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Neurons in the brain communicate via trains of all-or-none electric events known as spikes. How the brain
encodes information using spikes—the neural code—remains elusive. Here the robustness against noise of
stimulus-induced neural spike trains is studied in terms of attractors and bifurcations. The dynamics of model
neurons converges after a transient onto an attractor yielding a reproducible sequence of spike times. At a
bifurcation point the spike times on the attractor change discontinuously when a parameter is varied. Reliabil-
ity, the stability of the attractor against noise, is reduced when the neuron operates close to a bifurcation point.
We determined using analytical spike-time maps the attractor and bifurcation structure of an integrate-and-fire
model neuron driven by a periodic or a quasiperiodic piecewise constant current and investigated the stability
of attractors against noise. The integrate-and-fire model neuron became mode locked to the periodic current
with a rational winding number p/g and produced p spikes per g cycles. There were g attractors. p:g mode-
locking regions formed Arnold tongues. In the model, reliability was the highest during 1:1 mode locking when
there was only one attractor, as was also observed in recent experiments. The quasiperiodically driven neuron
mode locked to either one of the two drive periods, or to a linear combination of both of them. Mode-locking
regions were organized in Amold tongues and reliability was again highest when there was only one attractor.
These results show that neuronal reliability in response to the rhythmic drive generated by synchronized

networks of neurons is profoundly influenced by the location of the Arnold tongues in parameter space.
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I. INTRODUCTION

Although spike trains in the cerebral cortex are highly
variable (for a review see [1]), neurons can fire with high
temporal precision and reliability in vitro [2—8]. Precision is
defined here as the inverse of the temporal jitter in the spike
time and reliability as the reproducibility of spikes across
different presentations of the same stimulus (trials).
Information-theoretical analyses of the neuronal spike trains
in the lateral geniculate nucleus indicate that precise spike
times contain more information about the stimulus than fir-
ing rate alone [9,10]. It is unknown how these precise spike
times are used in the cortex [1,11-15].

If a feature is present in the spike-train response to one
stimulus across multiple trials it can form the basis of a neu-
ronal code. Spike-time reliability is a measure for the repro-
ducibility of individual spike times across trials [16]. Neu-
rons produce a reliable sequence of spike times in response
to some inputs and respond unreliably to others. In the in
vitro slice, neurons fire reliably when injected with a random
current containing high frequency components, but they fire
unreliably when driven with a low pass or constant current
[16-22]. Sinusoidally driven neurons show resonances in the
reliability as a function of drive frequency [23-25].

Recently, we proposed a framework for understanding the
reliability of neuronal discharge in terms of two mathemati-
cal concepts, attractor and bifurcation [26]. We briefly re-
view these previous results to set the stage for the issues
addressed in this paper. Examples of attractors of an
integrate-and-fire (IAF) model neuron are shown in Fig. 1.
The model neuron was driven by a quasiperiodic current
consisting of the sum of two sinusoids with an irrational ratio
between their frequencies. There were two attractors. From
one set of initial voltages, the voltage converged to the first
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attractor [Fig. 1(Aa)] and from a different set it converged to
the second attractor [Fig. 1(Ab)]. Each attractor corre-
sponded to a distinct sequence of spike times [Fig. 1(Ac)]. In
the presence of weak noise the neuron also converged to the
attractor, but the voltage fluctuated around the zero noise
value. When the neuron remained on the attractor it produced
the same sequence of spike times on each trial and the spike-
time variance across trials was proportional to the noise vari-
ance [26]. The driving stimulus can be parametrized in terms
of, for instance, the amplitude, the frequency, and the mean.
A bifurcation point is a stimulus parameter value at which
the attractor voltage and output spike train change discon-
tinuously when the parameter is varied by a small amount.
Noise sensitivity of the attractor (hence reliability) was con-
nected to the presence of bifurcations. For parameters close
to a bifurcation point, noise can induce a deviation from the
attractor so that different spike trains are obtained across
different trials, reducing reliability. Two possible deviations
are shown in Fig. 1(Bb). Two spike trains were considered
different when at least one spike time in the first spike train
differed by more than the typical jitter from all the spike
times in the second spike train [27] (see also Sec. V C). The
above framework makes it possible to assess the reliability
for many different noise strengths by varying stimulus pa-
rameters and determining bifurcation points.

