After free-hand razor cuts, brains were placed on a vibratome (series 1000), and 400–μm transversal hippocampal slices were obtained. Slices were held in ACSF in mM: NaCl, 124; NaHCO₃, 26; D-glucose, 10; KCl, 5; CaCl₂, 2; MgSO₄, 2; and NaH₂PO₄, 1.2, saturated with 95% O₂/5% CO₂, at room temperature. Slices were then placed in the recording chamber, at 31–32°C and perfused at constant flow (2–3 ml/min). Field recordings were obtained with glass microelectrodes (ACSF filled, 300–400 KΩ) pulled using a Flaming/Brown micropipette puller (P97, Sutter Instruments) and placed in the cell body layer in CA3. Whole-cell patch-clamp recordings were achieved using glass electrodes (4–10 MΩ, containing in mM: KMeSO₄, 140; HEPES, 10; NaCl, 4; EGTA, 0.1; Mg-ATP, 4; Mg-GTP, 0.3; phosphocreatine 14). Patch-clamp was performed under difference interference contrast visual control. In most experiments, Lucifer yellow (RBI, 0.4%) was added to the internal solution. At the end of each experiment, high-intensity mercury arc light was shone on the cell, and fluorescence was recorded on videotape. Cells were characterized on the basis of their morphology and physiological responses to square pulses. All drugs were obtained from R.B.I. or Sigma, freshly prepared in ACSF, and bath-applied. Data were acquired with Labview 5.0 and a PCI-16-E1 data acquisition board (National Instrument), and analyzed with MATLAB (The Mathworks) and Excel (Microsoft). Further details can be found in Fellous and Sejnowski (2000).

Simulation Methods

The pyramidal cell model was based on the Pinsky-Rinzel (PR) model (Pinsky and Rinzel, 1994). It consisted of two compartments, the soma and the dendrite. The soma contained the delayed-rectifier potassium, I_{KDR}, the fast sodium, I_{NS}, and a leak current, I_L. The dendrite contained the slower currents, specifically, the calcium, I_{Ca}, the calcium-dependent potassium current responsible for the slow afterhyperpolarization (AHP), I_{KCaHP}, and another calcium-dependent potassium current, I_{KCa}, in addition to the leak current. The compartments were electrically connected via a conductance g_e. This model reproduces the salient features of a more detailed model of a CA3 pyramidal neuron by Traub et al. (1991). See the Appendix for details.

A number of changes were made to the Pinsky-Rinzel model. A muscarinic current I_{AHP} was added to the dendritic compartment. The kinetics were taken from Warman et al. (1994). Persistent-like sodium and potassium currents, I_{NaO} and I_{KDP}, respectively, were also included. The kinetics were chosen so that these currents were activated close to resting membrane potential, and could generate the subthreshold theta-frequency membrane potential oscillations. We further tuned the model so that it reproduced our experimental
TABLE 1.

Parameter Values for Pyramidal Cell Model for Low (2–4 μM), Medium (4–13 μM), and High (13–40 μM) Carbachol Concentrations

<table>
<thead>
<tr>
<th>Carbachol Concentration (μM)</th>
<th>g_{Ca} (mS/cm²)</th>
<th>g_{K-AHP} (mS/cm²)</th>
<th>g_{M} (mS/cm²)</th>
<th>I_{app} (μA/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2–4</td>
<td>10</td>
<td>0.8</td>
<td>0.3–0.4</td>
<td>0.15</td>
</tr>
<tr>
<td>4–13</td>
<td>10</td>
<td>0.8</td>
<td>0.2–0.3</td>
<td>0.27</td>
</tr>
<tr>
<td>13–40</td>
<td>6</td>
<td>0.2</td>
<td>0.0–0.0</td>
<td>0.0–1.35</td>
</tr>
</tbody>
</table>

observations (Fellous and Sejnowski, 2000; Fellous et al., 1999), and those reported earlier (Leung and Yim, 1991). In particular, 1) the membrane potential oscillations depended on a sodium and a (TEA-sensitive) potassium current; 2) the membrane potential oscillations were induced by a depolarization, and the frequency of the oscillations increased with additional depolarization; 3) neurons produced single spikes instead of bursts; and 4) neurons only fired on some cycles of the theta-frequency membrane potential oscillation.

The effects of carbachol on the intrinsic dynamics were mediated by I_{K-AHP}, I_{App}, and I_{Ca}. The model neuron displayed signs of chaos (Pinsky and Rinzel, 1994). We did not observe chaos in our simulations.

For certain parameter settings, the dynamics of the Pinsky-Rinzel model neuron displayed signs of chaos (Pinsky and Rinzel, 1994). We did not observe chaos in our simulations.

Carbachol modulates the strength of the recurrent excitatory synaptic connections. Experimental data for CA1 show that the strengths of Schaffer collateral synapses are reduced by about 50% at 10 μM CCH, whereas the perforant path synapses were affected to a lesser extent (Hasselmo and Schnell, 1994). The strengths of the Schaffer collateral field EPSPs were reduced to an even larger extent (Sheridan and Sutor, 1990). In our model, synaptic strength was taken to be constant for the low and medium carbachol concentrations (CCH < 13 μM), and reduced by 50% for high carbachol concentrations (CCH > 13 μM). We also studied in some simulations the effect of reducing synaptic strength for CCH < 13 μM. We did not model the effects of carbachol on the strength of inhibitory connections.

The model neurons had different time scales, which could potentially lead to numerical instabilities. A fourth-order Runge-Kutta algorithm was used for the time-integration in the network simulations (Press et al., 1992). Using the same time step, dt = 0.05 ms, as in Pinsky and Rinzel (1994), we reproduced Figures 3 and 5 of Pinsky and Rinzel (1994) (not shown). Good agreement was also obtained with the PR model implemented in the standard simulation package NEURON (Hines and Carnevale, 1997), and with an adaptive stepsize Runge-Kutta algorithm (Press et al., 1992).

For certain parameter settings, the dynamics of the Pinsky-Rinzel model neuron displayed signs of chaos (Pinsky and Rinzel, 1994). We did not observe chaos in our simulations.

We also studied the dynamics of a single pyramidal cell driven by a simulated presynaptic spike train that represented the inputs of many different neurons. The input spike train was generated as a Poisson process with a constant firing rate f_{EPSP}, (see, for instance, Rieke et al., 1997; Press et al., 1992). Briefly, we discretized time in bins of $\Delta t = 0.01$ ms. The probability of a spike in a given bin was then $f_{EPSP} \Delta t$. We drew a random number ξ, uniformly distributed between zero and one; when $\xi = f_{EPSP} \Delta t$, a presynaptic spike was generated. Each presynaptic spike generated an exponentially decaying conductance pulse with the same time constant, 2 ms, as an AMPA synapse in the network simulation. In some cases cases we generated a spike train with a time-varying firing rate (for details see Tiesinga and Jos, 2000a).
Initial conditions could be crucial, so for the pyramidal cells, initial values for the voltage (the same for both compartments) and gating variable \(q \) (or equivalently, the initial calcium concentration) were carefully chosen. In most simulations, the voltage was set to \(-64.2\) mV and \(q \) was chosen from a uniform distribution between zero and an upper range varying between 0.01–0.20. For interneurons, the voltage was either set to \(-65\) mV, or uniformly distributed between \(-75\) and \(-55\) mV. The other gating variables were set at their steady-state values.

Calculated Quantities and Units

The spike times, determined during simulation runs, were the times at which the somatic voltage crossed \(-30\) mV (0 mV for interneurons) from below, i.e., \(V(t - \delta t) < -30\) mV \(\Rightarrow \) \(V(t) \).

We chose the threshold at \(-30\) mV to detect all the spikes during a burst of the pyramidal cell. The power spectrum \(|V(f)|^2 \) of the voltage was computed using the psd routine, and the transfer function \(S = \langle V(f) I(f) \rangle / \sqrt{\langle |V(f)|^4 \rangle} \) using the tfe routine, in MATLAB. The parameter \(n_{ch} \) used in these routines was either 4.096 or 8.192.

In the rastergrams, each solid circle represents one spike. Its x-coordinate is the spike time, and its y-coordinate is the neuron’s index. The time-dependent firing rate of the network was calculated by supplying all the spike times to the MATLAB routine hist with bin widths 1 (CCH-\(q \)), 5 (CCH-\(4 \)), or 20 ms (CCH-\(\delta \) and asynchronous CCH-\(0 \)).