The reliability of the neuronal spike-train response to a
random fluctuating current is different compared with the
reliability in response to a periodic driving current. These
differences are related to the bifurcation structure: mode
locking to periodic drives leads to Arnold tongues that are
absent for a random fluctuating drive. A quasiperiodic drive
is not periodic but nonetheless has long time correlations. It
is intermediate between a periodic and random fluctuating
drive. Here we compare the bifurcation structure of an
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FIG. 1. Attractors of neurons driven by a quasiperiodic current.
(A) The voltage was plotted as a function of time starting from
different initial voltage values V;,;,. When the voltage reaches 1, a
spike is emitted and the voltage is reset to 0. The dynamics con-
verged to either of two different attractors, (a) and (b), respectively.
The attractors remained distinct for long times. However, we did
not establish whether this holds for arbitrarily long times. (c) The
corresponding spike times (x ordinate) as a function of V,,;, (¥
ordinate). The two attractors are labeled in the graph by attrl and
attr2, respectively. Arrows indicate one of the two boundaries be-
tween the basins of attraction. (B) Dynamics in the presence of
noise. (a) 10 voltage traces and (b) 1000 spike trains (trials) each
starting at V;,;,= 0 but with a different realization of the noise. The
neuron could remain on one attractor, or (1) deviate from it during
a few spike times, or (2) make a transition to the other attractor.
Spike trains were ordered on the value of the first spike time after
t=15. Arrows in (a) indicate the voltage curves corresponding to
the two possible spike times in (b,1).

integrate-and-fire model neuron driven by a periodic piece-
wise constant current with that of a neuron driven by a qua-
siperiodic piecewise constant current. The numerical calcu-
lation was speeded up significantly since it was possible to
derive an analytical spike-time map representing the dynam-
ics of neurons driven by piecewise constant currents. We find
for both periodic and quasiperiodic drives that (1) mode-
locking regions are organized in Arnold tongues and (2) re-
liability is highest when there is only one attractor.
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II. METHODS
A. Simulation algorithm

The membrane potential V of an integrate-and-fire model
neuron driven by a fluctuating current satisfied [28],

dv
E:—V+I+f(t)+§(t), (1

where I was a time-independent driving current, f(z) was a
fluctuating current, and £ was a white noise current, with
zero mean and variance D, that represented the effects of
intrinsic noise. When the voltage V reached threshold,
V(t7)=1, a spike was emitted and the voltage was reset to
zero, V(t1)=0. Here ¢~ was the limit to z from below, and
t* was the limit to ¢ from above. The first term on the right
hand side of Eq. (1) represented the decay of the voltage to
the resting membrane potential, V=0. Dimensionless units
were used, one voltage unit corresponded to the distance
between the resting membrane potential and action potential
threshold, =20 mV [28]; one time unit corresponded to the
membrane time constant, approximately equal to 10-40 ms
[28]. With the membrane capacitance taken equal to
1 wF/cm?, a driving current equal to 1 corresponds to
0.5-2 pA/cm?,

A periodic or quasiperiodic piecewise constant current
f(t) was injected into the neuron. The periodic current was
equal to f(1)=—A when 0<mod(:,T)<T/2 and f(t)=A
otherwise. Here A was the amplitude of the drive, T was the
period, and the frequency was w=2m/T. The quasiperiodic
current consisted of the sum of two periodic currents, with
periods T and T, and a relative phase A¢, f(1)=AI,(¢
+A¢@)+A,I,(¢). Here A and A, were the drive amplitudes
and w,=27/T;, w,=27/T, were the drive frequencies.
I,(t)=—1 when O0<mod(z,T,)<T,/2 and 1, otherwise.
I,(t)=—1 when 0<mod(#,T,)<T,/2 and 1, otherwise. In
the simulations presented here A ¢=0.

The voltage of the integrate-and-fire model neuron was
integrated analytically [Eq. (1)]. When the last spike oc-
curred at ¢, V(¢;)=0, the voltage at a later time, but be-
fore the next spike, was

V=10 -e" )+ [ as T(5) + €001, @

The next spike time ¢, was the smallest solution of the equa-
tion V(t,|t)=1.

The equation for periodic and quasiperiodic piecewise
constant driving current was analytically inverted to yield a
spike-time map M. The map determined the next spike time
t,+1 as a function of the previous spike time ¢,, f,4;
=M(t,). Details of the calculation are given in the Appen-
dix. Simulations based on iteration of the spike-time map
were up to two orders of magnitude faster than direct inte-
gration and yielded spike times that were accurate to ma-
chine precision for zero noise and accurate to the square root
of machine precision for simulations with noise. The accu-
racy of the spike-time map for zero noise was checked
against results from direct integration using fourth-order
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Runge-Kutta [29]. Threshold crossings (the spike times)
were determined by linear interpolation. Note that for lin-
early interpolated spike times a second-order Runge-Kutta
would also have been adequate [30].

B. Spike-time statistics

The map ¢, ,=M(t,) was iterated starting from the ini-
tial spike time #(=t,,;, to obtain 2000-10 000 spike times. In
most cases we took ¢;,;,=0. The first 20% of the spike times
were discarded as a transient, the remaining N
=1600-8000 were used for further analysis as described be-
low. The periodically driven noiseless integrate-and-fire neu-
ron converged after a transient onto a periodic attractor. The
mean interspike interval (ISI) was,

| Mo

N=1 Zl Tn (3)

T=

where N, was the number of spikes in the simulation run,
and 7,=t,,1—1t,. The winding number, defined as the av-
erage number of spikes per cycle, (N)=T/r, was approxi-
mately equal to a fraction p/q, here T was the period.

The neuron emitted p spikes in g cycles, and the spike
train repeated itself after g cycles. The spike phase of spike
time ¢, was ,=mod(¢,,,T)/T. On the attractor the ¢, time
series was periodic with period p, ¥ +,=¥pmiop="""
=¥, . Hence the neuron spiked only at p different phases,

Ng/p—1

p
\szﬁ‘; n§=:0 ¢m+np9 (4)

for m=1,...,p. In the presence of noise there was spike-
phase jitter, the standard deviation of the spike phase was

14
0P = /_1_ > (092,
P m=1
p Ngip—1
(0P=1 2 Vniny= Vo 6)
s n=0

In Egs. (4) and (5) it was assumed that the number of spikes
N is a multiple of p, during the calculation the appropriate
changes were made when this was not the case. Note that p
needed to be estimated from (N) prior to calculating o).

For a quasiperiodic drive, there were two periods. The
spike phase with respect to 7| was z//,‘l=mod(t,l ,T{)/T; and
with respect to T, it was l//i= mod(t, ,T,)/T,. The mean and
variance of the phase were defined in analogy to Egs. (4)
and (5).

C. Arnold tongues

Regions in parameter space with the same winding
number (N)=p/q formed Arnold tongues. The Arnold-
tongue structure was determined for a number of parameter
combinations, specifically, (w,A), (A,,I), and (w,D).
A two-dimensional grid (x;,y;) was constructed, here i
=1,...,N; j=1,...,Ny; and x and y were
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w, A, A,, I, or D. The grid was specified by the starting
point x,,;,, end point x,,,,, and the number of grid points
N, . The same notation holds for y and is not repeated here
and in what follows. We either used a linear grid,

Xi=Xpint (xmax_xmin)’
N.—1

i=1,...,N,, or a logarithmic grid,
i—
X;=CXp lx.min+ 'I_Vx—_l—(lx,max—lx,min) >
here i=1,...,Ny, L, pin=Inxp,, and [, ., =1nx,,, .

The Arnold-tongue structure was determined based on the
winding number calculated from 1600-8000 spike times.
Grid points (w;,A;) or (A,;,l;) with a winding number sat-
isfying [(N)— p/q1< 1/400 were considered part of the p:g
Arnold tongue. Alternatively, for zero noise, Arnold Tongues
could also be determined by simultaneously solving a large
set of algebraic equations as in Ref. [31]. Here we use a brute
force approach made feasible by the computationally effi-
cient implementation of the spike-time map.