All quantities were normalized by the surface area of the neuron. This leads to the following system of units: the membrane potential \(V \) in mV, time \(t \) in ms, firing rate \(f \) in Hz, membrane capacitance \(C_m \) in \(\mu F/cm^2 \), conductance \(g_x \) in \(mS/cm^2 \), voltage noise \(\xi \) in mV/\(\sqrt{ms} \), strength of neuroelectric noise \(D \) in mV\(^2/\sqrt{ms} \), the rate constants \(\alpha_x \) and \(\beta_x \) in \(ms^{-1} \), and the current \(I \) in \(\mu A/cm^2 \). The gating variables and the time-scale \(\phi \) are dimensionless. All results are expressed in this system of units.

RESULTS: NETWORK OF PYRAMIDAL CELLS

Low Carbachol Concentrations Induce Subthreshold Oscillations

Some excitatory cells in the hippocampus, entorhinal cortex, neocortex, and other brain areas display subthreshold membrane oscillations (Alonso and Llinas, 1989; Llinas et al., 1991; Leung and Yim, 1991). Low concentrations of carbachol can induce subthreshold membrane oscillations in the theta-frequency range (Fellous and Sejnowski, 2000). Subthreshold oscillations are also observed during depolarization of the neuron by current injection (Leung and Yim, 1991; Fellous et al., 1999). These effects were reproduced in the model of a hippocampal pyramidal neuron (see Methods).

Figure 1a illustrates the dynamics of the neuron model driven by a simulated spike train (see Methods) of excitatory postsynaptic potentials (EPSPs). The muscarinic potassium current and the synaptic strength were progressively decreased from curve 1 to 3, while the number \(f_{EPSP} \) of impinging EPSPs was increased. At first the membrane potential was noisy, and the subthreshold oscillation was barely visible (Fig. 1a, curve 1). Then waxing and waning subthreshold oscillations in the theta-frequency range became visible (Fig. 1a, curve 2). Infrequently an action potential was present at the peak of the oscillations. Finally, more spikes were present (Fig. 1a, curve 3). The pyramidal cell model in Figure 1 is based on the model of Traub et al. (1991). However, in the Traub model the neuron bursts for small driving currents (Traub et al., 1991; Pinsky and Rinzel, 1994), whereas here the model neuron produces single spikes.

In Figure 1b, the intracellular membrane potential from a pyramidal cell in a hippocampal slice is shown during the 2 \(\mu M \) CCH wash-in. The number of spontaneous EPSPs and the membrane potential increase, whereas the muscarinic potassium current decreases. The simulations resembled the experimental recording. A similar increase in oscillation amplitude leading to spikes can also be produced in the model by changing other parameters, such as increasing the driving current, reducing the muscarinic potassium conductance, or increasing the presynaptic EPSP frequency (not shown). The above results were obtained using a presynaptic spike train with a constant firing rate, but injected white noise currents can induce the oscillations as well. We also applied a periodic synaptic drive corresponding to an ensemble of neurons synchronized at the theta-frequency range. In that case, more action potentials were generated for the same synaptic strength and average presynaptic firing rate (not shown). A similar resonance to a theta-frequency current drive was also observed in experiments (Fellous et al., 1999).

Subthreshold membrane oscillations can be characterized using a transfer function (Hutcheon et al., 1996a,b; Lampl and Yarom, 1997; Leung and Yu, 1998). The transfer function \(S(f) \) describes the attenuation of a particular frequency component \(f \) of the input. It is the ratio of the Fourier transforms of the input and output (Arfken and Weber, 1995). Here we calculate it for noisy data as the crosscorrelation of the input current with the resulting membrane potentials divided by the spectrum of the input current (see Methods). In Figure 1c, the transfer function shown on top was obtained from a 15-s-long voltage trace without any action potentials. The square root of the power spectrum of spontaneous subthreshold activity measured in experiment was included below. If the experimental noise spectrum is flat, the power spectrum is identical to the transfer function up to a normalization constant. The transfer function had a well-defined peak around 6 Hz, within the theta-frequency range. For high frequencies, \(f \gg 10 \) Hz, it decayed as \(1/f \). The transfer function of a neuron without a resonance has a maximum at zero frequency and can be described as a low-pass filter. There were significant statistical fluctuations in the low- and high-frequency domains due to the stochastic character of the spike train input.

The transfer function can also be determined by driving the neuron with pure sinusoidal currents. The transfer function is proportional to the amplitude of the resulting voltage oscillation at frequency \(f \). For purely linear systems, both methods yield the same result, but the latter method is less noisy. The resulting graphs are
Results based on a variety of parameter sets were compared to those from the reference set (amplitude A of the sinusoidal current equal to 0.01 μA/cm2, continuous line in Fig. 1d). For amplitudes up to 0.2 μA/cm2 the membrane behaved in a linear fashion, and the transfer functions fell on top of each other (Fig. 1d). For higher amplitudes, $A = 0.5$ μA/cm2, the response became nonlinear. The resonance peak was shifted to lower frequencies and attained a higher value (Fig. 1d, arrow). At theta frequencies the injected current produced action potentials (not shown). (Note that the spectrum in Fig. 1c is different from those shown in Fig. 1d. Synthetic potentials can induce nonlinear effects, in addition to increasing the membrane conductance and generating an average depolarization.) Figure 1e,f was in the linear regime, $A = 0.01$ μA/cm2. Decreasing the muscarinic potassium conductance, or depolarizing the neuron via an increased external current, led to an enhanced resonance (Fig. 1e, arrow), consistent with experiments in which carbachol induced a depolarization, and also reduced the muscarinic potassium current. These simulations therefore reproduced subthreshold oscillations induced and enhanced by carbachol.
When the I_{NaO} and I_{KO} currents responsible for the subthreshold oscillations were also removed, a low-pass filter spectrum was obtained, as expected (dashed line in Fig. 1f).

Incoherent Oscillations in the Theta-Frequency Range

The field potential observed in slice preparations was noisy and asynchronous for low carbachol concentrations of 2 – 4 μM (Fellous and Sejnowski, 2000). However, the intracellular recordings showed subthreshold oscillations in the theta-frequency range, with infrequent spikes at the peaks of depolarization (Leung and Yim, 1991). Numerical model calculations reproduced this network state (Fig. 2).

The network consisted of 500 pyramidal cells connected by recurrent fast excitatory AMPA synapses. The conductance values were set corresponding to the 2 – 4 μM CCH range listed in Table 1. After a transient of about 2,000 ms, the network activity slowly increased, and settled in a low firing rate steady state (Fig. 2). Each neuron only fired one or two spikes during the last 2,000 ms of the simulation. There were no signs of synchronized neuronal discharge present in the firing rate histogram. Correlations between neurons were also studied. In voltage traces of 20 neurons that did not spike (Fig. 2b), the subthreshold oscillations were clearly visible, but there was no phase relationship between pairs of neurons. The average membrane potential of all the neurons that did not spike in the last 2,000 ms of the simulation was flat (Fig. 2c3).

FIGURE 2. Simulations of incoherent CCH-0 oscillations, which were stable against recurrent excitation at low CCH concentration (2 – 4 μM). a: Rastergram (top), and the corresponding firing rate histogram with 20-ms bins (bottom). In the rastergram, the y-coordinate of each circle is given by the neuron index, and the x-coordinate by the spike time. b: Smoothed voltage traces of 20 neurons that did not spike during the last 2,000 ms. c: Two voltage traces (curves 1 and 2). Arrow indicates an action potential. Dashed bar marks waning of subthreshold oscillation. Bottom curve (3) is the average voltage of all the neurons that did not spike during that period. Parameters: $N = 500$ pyramidal cells, $P(e \rightarrow e) = 0.10, g_{AMPA} = 0.003, I_{app} = 0.27$, and $(g_{M}, g_{K-AHP}, g_{Ca}) = (0.3, 0.8, 10.0)$. Conductances in mS/cm2, currents in μA/cm2.

When the I_{NaO} and I_{KO} currents responsible for the subthreshold oscillations were also removed, a low-pass filter spectrum was obtained, as expected (dashed line in Fig. 1f).
However, each individual neuron showed the characteristic waxing and waning subthreshold oscillations (Fig. 2c2), and spikes at peaks (Fig. 2c1, arrow). Both of these features were already present in the isolated pyramidal cell shown in Figure 1.

The simulated CCH-θ was characterized by asynchronous low-frequency firing and incoherent subthreshold membrane potential oscillations. This incoherent state was unstable against increases in synaptic coupling. Increases in either the unitary excitatory synaptic conductance, g_{AMPA}, or the probability $P(e \rightarrow e)$ for synapses between cells led to population bursts. The effect of carbachol was simulated by increasing the excitability of cells and reducing the sizes of the EPSPs, as observed in experiments (there were no experimental data available on how CCH affects the connection probability or the pattern of connectivity). The reduction in EPSP size did not limit the stability of the incoherent state once it was established. However, the increased excitability did affect stability, as discussed below.

The simulations were highly sensitive to the initial state of the network. When each neuron started in an identical state, the network remained in a synchronized state. However, stochastic inputs, such as Poisson trains of EPSPs, or white noise currents could for certain parameter regimes slowly erode synchronization (not shown). This synchronized initial state is not representative of the experimental condition. The model neuron had fast variables, such as the voltage; fast voltage-dependent kinetic variables, which relaxed within about 10 ms to their steady-state values; and slow variables, such as the gating variable q of the calcium-dependent afterhyperpolarization, that relaxed on a time scale of seconds. A

FIGURE 3. Simulations of carbachol-mediated reduction in muscarinic potassium conductance, which destabilized the asynchronous CCH-θ for medium concentrations of CCH (4–13 μM). a–c show the rastergram (top), and the firing rate histogram (bottom, bin width 20 ms). From top to bottom the muscarinic conductance was $g_M = 0.35$ (a), 0.25 (b), and 0.20 (c) (note that $g_M = 0.30$ was already shown in Fig. 2). Parameters: $N = 500$ pyramidal cells, $P(e \rightarrow e) = 0.10$, $g_{AMPA} = 0.003$, $g_{K-AHP} = 0.8$, $g_{Ca} = 10$, and $I_{app} = 0.27$. Conductances in mS/cm2, currents in μA/cm2.

However, when each neuron showed the characteristic waxing and waning subthreshold oscillations (Fig. 2c2), and spikes at peaks (Fig. 2c1, arrow). Both of these features were already present in the isolated pyramidal cell shown in Figure 1.
high q value acted as a constant hyperpolarizing current, its effect depending on the size of the g_{K-AHP} conductance. The latency of the first spike as a function of initial q (or calcium concentration) had a bimodal distribution (not shown). The neuron fired either within the first 100 ms, or it fired more than 1,000 ms later (if at all). The simulations were started with random q values drawn from a uniform distribution, so that a set of neurons fired shortly after the start of the simulation (Fig. 2a), but the other neurons slowly recovered from the hyperpolarizing current. This produced minimal activity between $t = 200$ and 2,500 ms in Figure 2a.

Carbachol-Induced Synchronized Population Activity in the Delta-Frequency Range

Field potential measurements in hippocampal slices show synchronized population bursts for CCH concentrations in the range of 4–13 μM (Fellous and Sejnowski, 2000). The simulations were based on the conditions that led to these synchronized population events. First, g_{K-AHP} was already reduced in the CCH concentration range during asynchronous CCH-0; it was decreased further during CCH-δ. The greatest change oc-
curred in the reduction of muscarinic potassium conductance (Madison et al., 1987). In the following simulations only g_{M} was varied, showing that the effects of carbachol on g_{M} were in themselves enough to explain the transition to CCH-δ (Fig. 3). In addition, the average size of EPSPs decreased (Hasselmo, 1995). The possible changes due to the reduction in EPSP size on this transition are discussed later.

For $g_{M} = 0.35 \text{ mS/cm}^2$ (13% reduction, Fig. 3a), the same asynchronous CCH-θ occurred as in Figure 2. When g_{M} was lowered to 0.25 mS/cm2 (37% reduction), the average firing rate increased (after the transient). There also was a weak modulation in the network firing rate on a δ-time-scale. This was visible in the rastergram as a sequence of dark patches, alternated by light patches (Fig. 3b). The modulation in Figure 3b was not sharp enough to generate the sudden peaks in the field potential that were measured experimentally. However, lowering g_{M} to 0.20 mS/cm2 (50% reduction) led to sudden population bursts of the whole network, separated by periods of lower activity of about 1000 ms in duration (Fig. 3c).

Individual neurons fired multiple spikes, or sometimes burst during the population burst, as observed experimentally (unpublished observations). The calcium that entered the neuron during the population burst increased the value of the gating variable q of the slow calcium-dependent afterhyperpolarization, I_{Ca-AHP} (see Appendix). For sufficiently high q, the neuron stopped spiking until the resulting slow AHP had decayed. The network burst was terminated when enough neurons were in this refractive state. For a CCH-δ state to be stable, the network had to have a robust termination mechanism. Without such a mechanism the network would settle into an asynchronous state of high activity. The average network firing rate would then be flat (not shown), and would not display the characteristic CCH-δ field potentials observed experimentally. In the model, the termination depended critically on the value of g_{K-AHP}, which was regulated by carbachol.

Population bursts were initiated when there were enough coincident action potentials. These spikes generate enough excitation via the recurrent excitatory synapses to recruit more pyramidal cells to start an “explosive” runaway process. The minimum number n_{crit} of almost coincident spikes that was required depended on the unitary synaptic conductance and connection probability. Increasing either of these two parameters lowered n_{crit}. However, given these network parameters, whether or not n_{crit} was reached depended on the average firing rate. This was regulated by the effects of carbachol on the muscarinic potassium current (and to a lesser extent via I_{Ca-AHP}).

Although the synaptic coupling in the model remained fixed in the transition from asynchronous CCH-θ to CCH-δ, the same transition could be obtained while reducing the synaptic coupling with increasing CCH concentration. The only difference was that n_{crit} increased, and thus the necessary firing rate was higher, and consequently the necessary decrease in the value of g_{M} was larger (not shown).

Synchronous Oscillations in the Theta-Frequency Range

The field potentials in slice preparations oscillated at theta frequencies when the carbachol concentration was increased above 13 μM (for a review of previous experimental work, see Fellous and Sejnowski, 2000). The peak amplitude and width of the population bursts were reduced compared to the CCH-δ oscillations (Fellous et al., 1998). Intracellular recordings showed prominent membrane potential oscillations in the theta-frequency range, with spikes riding on some of the depolarizing peaks. However, during some recordings, spikes occurred in each theta cycle (not shown). CCH-θ was abolished when the fast AMPA-recurrent excitation was blocked (Williams and Kauer, 1997). This suggests that the generation of CCH-θ depends not only on intrinsic properties of the neuron, but also on network properties. This was confirmed by the results of simulations.

The physiological effects of 20 μM carbachol are diverse. The amplitudes of the muscarinic and calcium-dependent afterhyperpolarization current were almost zero (Madison et al., 1987). In addition, the calcium current was reduced (Gahwiler and Brown, 1987). Carbachol not only reduces the average size of the EPSPs, but might also change their distribution (Hasselmo, 1995). Thus there may be both weaker and stronger synapses. Simulation results indicated that the following indirect physiological consequences of carbachol could account for the transition from CCH-δ to CCH-θ (Fig. 4): a higher spontaneous firing rate and a weaker slow afterhyperpolarization. In addition, a heterogenous distribution of synaptic coupling strengths was used (see also Discussion). In particular, $(g_{M}, g_{K-AHP}, g_{Ca})$ was reduced to $(0.0, 0.2, 6.0)$ mS/cm2 (Table 1, 13–40 μM CCH), there were 50 strongly connected and 450 weakly connected pyramidal cells (Fig. 4c), and the applied currents were made more heterogeneous.

In Figure 4, the rastergram displayed synchronized oscillations in the theta-frequency range. The neurons went from a zero firing rate immediately to regular spiking at theta frequencies. Because of the recurrent excitatory connections, the strongly connected neurons fired each theta cycle. As a result, they provided a strong coherent theta-frequency drive to the weakly connected neurons. The drive resonated with the intrinsic oscillator present in each neuron, and caused a pronounced and coherent theta-frequency membrane oscillation (inset, Fig. 4a). In contrast, without the coherent synaptic drive the neurons displayed uncorrelated theta-frequency membrane oscillations. Compare the asynchronous CCH-θ in Figure 2 to voltage traces 1–3 in Figure 4a and an experimental recording in Figure 4b, in which a sequence of spikes was produced in consecutive theta-cycles.