A different procedure was used for the construction in the
(w,D) plane. D; was taken on a logarithmic grid. The p:q
values for a given w were determined for D=0. These p
values were then used to calculate o{P as a function of D for
nonzero D. For small D values, 0P </D [32]. The first N [
=7-10 nonzero D; values in the simulation ran were
used to fit #;=1In a'(/”)(Dj) to Ina;+a, In Dy, here a; and a,
were fitting parameters. The fit was accepted when

N
1 S
2
]”V*szl (7j—Ina;—a,;InD;)*<0.1,

and 0.45<a,<0.55. A grid point (w;,D;), with j>N, was
part of the p:g Arnold tongue when

O.(p)(Dj) — a1D72

0-(p)(Dj)

0.10.

Determining the Arnold-tongue structure is equivalent to
finding the bifurcations for which the winding number
changes discontinuously. A method for determining bifurca-
tions in the presence of noise was recently presented in Refs.
[33,34]. It involved constructing the phase transition
matrix—the probability distribution of the phase of the next
spike time conditional on the phase of the previous spike
time-—and performing a spectral analysis on it.

III. MODE LOCKING TO PERIODIC DRIVES

The dynamical equations for the IAF model neuron were
analytically integrated to produce a spike-time map that pre-
dicted the next spike time given the previous spike time. The
derivation and numerical implementation of the map is de-
scribed in Sec. II; further details are in the Appendix. The
map was iterated starting from an initial spike time ¢;,;,=0.
The amplitude A was 0.4 and the drive frequency w/27
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= 1/T was varied, here T was the drive period (cycle length).

For a given frequency w the neuron converged, after a brief
transient, on to a periodic attractor and was then mode
locked to the drive. The resulting spike train was periodic
with a period equal to g drive cycles, during which p spikes
were emitted. The average interspike interval was q7/p. The
winding number (N) is the average number of spikes per
drive cycle; during mode locking it was rational and equal to
p/q, where p and g were positive integers.

For a constant driving current /=1.5 and A=0, the aver-
age interspike interval was approximately 1.1. For a finite
amplitude, A=0.4, the neuron was 1:1 mode locked when
the period was close to 1.1. This led to a step of constant
winding number, p/q=1, in the (N) versus w characteristic
[Fig. 2(Aa)]. There were also steps for other rational winding
numbers and the {N)-w graph had the appearance of a stair-

.case. The steps with low g values were wide, with the 1:1
step being the widest.

During p:q mode locking the neuron fired at p different
phases¥,,, m=1,...,p. Here the phase was defined as the
spike-time modulo the period, divided by the period (see,
Sec. II). On a mode-locking step the winding number was
constant, whereas the spike phase increased with w. For in-
stance, during 1:1 entrainment ¥, was equal to 3 on the left
hand side of the step and increased to 1 on the right hand
side of the step [Fig. 2(Ab)].

There were q different attractors of the dynamics for p:q
mode locking. The other attractors were obtained from a
given attractor by shifting over multiples of the drive cycle.
This procedure is illustrated in Fig. 2(B) for N=%. On the
first attractor, the neuron fired at phase ¥, on the first cycle,
at phase ¥, on the second cycle, and did not fire on the third
cycle. This spike pattern then repeated itself. A second attrac-
tor was obtained by shifting this pattern over one period, the
neuron then did not fire during the first cycle, fired at ¥, on
the second and at ¥, on the third cycle. A third attractor was
obtained by shifting the first one over two drive cycles. This
multistability of the spike times should not be confused with
a multistability that occurs for a noninvertible circle map
(see, for instance, Ref. [35]). In that case there are two or
more stable solutions with different winding numbers and the
Arnold tongues intersect.

From a given initial condition only one attractor was ob-
tained. The set of initial conditions from which a given at-
tractor was obtained is the basin of attraction. In the spike-
time map formulation of the dynamics the initial condition
was the first spike time. All g attractors were reached when
the first spike time was varied between 0 and g7 [Fig. 2(C)].
When the dynamics were integrated in time using Eq. (1),
the initial condition was the voltage V,,;, at the start of the
simulation. All attractors were reached when V,;, was varied
between O and 1 (results not shown, see also [26]).