The synchronous CCH-θ was unstable to increases in the recurrent synaptic excitation and driving current, which produced an asynchronous high firing rate state (not shown). Inhibitory neurons might under certain conditions be necessary to prevent this from occurring (see below). Of course, there is also a minimum amount of recurrent synaptic excitation necessary to sustain synchronous CCH-θ.
RESULTS: NETWORK OF PYRAMIDAL CELLS AND INTERNEURONS

Interspersed Delta- and Gamma-Frequency-Range Oscillations

During some experiments, a gamma-frequency component was found in the field potential during CCH-δ (Fellous and Sejnowski, 2000). This component had a much smaller amplitude than CCH-δ itself. The presence of gamma rhythms is usually closely associated with fast GABAergic inhibition (Whittington et al., 1995; Fisahn et al., 1998). However, applying a specific GABA_A blocker did not abolish or significantly change CCH-δ. This, together with the fact that CCH-δ and CCH-γ could occur separately, suggested that they were generated by functionally distinct mechanisms. Here we studied the generation of CCH-δ and CCH-γ by adding 100 GABAergic interneurons to the model network. The pyramidal cells were divided into two groups, 250 strongly connected (ε) and 250 weakly connected (ε_w) neurons; only ε_w received fast inhibitory projections from the interneurons. The resulting network architecture is shown in Figure 5e.

An important question is whether the strongly connected neurons predominantly drive the weakly connected ones, or vice versa. Figure 5 is an example of the latter case. After the initial weak burst and the transient, a series of delta-frequency-range population bursts was visible in the rastergram (Fig. 5a). The gamma-frequency component was clearly visible in the firing rate histogram. During a delta population burst, the pyramidal cells fired multiple spikes (Fig. 5d), and sometimes produced bursts (arrow in Fig. 5b). Theta-frequency subthreshold oscillations reappeared in the voltage trace after the population-burst-induced slow AHP had decayed (indicated by asterisks in Fig. 5b).

The weakly coupled neurons received a GABAergic projection. We assumed that the interneurons were tonically active due to the carbachol-induced depolarization and enhanced excitability (Freund and Buzsaki, 1996; Fellous and Sejnowski, 2000). There might also be a contribution from excitatory synaptic projections, although that was not included in our present example (but see below). A model network consisting of heterogeneous and noisy interneurons coupled by mutual inhibition can generate a gamma-frequency population rhythm (Traub et al., 1996a; Tiesinga and Joseč, 2000a). Our interneuron network indeed synchronized after a transient. The length of the transient depended on the variance in the distribution of voltage values at the start of the simulation. In the example shown in Figure 5, they were synchronized within the first 10 ms of the simulation. This was visible as a regular series of IPSPs in the membrane potential of the pyramidal cell (Fig. 5c). The pyramidal cell only fired once every few gamma cycles, yielding a low average firing rate. The waxing and waning of CCH-γ was an effect of the random initial condition (see arrows in Fig. 5a and horizontal line in Fig. 5c). The waxing and waning were more pronounced when weak recurrent excitation between neurons was included, and the constant injected current drive could then be reduced. The functional role of waxing and waning for the stability or induction of CCH-γ is unclear at present.

Because of the coupling from ε_w to ε, gamma-band activity occurred shortly before the onset of a delta burst. However, the increased CCH-γ did not always lead to a population burst (see arrows in Fig. 5a). Population bursts only occurred when the slow AHP induced by the previous population burst had sufficiently decayed. In that way, the delta bursts still occurred approximately once a second.

Interspersed Theta- and Gamma-Frequency Oscillations

Interspersed oscillations in the gamma and theta frequency range have been observed in field potential recordings from the hippocampal slice (Fellous and Sejnowski, 2000). The dynamics of the CCH-θ network were examined in the presence of tonically active inhibitory interneurons (Fig. 6d), without changing the intrinsic properties of the pyramidal cell model. Inhibitory synapses were added to 100 of the weakly connected neurons, and the applied constant current to them was increased. Figure 6 shows an example of the oscillations obtained in this model. The rastergram (Fig. 6a) looked noisier compared to the one in Figure 4. This is because the theta and gamma component had a similar amplitude, and although firing was reduced in the trough of the theta cycle, it was not terminated completely. The activity of neurons without GABAergic innervation (Fig. 6b) looked similar to the activity shown in Figure 4. The gamma component (Fig. 6c) was similar to that described above, since its generation by GABAergic interneurons was to a large extent uncorrelated with the underlying pyramidal cell activity.

Isolated Gamma-Frequency Oscillations

Gamma-frequency oscillations have also been observed experimentally in isolation from other rhythms (Fisahn et al., 1998; Fellous and Sejnowski, 2000). In Figures 5 and 6, the tonically active interneuron network provided the necessary synaptic drive to obtain pyramidal-cell gamma rhythms. The dynamics of the interneuron-pyramidal cell network responsible for the gamma rhythms were examined, and two ways were found to make a population of pyramidal cells spike at gamma frequencies, called γ-I and γ-II. In γ-I (Fig. 7a,b,d), the interneurons provided a constant inhibitory drive to which the pyramidal cells were entrained. Some pyramidal neurons fired spontaneously at a low rate in the presence of inhibition; others needed some stochastic noise to fire during the troughs of the inhibitory drive. A pyramidal cell only fired when the inhibition was coherent, at least for the parameter values considered in Figure 7d. From random initial conditions, it took 1,000 ms for the interneurons to synchronize in Figure 7d. During the long transient period, the pyramidal cells did not fire because the asynchronous interneuron network provided a tonic, rather than phasic, inhibition that hyperpolarized the pyramidal cells.

In Figure 7a, gamma activity was inhomogeneous: during some cycles many neurons fired, whereas on other cycles almost none fired. This was a consequence of the initial conditions. Stochastic noise or a weak recurrent excitation could smooth out the inhomogeneity. In Figure 7b a noise current was injected into the...
pyramidal cells. Gamma activity was only stable for weak recurrent excitation. Slightly stronger interactions (e.g., $\text{gAMPA} = 0.001$ mS/cm2) could lead to large amplitude fluctuations of the gamma oscillation, theta-frequency activity, or population bursts (not shown).

γ-II occurred when there was excitatory feedback from the pyramidal cells to the interneurons, providing the interneurons with a phasic synaptic drive in addition to a tonic current drive (Fig. 7c). First, pyramidal cells fired, producing the excitation that recruited the interneurons. Second, the inhibition generated by the spiking interneurons stopped the pyramidal cell activity for one gamma cycle. The length of the cycle was determined by the precision of the interneuron discharge, and the time constant of the GABAergic synapse onto the pyramidal cell. This was different from γ-I, where the time-scale was set by the kinetics of the recurrent synapses of inhibitory interneurons onto themselves. The temporal jitter in the interneuron firing times determined the size of the phasic vs. tonic inhibition. Tonic inhibition hyperpolarized neurons, and phasic inhibition patterned the discharge. A temporal dispersion in the pyramidal cell discharge led to a less precise in-

![Figure 5](image_url)

FIGURE 5. Interneuron-pyramidal cell interactions generated interspersed CCH-δ and CCH-γ activity. The simulated network consists of 250 strongly, and 250 weakly connected pyramidal cells, and 100 inhibitory interneurons projecting to the weakly coupled neurons. a: Rastergram (top) and firing rate histogram (bottom). Activity during the delta burst has been truncated. Arrows indicate spontaneous gamma-frequency-range oscillations. b: Firing rate histogram (bottom) of strongly connected cells, and an example voltage trace (top) of one of these cells. Asterisks indicate subthreshold membrane oscillations in the theta-frequency range. Arrow indicates a burst in intracellular voltage. c: Firing rate histogram (bottom) of weakly connected neurons, and membrane potential (top) of one of these neurons. d: Closeup of voltage traces of two strongly connected neurons. We show firing rate scale bars for 50 and 2 spikes/5 ms in b and c, respectively, and voltage scale bars for 10 mV in b and c, and 50 mV in d. e: Network architecture, other parameters: $P(e_s \rightarrow e) = 0.2$, $g_{\text{AMPA}}(e_s \rightarrow e) = 0.005$, $P(e_w \rightarrow e) = 0.1$, $g_{\text{AMPA}}(e_w \rightarrow e) = 0.0011$, $P(i \rightarrow e_s) = 1.0$, $g_{\text{GABA}}(i \rightarrow e_w) = 0.002$, $P(i \rightarrow i) = 1.0$, $g_{\text{GABA}}(i \rightarrow i) = 0.001$, $I_{\text{app},w} = 1.35 \pm 0.05$, $I_{\text{app},s} = 0.27$, $I_{\text{int}} = 1.0$, and $(g_{\text{AD}}, g_{\text{K-AHP}}, g_{\text{Ca}}) = (0.2, 0.8, 10.0)$. Conductances in mS/cm2, currents in μA/cm2. Subscripts s and w indicate, respectively, the parameters of strongly and weakly connected neurons.
terneuron discharge, which in turn led to a reduced pyramidal cell firing rate. The complex oscillation that resulted depended sensitively on the relative strengths of the $e \rightarrow i$ and $i \rightarrow e$ connection. For sufficiently strong excitation, multiple interneuron spikes per cycle were generated. This stopped the pyramidal cell discharge for a longer time, and increased the number of nonrefractory pyramidal neurons. This destabilized the gamma oscillations and could in some circumstances lead to population bursts (not shown).

Network architecture is shown in d. Other parameters: $P(e \rightarrow e) = 0.5, g_{\text{AMPA}}(e \rightarrow e) = 0.004, P(e \rightarrow e_{w1}) = 0.5, g_{\text{AMPA}}(e \rightarrow e_{w1}) = 0.0012, P(e \rightarrow e_{w2}) = 0.5, g_{\text{AMPA}}(e \rightarrow e_{w2}) = 0.0002, P(i \rightarrow e_{w1}) = 1.0, g_{\text{GABA}}(i \rightarrow e_{w1}) = 0.002, P(i \rightarrow i) = 1.0, g_{\text{GABA}}(i \rightarrow i) = 0.001, I_{\text{app,w1}} = 0.0 \pm 0.05, I_{\text{app,w2}} = 1.05 \pm 0.05, I_{\text{app,i}} = 0.135, I_{\text{int}} = 1.0$, and $(g_{\text{M}}, g_{\text{K-AHP}}, g_{\text{Ca}}) = (0.0, 0.0, 6.0)$. Conductances in mS/cm2, currents in μA/cm2. Subscripts s and $w1$, $w2$ indicate, respectively, the parameters of strongly connected neurons, and of weakly connected neurons without and with GABAergic innervation.

Field Potential Oscillations With Gamma, Theta, and Delta Frequency Components

During some simulations, the model network showed highly complex dynamical behavior. An example of network dynamics at medium CCH concentrations with all three frequencies present is shown in Figure 8. This oscillation has not yet been observed in slice preparations. The network in Figure 8c consisted of 100 interneurons and 500 pyramidal cells (250 weakly and 250 strongly
connected, labeled by w and s, respectively). The sequence of events, labeled in Figure 8, was:

I. A burst was generated by the initial conditions.

II. The weak population recovered from the refractive period and oscillated in the gamma-frequency range under the influence of the synchronized interneurons.

III. The weak population activated the strong population that had sufficiently recovered from the refractive period. A delta burst was generated.

IV. The delta burst generated multiple interneuron spikes. The inhibition stopped all activity. The delta burst also desynchronized the interneuron network.

V. When the interneuron network resynchronized, a large part of the weak population was ready to fire. The recurrent excitation drove the network to interspersed gamma and theta activity.

The scenario III–V then repeated itself.

DISCUSSION

Physiologically plausible mechanisms for CCH-δ, CCH-θ, and CCH-γ rhythms (Fellous and Sejnowski, 2000) are suggested by
the simulations reported here. The known cellular and synaptic effects of carbachol can explain the transitions between these different rhythms. The model also makes predictions that can be experimentally tested.

Physiological Substrates of Oscillation Time-Scales

In the network model, the time scale for CCH-δ was set by the decay rate $t_{K_{AHP}}$ of the gating variable q of the calcium-dependent potassium current. The amount of applied current I_{app} determined the value of q at which the spiking threshold would be reached. This led to a relative refractive period between 500–1,500 ms, corresponding to delta oscillations between 0.5–2 Hz. We performed simulations in which we varied $t_{K_{AHP}}$ to determine how the network oscillation frequency f during CCH-δ would be affected (Fig. 9a). The oscillation frequency decays almost linearly with $t_{K_{AHP}}$ up to $t_{K_{AHP}} = 800$ ms.

Other currents exist that have gating variables with a similarly slow dynamics. Recent investigations show that the slowly inactivating outward potassium (I_{KS}) current may underlie bursting in a putative respiratory pacemaker nucleus in the brainstem (Butera et al., 1999a,b). It is not known whether this or other currents are present in hippocampal cells to a large enough extent to contribute to the network behavior during CCH-δ, or to what extent they are

FIGURE 8. Coupling between CCH-γ, CCH-δ, and subthreshold membrane potential oscillations generated complex field potential dynamics. a: Pyramidal cell rastergram (top) and firing rate histogram (bottom) (bin width, 1 ms). Different stages of the oscillation are indicated with Roman numerals (see text). b: Higher resolution rastergrams of (1) interneurons and (3) pyramidal cells, and firing rate histograms of (2) interneurons and (4) strongly connected and (5) weakly coupled pyramidal cells. c: Network architecture, parameters: $P(e_s \rightarrow e_e) = 0.2, g_{AMPA}(e_s \rightarrow e_e) = 0.005, P(e_w \rightarrow e_e) = 0.1, g_{AMPA}(e_w \rightarrow e_e) = 0.0022, P(e_w \rightarrow e_w) = 0.04, g_{AMPA}(e_w \rightarrow e_w) = 0.0111, P(e_w \rightarrow i) = 0.2, g_{AMPA}(e_w \rightarrow i) = 0.001, P(i \rightarrow e_w) = 1.0, g_{GABA}(i \rightarrow e_w) = 0.002, P(i \rightarrow i) = 1.0, g_{GABA}(i \rightarrow i) = 0.001, I_{app,w} = 1.35 \pm 0.05, I_{app,s} = 0.27, I_{int} = 0.9, $ and $(g_{M}, g_{K-AHP}, g_{Ca}) = (0.2, 0.8, 10.0)$. Conductances in mS/cm², currents in μA/cm². Subscripts s and w indicate the parameters of strongly and weakly connected neurons, respectively.
modulated by carbachol. The distinguishing feature between I_{K-AHP} and I_{KS} is the dependence on calcium entry into the cell, which would be amenable to experimental verification, e.g., using calcium imaging (Denk et al., 1994; Peterlin et al., 2000).

The time scale for CCH-θ was determined by a subthreshold intrinsic membrane potential oscillation. Persistent-like sodium (I_{NaO}) and potassium (I_{KO}) currents were added to the model, and their kinetics were tuned using phase-plane analysis (White et al., 1995), such that the currents were active slightly above the resting membrane potential and resonated between 5–10 Hz, in agreement with experimental results presented here and elsewhere (Leung and Yim, 1991). The frequency of membrane potential oscillations is set by our choice of parameters for I_{KO} and I_{NaO}. Any change in these parameters could also change the frequency (not shown). However, the firing rate of the neuron also depends on the amount of driving current I_{app} (or depolarization). In Figure 9b we show how the network oscillation frequency f varies with I_{app}. The network only oscillates above a certain minimum frequency, set by the subthreshold mode, approximately equal to 5 Hz for the present parameter set. We determined the standard deviation Δ of the spike times of all neurons in one cycle, averaged over all cycles. The coherence or synchronization of the oscillation depends inversely on Δ. The larger Δ is, the less effective the resulting synaptic drive is in synchronizing other neurons. We find that oscillation is only coherent in a particular current range, so that the observed frequencies are essentially restricted to the theta range. Increasing the strength of the recurrent excitatory unitary conductance reduces the width of this coherent current range. In order to test the model prediction, one could depolarize pyramidal cells through the activation of metabotropic glutamate receptors or any other means that would uniformly depolarize neurons.

Resonances and subthreshold oscillations have been found in a variety of different neurons (see below). In most cases, the underlying currents have not been identified with certainty. In the present work, the consequences of the presence of subthreshold membrane potential oscillations on the network behavior were explored through simulations.