The number of attractors g varied nonmonotonically as a
function of w. For instance, between the 2:1 and 1:1 steps,
all other g values were obtained [for clarity only data for g
=<4 were shown in Fig. 2(Ac)]. The spike times (and phases)
changed discontinuously during a transition from one g value
to another. Hence, when g changed a spike-time bifurcation
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FIG. 2. (A) The integrate-and-fire neuron was mode locked to a
periodic piecewise constant current. (a) The average number of
spikes per cycle, (N)=T/r, vs frequency w=2/T. On the mode-
locking steps (N) was constant and equal to a fraction p/q, the
neuron then emitted p spikes in g cycles at phases ¥y, ..., ¥,. (b)
The phases for steps with p=<3 and (c) the number of attractors, ¢,
with g =<4, were plotted vs w. Averages were over 3200 spikes after
discarding the first 800 spikes. (B) The number of attractors was
equal to g. (a) The winding number was (N)= %, the neuron emitted
2 spikes in 3 cycles with phases ¥, and ¥,. The spike train was
periodic with period of 3 cycles. The distance between two small
ticks is the cycle length 7. (b) Two other attractors were obtained by
shifting (1) the first attractor over (2) one and (3) two periods T,
respectively. (C) Neuron that was 1:2 mode locked to a drive with
T=0.56. All g attractors were reached from initial spike times ¢;,;,
in the interval between 0 and g7T. Each tick represented a spike, its
x ordinate was the spike time ¢, and its y ordinate was given by the
starting spike time of the trial. (A)-(C) Parameters were [
=15, A=04, and D=0.

occurred, and the frequency value at which this happened
was a bifurcation point. The bifurcation points were not dis-
tributed uniformly across the frequency axis: there were no
bifurcation points between w/27=0.75 and w/27~1.0, and
many between w/27=~0.5 and w/27=~0.75.

Reliability was defined as the stability of the attractor
against intrinsic noise [27]. The discharge was unreliable
when noise induced transitions from one attractor to a differ-
ent attractor, or when it induced an extra spike or prevented
a spike from occurring when there was only one stable at-
tractor. The attractors were not equally stable for all param-
eter values corresponding to the same winding number. Two
frequency values for which 1:1 entrainment was obtained
were considered as an example, w/27=0.7752 with ¥,
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FIG. 3. Spike-phase return map during 1:1 mode locking in the
presence of noise. In the return map the next phase ¢, ; was plot-
ted vs the previous phase ¢,. In the absence of noise, the return
map consisted of a single point with coordinates (¥, ¥ ), here ¥,
was the spike phase on the attractor. Two points were shown, (1,
open diamond) drive period T=1.15 (w/2m=0.8696) in the
middle of the step and (2, open square) T=1.29 (w/27=0.7752)
close to the edge of the step. In the presence of noise, D=10"*, the
attractor for 7=1.15 was stable. The return map consisted of a
cloud of points around the zero-noise return map (1). For 7= 1.29,
the attractor was unstable against noise. Most points were close to
the zero-noise return map (2). However, sometimes an extra spike
was introduced with a phase ¢,<<0.5, the neuron then deviated
from the attractor and the corresponding points formed an open
orbit. One such orbit was shown as large filled circles connected by
arrows that indicated the direction in which the orbit was traversed.
3000 iterates were used to construct the return map, the first 500
iterates were discarded. Other parameters were /=1.5 and A=0.4.