Gamma oscillations have attracted experimental and theoretical attention (Wang and Buzsáki, 1996; White et al., 1998a; Tiesinga and José, 2000a; Traub et al., 1996b). Fast GABAergic synapses between inhibitory interneurons are the main generator of this rhythm in hippocampal slices (Whittington et al., 1995). The same mechanism may be responsible for CCH-γ, as suggested by the experimental results of Fisahn et al. (1998). It was shown in previous studies (Traub et al., 1996a; Chow et al., 1998) that the oscillation frequency during γ-I is determined by the decay constant of the mutual inhibition $t_{GABA,I\rightarrow r}$. In γ-II it is set by the time constant of the inhibitory synapse on the pyramidal cells. The network frequency f depends inversely on $t_{GABA,I\rightarrow r}$ (Fig. 9c). Although $t_{GABA,I\rightarrow r}$ does not affect the oscillation frequency directly, it still is an important physiological variable. In order for the interneuron network to synchronize to the phasic excitatory input, $t_{GABA,I\rightarrow r}$ and the interneuron driving current have to be chosen carefully. In simulations where $t_{GABA,I\rightarrow r}$ was kept fixed at 10 ms while $t_{GABA,I\rightarrow r}$ was increased, the oscillation became less and less coherent. For that reason we have set $t_{GABA,I\rightarrow r} = t_{GABA,I\rightarrow r}$, in Figure 9c. Our model predictions can be tested by modifying GABAergic time constants, using barbiturates and benzodiazepines (Whittington et al., 1995; Traub et al., 1996a).
Physiological Requirements

The presence of asynchronous CCH-\(\theta\), CCH-\(\delta\), CCH-\(\theta\), and CCH-\(\gamma\), together with the known effects of carbachol on the intrinsic and synaptic properties of neurons, imposed a set of constraints on models. The key features underlying each type of oscillation are summarized below.

Asynchronous CCH-\(\theta\) was obtained when there was enough depolarization to activate the subthreshold membrane oscillations, consistent with in vitro and in vivo data (Bland and Colom, 1993; Fellous and Sejnowski, 2000). Some source of stochasticity may be required to generate action potentials riding on top of the depolarization. Similar results are found with either intrinsic noise or random trains of incoming EPSPs. The incoherent state is destabilized by a high level of spontaneous activity. The maximum amount of spontaneous activity is therefore an important physiological variable. Its value for a given network depends on the size of the unitary excitatory conductance, and the probability of making a synaptic connection.

CCH-\(\theta\) was obtained when the low spontaneous firing rate state was "unstable" and the unitary conductance and connectivity were large enough to create a runaway process of recruitment of pyramidal cells via recurrent excitation. The resulting high-activity-state population burst can be terminated by an intrinsic mechanism, or a short-term synaptic modification process (Koch, 1999). In the simulations, \(g_{K_{AHP}}\) was large enough compared to the recurrent excitation to terminate the burst. The role of \(I_{K_{AHP}}\) can be investigated experimentally by blocking it with a selective blocker such as ampin. Our model then predicts an asynchronous high-activity state.

Coherent CCH-\(\theta\) occurred when a subgroup of neurons was depolarized enough to spike in the theta-frequency range. Furthermore, the adaptation currents, \(g_{K_{AHP}}\), in combination with the calcium current \(g_{Ca}\) and \(g_{M}\) were reduced under the influence of carbachol, so that they did not terminate the spiking. In our experiments we found pyramidal cells that fired spikes each theta cycle during CCH-\(\theta\) activity in the field potential, and cells that skipped cycles. We assume that during CCH-\(\theta\) both types of single-cell activity were present. We did not find this mix of single-cell activity in networks with a homogeneous distribution of synaptic strength and intrinsic properties. Hence, to reproduce this network state, we assumed that the amount of depolarization of the neurons was different for the two behaviors. This difference could either arise from differences in intrinsic properties, or from differences in the amount of excitatory input the neuron received. We explored the consequences of the latter assumption in model simulations, though we do not exclude the former assumption. We approximated the heterogeneity in the synaptic coupling by a bimodal distribution, creating two subpopulations, one weakly coupled and one strongly coupled. How did this heterogeneity come about? One possibility is that a high concentration of carbachol induces heterogeneity directly or via synaptic plasticity. There indeed is evidence that CCH differentially modulates the strength of synapses in different layers of CA1 onto the same CA1 pyramidal cell (Hasselmo and Schnell, 1994). However, at present, there is no indication that carbachol would differentially affect the strength of the recurrent excitatory synapses in CA3.

Another likely possibility is that the slice is heterogeneous from the start. We have performed simulations of asynchronous CCH-\(\theta\) and CCH-\(\delta\) in the same heterogenous network as for the synchronous CCH-\(\theta\) in Figure 4. We find the same behavior as before. Further experiments are needed to determine what mechanism underlies the heterogeneity in CA3.

There was earlier experimental work on CCH-\(\theta\) in CA3 (Williams and Kauer, 1997; Fischer et al., 1999). In Williams and Kauer (1997), pyramidal cells fire bursts on each theta cycle. This is similar to the oscillations modeled in Traub et al. (1992) and the activity of the strongly coupled network in the simulations (though the model neurons fire single spikes). On the other hand, Fischer et al. (1999) reported that pyramidal cells fire synchronously but only on very few theta cycles. This behavior is similar to that of our weakly coupled network. In contrast, Fisahn et al. (1998) found only CCH-\(\gamma\) that is sometimes modulated at \(\theta\)-frequencies. These authors suggest that differences between these experimental results are due to "slight differences in the preparation (horizontal vs. transverse slices) or external medium (for example, potassium concentration)" (Fisahn et al., 1998).

CCH-\(\gamma\) depended on activating networks of interneurons via carbachol-induced depolarization. The number of active interneurons was large enough and had a high enough connection probability so that they synchronized. For the \(\gamma\)-I mechanism to be effective, each interneuron needs to receive at least 60 synapses from other interneurons (Wang and Buzsáki, 1996). A group of pyramidal cells should also be sufficiently depolarized by carbachol to fire during the troughs of the synchronized inhibition from the interneurons.

We described two mechanisms for generating CCH-\(\gamma\)-I and \(\gamma\)-II. An important question is whether both occur at the same time and interact, or whether one would be dominant during CCH-\(\gamma\). Experiments (Fisahn et al., 1998) provide two important constraints on the mechanism: the gamma oscillations in the field potentials are abolished when fast inhibition, \(GABA_A\), or AMPA synapses are blocked. The first constraint is satisfied by both mechanisms: by blocking \(GABA_A\) synapses there is no inhibitory synaptic drive that prevents pyramidal neurons from firing out of phase. The second constraint is also satisfied by \(\gamma\)-II. When there is no AMPAergic excitatory drive to the interneurons, they will fire at low frequencies, or not fire at all. In either case there will not be a coherent inhibitory drive at gamma frequencies. For \(\gamma\)-I the case is more subtle. In the absence of recurrent excitation, the pyramidal cells may not be depolarized enough to fire in the presence of inhibition. As a result, the oscillations in the field potential would disappear. However, one should still be able to measure subthreshold synchronized IPSPs in the pyramidal-cell membrane potential (Whittington et al., 1995). For that reason we currently favor the hypothesis that \(\gamma\)-II dominates during CCH-\(\gamma\). There are two manipulations that would yield further quantitative differences between \(\gamma\)-I and \(\gamma\)-II. The pyramidal cells should fire on more cycles during \(\gamma\)-I for increasing depolarization, but the oscillation frequency should not increase. During \(\gamma\)-II, however, the excitatory drive to the interneurons would also increase, hence changing...
the frequency. As mentioned before, the frequency of the γ-I scales with the time constant of mutual inhibition ($t_{GABA,\gamma-I}$), whereas that of γ-II varies with the time constant ($t_{GABA,\gamma-II}$) of inhibition onto pyramidal cells. Therefore, one could distinguish between γ-I and γ-II, if one could independently modify the characteristics of the inhibitory synapses on interneurons and pyramidal cells.

Transition Between Different Frequency Ranges Under the Control of Carbachol

Cholinergic modulation can affect the type of oscillation that is stable. We show here how the known physiological effects of carbachol can switch the network oscillations from asynchronous CCH-\(\theta\) to CCH-\(\delta\), and from CCH-\(\delta\) to CCH-\(\theta\).