=0.5067 near the left hand side of the step and w/27
=0.8696 with ¥;=0.6383 in the middle of the step. The
return map, where the next phase ¢,,; was plotted vs the
previous phase ¢, , was a single point (¥, ¥) in the ab-
sence of noise (Fig. 3). This point was the fixed point of the
map. For nonzero noise, D= 1074, and w/27=0.8696, the
return map consisted of a cloud of points distributed around
the zero-noise point (¥, ¥ ). The phase fluctuated around
the average value and the attractor was stable against noise.
However, for w/2m=0.7752, the phase took any value be-
tween O and 1. Noise induced an extra spike on some cycles
at a phase that was far from the fixed point of the dynamics,
this resulted in large deviations of the spike phase. It took a
number of cycles for the neuron to return to the attractor.
Hence, the attractor was unstable against noise for the given
noise strength. Note that in the deterministic case the stabil-
ity of the solution is given by the Lyapunov exponent. For all
the frequency values on the step the Lyapunov exponent was
negative and the solution was stable [31,35]. In general, the
closer the neuron was to the edge of a step—a bifurcation
point—the less stable the attractor was to intrinsic noise. We
observed that attractors for mode-locking at higher g values
were less stable when the step width was smaller. For the
piecewise constant periodic current considered in Fig. 2, the
fixed point phases only took values between 3 and 1. The
unstable edges of the step corresponded to the values 3 and
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FIG. 4. Arnold tongues for a neuron driven by a piecewise con-
stant periodic current. Arnold tongues were constructed as de-
scribed in Sec. II, the set of points with the same winding number
{N)=plq was coded for its p:q value as shown in the legend to the
right of (C). For clarity only a few of the Arnold tongues are shown
in the graph. (A) N,=5000, N4=59, D=0; (B) N,=1000 and
N,=17, with noise strength D equal to (a) 1X10™* and (b) 4
X 1073, (C) The grid along the D axis consisted of Np=>50 values
between D=1X10"% and D=1x10"2, N, was 1000 and A
=(.4. Averages were over 3200 spikes after discarding a transient
of 800 spikes. The driving current was /= 1.5. Arrows in (A),(B)
indicate the 1:1 mode-locking Arnold tongues.

1. For p>1, multiple phases have to fit in this interval.
Hence, for higher p there was at least one phase ¥,,, (m
=1,...,p) close to the edge—the resulting attractor was
less stable against noise.

Next the amplitude A was varied. For A=0, when there
was no periodic drive, the neuron was “mode locked” at
discrete frequencies values w/27=p/q 7, where 7=~1.1 is the
average interspike interval of the neuron [Eq. (3) in Sec. II].
When A was nonzero, p:q mode locking occurred in a range
of frequency values around these discrete points. The regions
in the w—A parameter space where the neuron was p:q mode
locked formed Amold tongues [Fig. 4(A)} [31]. The width of
the p:q step—the frequency range for which mode locking
was obtained—generally increased with A. However, for low
frequencies, w/27<1 and A<0.4 the width (and also the
neuron’s firing rate) varied nonmonotonically with ampli-
tude. This was further investigated by comparing the dynam-
ics on the 3:1 step for A=0.3 and A=0.4. For A=0.4, the 3
spike phases on the 3:1 step were between ;7 and 1 [Fig.
2(Ab)], and from almost any initial condition the neuron
converged exponentially fast to the attractor [Fig. 5(Bb)]. In
contrast, for A=0.3, the spike phases took values between O
and 1 [Fig. 5(Ab)], and convergence was slow when the
simulation was started at a spike phase far from the attractor
[Fig. 5(Ba)].

The Arnold-tongue structure in the presence of noise was
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FIG. 5. (A) Mode-locking steps for A=0.3. (a) The winding
number (N), (b) the spike phases, ¥y, ..., ¥,, and (c) the number
of attractors ¢ as a function of frequency . For clarity only data for
p=<3 and ¢<4 are shown in b and c, respectively. Note that in (b)
the spike phases for small w/27 took values between O and 1.
Averages were over 3200 spike times after discarding a transient of
800. (B) Convergence to the attractor during 3:1 mode locking was
slower for (a) A =0.3 compared with (b) A=0.4. The spike phases
on the attractor were ¥, ¥,, and ¥;. The distance to the first
one, Ay, 1= t3,+.1— ¥, was plotted as a function of n starting
from different initial spike times ¢;,;, from the basin of attraction of
one of the three attractors. Here i5,,; was the spike phase of the
(3n+ 1)th spike time ¢, ;. From top to bottom (in the direction of
the arrow), ¢;,;, was (a) 0.3, 0.7, 1.0, 1.3, 1.6, and 1.7; (b) 0.5, 0.7,
1.1, and 1.7. The last part of the trajectories was linear on a log
scale and corresponded to exponential convergence onto the attrac-
tor. Other parameters were [=1.5, D=0, and in (B) T=3.32.