Low concentrations of carbachol (1–4 \(\mu\)M CCH) depolarize pyramidal cells (Madison et al., 1987; Fellous and Sejnowski, 2000), activate the subthreshold membrane oscillations, and sometimes induce spikes riding on the depolarized part of the oscillations. Higher carbachol concentrations (4–13 \(\mu\)M CCH) increase the spontaneous firing rate in vitro (via reduction of g_M and $g_{K_{\text{AHP}}}$ and additional depolarization), destabilize the low firing rate state, and induce CCH-\(\delta\) bursts. Carbachol increases the spontaneous firing rate, but reduces the average unitary excitatory conductance. The increase in firing rate therefore dominates the effect of reduced EPSP size. The transition between incoherent CCH-\(\theta\) and CCH-\(\delta\) can be induced by gradually reducing g_M (Fig. 10a). This transition is reversible: gradually increasing g_M turns CCH-\(\delta\) back into asynchronous CCH-\(\theta\).

At higher carbachol concentrations (13–40 \(\mu\)M CCH), the last remnants of adaption currents are blocked and synchronized bursts in CCH-\(\delta\) become unstable. Simulations of these conditions typ-
ically display either CCH-δ or an asynchronous state with high firing rates. In Figure 11a, we induce the transition from CCH-δ to CCH-θ by gradually changing the parameter values of the pyramidal cells from those at medium to those at high carbachol concentration (Table 1) and gradually reducing the synaptic strength by 50%. The transition is reversible, as shown in Fig. 11b. In the model, the presence of CCH-γ is independent from CCH-δ and CCH-θ, consistent with experiments (Fisahn et al., 1998; Fellous and Sejnowski, 2000). However, it only occurs when the carbachol concentration is high enough to activate many interneurons and pyramidal cells. The population of pyramidal cells that participate in CCH-γ may overlap to a certain extent with those that participate in CCH-δ and CCH-θ. This is also consistent with experimental results that show that the amplitude and frequency of theta and gamma oscillations are correlated (Bragin et al., 1995).

Comparison to Previous Work, and Future Work

The explanations proposed here for the different carbachol-induced rhythms are testable. The results of the model also suggest new avenues for experiments and theory. Here we discuss previous work and possible extensions.

Effect of carbachol-induced changes

The effects of acetylcholine on the intrinsic properties of pyramidal cells and interneurons are wide-ranging and only partly un-

![Comparison to Previous Work, and Future Work](image-url)
understood. Carbachol, a muscarinic agonist, reduces $I_{K, AHP}$ (Cole and Nicoll, 1983, 1984a,b), I_d (Nakajima et al., 1986), I_M (Brown and Adams, 1980; Halliwell and Adams, 1982), calcium currents (Gahwiler and Brown, 1987), and a resting potassium current (Madison et al., 1987; Benson et al., 1988). Dose-response curves for these effects have been published or can be derived from published experimental results. Menschik and Finkel (1998, 1999) implemented the dose-response curves for carbachol in detailed biophysical models. They found that increasing CCH concentration turns an intrinsically bursting CA3 pyramidal cell into a regular spiking one. However, the precise mechanism for the CCH-induced transition from bursting to spiking is still unknown. Migliore et al. (1995) suggest that increasing I_d leads to regular spiking, whereas Menschik and Finkel (1998, 1999) show instead that decreasing I_d is sufficient to go from bursting to doublet spiking. Furthermore, increasing the membrane potential or increasing driving current alone can also induce this transition (Pin-sky and Rinzel, 1994; Traub et al., 1991). This is consistent with the fact that CCH causes a depolarization. In addition, changes in the relative electronic length of the soma and dendrite can also induce a similar transition (Mainen and Sejnowski, 1994). Clearly the detailed cellular effects of carbachol on neuronal dynamics require further theoretical and experimental study.

How do these currents switch the network from one frequency range to another? To explore this issue, the carbachol spectrum was divided into three regimes, and only one or two currents were varied during each simulation run. The other currents were fixed in a physiologically realistic range, consistent with experimental data (see Methods). This led to hypotheses about the functional relevance of the $I_{K, AHP}$ and I_M current in generating transitions.

We also constructed a subthreshold oscillation mode and added it to our model neuron. Unlike previous models for subthreshold oscillations (White et al., 1998b), it included internal calcium dynamics and a slow calcium-dependent AHP. However, we did not address the issue of the currents responsible for this subthresh-

Network oscillation mechanisms

Synchronized oscillations should be robust against the imperfections present in real neural circuitry including initial conditions, neuronal heterogeneity, presence of intrinsic and synaptic noise, and sparse and stochastic connectivity. In the model, these issues were examined for each of the oscillations, but not for all the frequency ranges at the same time or the transitions between them.

The robustness of synchronization by mutual inhibition, γ-I, has been studied in some detail (Wang and Buzsáki, 1996; Traub et al., 1996a; White et al., 1998a; Tiesinga and Jos é, 2000a). In principle, two types of synchronization can result: strong synchroniza-

There are other mechanisms that in principle could give rise to theta oscillations. Recently, subthreshold membrane potential oscillations were found in interneurons near the border between the stratum radiatum and stratum lacunosum-moleculare of the rat hippocampus (Chapman and Lacaille, 1999a). These neurons were able to pace CA1 pyramidal cells at theta frequencies (Chap-
man and Lacaille, 1999b). Two distinct GABA_{A} IPSPs have been found, a fast one and slow one (Banks et al., 1998). The fast IPSP is important in gamma rhythms, whereas the slow IPSP has a time-scale similar to that of theta rhythms and could, therefore, be involved in theta oscillations (White et al., 2000). In our preparation CCH-0 persists in CA3 in the absence of GABAergic inhibition, indicating that these alternate mechanisms may not be the most important ones for in vitro CCH oscillations.

Synchronous population bursts have been observed in many models, ranging from abstract (Phan et al., 1998) to more biophysical models (Traub and Miles, 1991; Grobler et al., 1998; Barna et al., 1998; Butera et al., 1999b). The basic mechanism is the same as in our model. The spikes or bursts of a few pyramidal cells recruit other cells in a runaway process; the recruitment is then terminated by slow intrinsic currents, synaptic depression, or refractory periods. Little is known about the underlying quantitative intrinsic and network properties. However, a number of basic questions can be addressed by the analysis of long trains of population bursts. A burst can be initiated by a neuron, or group of neurons that always fire earlier than the rest, or are simply more exciting. In that case the interval between consecutive bursts is constant. On the other hand, if a population burst is initiated by noise-induced spiking, then the interburst intervals are stochastic. In that case the noise level and the required number of neurons for burst initiation can be determined from the distribution of interburst intervals. The initial increase of activity during the population bursts yields the probability of successful propagation of presynaptic activity, given anatomical estimates of single-cell connectivity; and the duration of the population burst yields information about the size and connectivity of the pool of neurons that can be recruited by a population burst. A network state where all three oscillations were present was induced by the presence of inhibition. Interestingly, Williams and Kauer (1997) reported that theta oscillations occurred in regularly spaced bursts (about 20 s). However, blocking fast inhibition abolished the regular interval between bursts, while the theta rhythm remained. It remains to be determined whether the results of our simulations are related to their findings.

Carbachol-induced functional changes and oscillatory regimes

The functional implications of CCH-induced cellular changes are uncertain. Hasselmo (1995) and Wallenstein and Hasselmo (1997a) proposed that CCH can act as a switch between recall dynamics (for low CCH levels) to learning dynamics (for high CCH levels). For low CCH levels, the attractors of the recurrent network dominate. In contrast, higher CCH levels suppress the feedback excitation in CA3 and thus prevents the previous learned network from dominating the network dynamics. Menschik and Finkel (1998, 1999) suggest that reducing CCH inhibits recall. Reducing CCH levels increases the length of the gamma cycle, reducing the number of cycles available during one theta cycle to relax to an attractor state, and concomitantly the recall becomes less effective. We have shown that in vitro, CCH application can cause transitions between oscillations in different frequency ranges. Similar transitions occur in vivo, though less is known about the mechanisms. What are the consequences of these transitions for network properties, such as the ability to store inputs in attractor states and transmit information? Most of these issues have not yet been addressed in large-scale simulations. However, the results presented here serve as the basis for future experimental and model investigations into the nature of hippocampal rhythms.