studied [Fig. 4(B)]. When the neuron remained on the attrac-
tor there was jitter in the spike times, but each spike that was
present in the zero-noise spike train did occur. Hence, the
average number of spikes per cycle, (N), was unchanged and
equal to p/q. When the value of (N) obtained in the simu-
lations was within 755 of p/q it was considered part of the
p:q Amold tongue. For weak noise, D=10"*, the Arnold-
tongue structure was virtually identical to the D =0 structure
[Fig. 4(Ba)]. Only points near the edge of the tongue were
unstable, as noise induced transitions between attractors or
led to missing or extra spikes. Note that these extra or miss-
ing spikes did not cancel out in the temporal average: Near
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the left hand side edge there could only be extra spikes,
increasing (N), whereas near the right hand side there could
only be missing spikes, reducing (N). Arnold tongues with
high p or g values were also unstable, however, these were
not resolved on the parameter grid and their absence could
not be observed in the figure. For higher noise levels, D
=4X1073, only the g=1 steps remained and their width
was much reduced compared with D=0 [Fig. 4(Bb)].

The mode-locking regions were also determined as a
function of noise strength for a fixed amplitude A =0.4 [Fig.
4(C)]. The method for their construction was given in Sec. II.
Briefly, the winding number for D=0 was determined nu-
merically yielding a value for p and g. That p value was used
to calculate ® [Eq. (5)]. When o® was proportional to
VD the grid point was considered part of the p:q Arold
tongue. The width of the tongue (step width) decreased as a
function of D, since more and more points close to the edge
became unstable. 1:1 mode locking was most stable; for D
=1072, the 1:1 step was still present, whereas other steps
had become unstable or could not be resolved on the param-
eter grid used for the simulations.

IV. MODE-LOCKING TO A QUASIPERIODIC CURRENT

The behavior of neurons driven by a quasiperiodic current
was examined using the analytical spike-time map derived
for a piecewise constant current drive. The quasiperiodic
drive is intermediate between a periodic and a random (un-
correlated) drive. For a periodic drive, mode-locking regions
are organized in Amold tongues, unlike the mode-locking
regions for a random drive. Hence, the question is whether
mode-locking regions for a quasiperiodic drive are organized
in Amold tongues and how the reliability is related to the
winding number(s).

The driving current was the sum of two periodic piece-
wise constant currents with periods T;, T, and amplitudes
A, and A,, respectively. Here we used 71 =2 and T2=2\/§ .
In order to keep T, /T, irrational we varied the driving cur-
rent [ instead of either T; or T, as was the case in the pre-
ceding section.

For a drive only containing the T; component, steps in the
number of spikes per cycle, (N;)=T,/, as a function of /
were obtained [Fig. 6(Aa)]. Here 7 was the mean interspike
interval. The steps were at rational values (N)=p,/q,

hence the neuron produced p, spikes at phases ¥, ..., ¥ ’y

in g cycles. The spike train was periodic with period q,T,.
The phase of spike time ¢ was defined as ¢!
=mod(¢,T;)/T;. The same was true when only the T, com-
ponent was present [Fig. 6(Ab)], in that case the winding
number was (N,)=T,/7=p,/q, and the phase was defined
as y*=mod(z,T,)/T,.

When both components were present, there were steps
with either a rational winding number with respect to
T,, (N{)=p,/q, [Fig. 6(Aa)] or with respect to T,, (N;)
=p,/q, [Fig. 6(Ab)].