Acknowledgments

Some of the numerical calculations were performed at the High Performance Computer Center at Northeastern University. The work was supported by the Sloan Center for Theoretical Neurobiology at the Salk Institute, and the Center for Interdisciplinary Research on Complex Systems at Northeastern University. We thank Shuang Zhang and John Lisman for their contributions in the preliminary stages of this work. We also thank the two anonymous referees for their suggestions, which have helped improve our paper significantly.
Fellous J-M, Sejnowski T. 2000. Cholinergic induction of oscillations in the hippocampal slice in the slow (0.5–2 Hz), theta (5–12 Hz), and gamma (35–70 Hz) bands. Hippocampus 10:187–197.

APPENDIX

Pyramidal Cell Model

The Pinsky-Rinzel model (Pinsky and Rinzel, 1994) consists of a somatic compartment with membrane potential \(V_s \), and a dendritic compartment with membrane potential \(V_d \). The membrane potentials satisfy the following dynamics:

\[
\begin{align*}
C_m \frac{dV_s}{dt} & = -g_s(V_s - E_s) - I_{Na} - I_{K,DR} + \frac{1}{2} g_s(V_d - V_s), \\
C_m \frac{dV_d}{dt} & = -g_s(V_d - E_s) - I_{Ca} - I_{K,APB} - I_{K,C} - I_{M} \\
& - I_{NaO} - I_{KO} - I_{syn,e} + \frac{1}{2} g_s(V_s - V_d) + I_{app}
\end{align*}
\]

with the currents given by

- \(I_{Na} \) is the sodium current,
- \(I_{K,DR} \) is the potassium current,
- \(I_{Ca} \) is the calcium current,
- \(I_{K,APB} \) is the potassium current associated with APB receptors,
- \(I_{K,C} \) is the potassium current associated with Ca channels,
- \(I_{M} \) is the leek current,
- \(I_{NaO} \) is the sodium outward rectifier current,
- \(I_{KO} \) is the potassium outward rectifier current,
- \(I_{syn,e} \) is the synaptic excitatory current,
- \(I_{app} \) is the applied current.

whereas the kinetic variables satisfied the following first-order equation

$$\frac{dx}{dt} = \phi(\alpha_x(1 - x) - \beta_x x).$$

The synaptic current I_{syn} is defined below. The calcium concentration C_a satisfied the following first-order equation

$$\frac{dC_a}{dt} = -0.13I_{Ca} - 0.075C_a$$

whereas the kinetic variables satisfied the following first-order kinetics

$$\frac{dx}{dt} = \phi(\alpha_x(1 - x) - \beta_x x).$$

The kinetic variable I_{syn} is defined below. The calcium concentration C_a satisfied the following first-order equation

$$\frac{dC_a}{dt} = -0.13I_{Ca} - 0.075C_a$$

whereas the kinetic variables satisfied the following first-order kinetics

$$\frac{dx}{dt} = \phi(\alpha_x(1 - x) - \beta_x x).$$

The standard set of values for the interneuron conductances g_{NaO} and g_{Ca} consisted of a single compartment, with the following equation for the membrane potential

$$C_m \frac{dV}{dt} = -I_{Na} - I_K - I_{\text{app}} + I_{in}$$

with the currents given by

$$I_{Na} = g_{NaO}m^2(V_b)(V - E_{Na}),$$
$$I_K = g_{Ca}(V - E_K),$$
$$I_{\text{app}} = \text{Injected current} I_{app} = 0.0.$$ Capacitance $C_m = 3 \mu\text{F/cm}^2$.

Hippocampal Interneuron

The Wang-Buzsáki model neuron (Wang and Buzsáki, 1996) consisted of a single compartment, with the following equation for the membrane potential

$$C_m \frac{dV}{dt} = -I_{Na} - I_K - I_{\text{app}} + I_{in}$$

with the currents given by

$$I_{Na} = g_{NaO}m^2(V_b)(V - E_{Na}),$$
$$I_K = g_{Ca}(V - E_K).$$

The kinetic variables h and n satisfied Eq. 3 as above. The rate constants were (Wang and Buzsáki, 1996):

$$\alpha_h = \frac{0.128 \exp((-43 - V)/18)}{1 + \exp((-20 - V)/5)},$$
$$\beta_h = \frac{4}{1 + \exp((-20 - V)/5)},$$
$$\alpha_n = \frac{0.016 \exp((-52.7)/23)}{1 + \exp(0.072(V_d - 5))},$$
$$\beta_n = \frac{0.02 \exp((V_d + 8.9)/5)}{1 + \exp((-52.7)/18.8)},$$
$$\alpha_m = \frac{0.01 \min(C/500, 1)}{1 + \exp((-V_d + 63)/10)},$$
$$\beta_m = \frac{1}{1 + \exp((-V_d + 63)/10)},$$
$$\alpha_x = \frac{1}{1 + \exp((-V_d)/5)},$$
$$\beta_x = \frac{1}{1 + \exp((-V_d)/5)}.$$
Synaptic Connections

The synaptic currents $I_{syn,e}$ in Eq. 1 and $I_{syn,i}$ in Eq. 4 were given by the following expression:

$$I_{syn,e} = g_{AMPA}(e \rightarrow e)(V - E_{AMPA}) \sum_j c_{kj}^{-e} s_j^e + g_{GABA}(i \rightarrow e) \times (V - E_{GABA}) \sum_j c_{kj}^{-i} s_j^i$$

$$I_{syn,i} = g_{AMPA}(e \rightarrow i)(V - E_{AMPA}) \sum_j c_{kj}^{-i} s_j^e + g_{GABA}(i \rightarrow i) \times (V - E_{GABA}) \sum_j c_{kj}^{-i} s_j^i$$

Here V is the membrane potential of the postsynaptic neuron with index k (Eqs. 1 and 4). The pyramidal cells are labeled by e, and the interneurons by i. s_j^e is the kinetic variable labeled by the index j of the presynaptic neuron, $c_{kj}^{-e} = 1$ if there was a connection between presynaptic neuron j and postsynaptic neuron k, and zero otherwise. The connectivity matrix c_{kj}^{-i} was calculated at the start of the run. For all possible connections $j \rightarrow k$ we drew a random number ξ that was uniformly distributed between 0 and 1, then $c_{kj}^{-e} = 1$ if $\xi \leq P(x \rightarrow y)$, and zero otherwise. The connection matrices were determined for all four combinations of $x = i, e$, and $y = i, e$. For certain simulation runs we divided the pyramidal cell population into two groups, e_w and e_e or three groups, e_r, e_w_1, and e_w_2. The same formalism also applied to the synaptic connections between these groups.

The synaptic gating variable s for the AMPA synapses satisfied (with the neuron index suppressed):

$$\frac{ds_e}{dt} = H(V_{pre} + 40)(1 - s_e) - \beta_s s_e$$

Here H is the Heaviside function, $H(x) = 1, x > 0$, and $H(x) = 0, x < 0$, $\beta_s = 0.5 \text{ ms}^{-1}$ is the decay rate.

The synaptic gating variable s_i for the GABA_A synapse obeyed the following equation (Perkel et al., 1981; Wang and Rinzel, 1993; Wang and Buzsáki, 1996):

$$\frac{ds_i}{dt} = \alpha_i F(V_{pre})(1 - s_i) - \beta_i s_i$$

with $\alpha_i = 12 \text{ ms}^{-1}$, $\beta_i = 1/t_{GABA_A \rightarrow e}$ for mutual inhibition, and $\beta_i = 1/t_{GABA_A \rightarrow i}$ for the inhibitory projection to pyramidal cells, $F(V_{pre}) = 1/(\exp(-V_{pre}/2) + 1)$, and V_{pre} is the presynaptic potential. The function $F(V_{pre})$ was chosen such that when the presynaptic neuron fired, $V_{pre} > 0$, the synaptic channel opened. We took $t_{GABA_A \rightarrow i} = t_{GABA_A \rightarrow e} = 10 \text{ ms}$, except in Figure 9c. We used a reversal potential of $E_{GABA} = -75 \text{ mV}$ for GABA_A synapses (Buhl et al., 1995), and $E_{AMPA} = 0 \text{ mV}$ for AMPA synapses.