The parameter regions in (/,A,) space with a fixed value
of p,/q, or p,/q, were organized in Arnold tongues {Fig.
6(Ac)]. For A,=0, only the T, mode locking was obtained.
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FIG. 6. Mode locking to a quasiperiodic drive yielded Arnold
tongues. (A) There were two sets of winding numbers, (a) (N)
=T, /7 equal to p, /g, for T| mode locking and (b) T, /7 equal to
P2 /g, for T, mode locking, here 7 was the average interspike in-
terval. Three sets of parameters were considered, A;=0.25, A,
=0 (a, continuous line); A;=0, A,=0.25 (b, continuous line);
A;=0.125, A,=0.125 (a,b, small circles). The standard deviation
or; and o7, of the spike phase ¢'=mod(z,T;) and *
=mod(¢,T,), respectively, is also shown. Here ¢ is the spike time.
During 1:1 mode locking to T;, o;<or,, whereas for 1:1 mode
locking to T,, <o (c) The winding number was determined
on a grid of A, and I values (A was 0.4). The areas with the same
winding number were coded as follows, (black) mode locking to
Ty, from top to bottom, 2:1, 3:2, 1:1, and 1:2; (cross hatched) mode
locking to T, from top to bottom, 2:1 and 1:1; (striped) quasiperi-
odic mode locking, (top) 1/7=1/T+1/T, and (bottom) 2/T,
—1/T,. (B),(C) In phase return maps, the phase ¢,,; of the next
spike time ¢,,,.; was plotted vs the current phase ¢, of ¢,,. The scale
is the same for all graphs and is shown in Ca. The phase was
calculated with respect to (B) T and (C) T,. The amplitude was
A1=A,=0.125 and (a) I=1.17 (p;=q,=1); (b) I=1.10 (no ra-
tional winding number was found); (iii) I=1.09 (p,=g,=1).
Other parameters: T; =2, T,=2+/2. Averages were over (Aa), (Ab)
1600 spikes after discarding the first 400; and (Ac) 3200 spikes
after discarding the first 800.

As A, was increased, mode locking to T, became unstable
for large g, and in some current ranges p, /g, mode locking
was obtained instead. When both A and A, were large, steps
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were obtained with an average interspike interval 7 for which
neither T /7 nor T,/7 was rational. However, 7 could be
expressed as

}. = IQ L +12 L , (6)

T 1Ty g T
with integer values, possibly negative, for p;, p,, ¢, and
g,. In this case the neuron was mode locked to a linear
combination with rational coefficients of both periods—
quasiperiodic mode locking [36]. In Fig. 6(Ac) two examples
are shown, 7=1.1715, with Ur=UT+U/T, and 7
=1.5468, with 1/7=2/T;—1/T,. Note that in the latter case
p, was negative.

The most prominent mode-locking regions were associ-
ated with p;=¢;=1 (and p,=0) and p,=¢,=1 (and p,
=0). The spike trains for p;=¢;=1 and p,=g,=1 and for
an intermediate current value, were further analyzed using
phase return maps [Figs. 6(B),6(C)]. During 1:1 mode lock-
ing to a periodic drive, the neuron spiked at a fixed phase and
the interspike interval was constant and equal to the period
of the drive. As a result the phase return map, the phase of
the next spike time plotted vs the phase of current spike time,
consisted of only one point, the fixed point of the map. In-
trinsic noise introduced jitter in spike times, hence there was
jitter in the spike phases. The deviations of the spike phase
from the average spike phase were almost uncorrelated be-
tween consecutive cycles. The return map then consisted of a
spherical cloud of points centered around the fixed point.
During 1:1 mode-locking to the T; component in the quasi-
periodic case there was jitter in the spike phase ¢!, even
without intrinsic noise. The jitter was due to the T,-periodic
drive component. The points in the phase return map were on
a closed orbit, and the phases only took values between 0.58
and 0.78 [Fig. 6(Ba)]. However, the return map of ¢ formed
an open orbit, and the phase had values between O and 1
[Fig. 6(Ca)]. The situation for 1:1 mode locking to the T,
component was similar, the phase return map with respect to
T, was a closed orbit [Fig. 6(Cc)], and now the #' return
map was an open orbit [Fig. 6(Bc)]. We took a current value
between the 1:1 T and 1:1 T, mode-locking steps, that was
not part of a step with a width of more than 107>, In that
case, the orbits were discontinuous with part of the orbit
missing [Figs. 6(Bb) and 6(Cb)]. The spike trains had a com-
plicated structure; we could not establish whether they were
aperiodic or chaotic or whether the winding number was ir-
rational.

The stability of 1:1 T mode locking against noise was
investigated [Figs. 7(A),7(B)]. Three values for the driving
current were used, /=0.99 on the left hand side of the step,
I=1.12 in the middle of the step and 1.26 on the right hand
side of the step. The phase return map consisted of closed
orbits. The center of the orbits varied with the value of the
current, from close to 1 on the left hand side to + on the right
hand side [Fig. 7(Ba)]. The interspike-interval return map
also consisted of a closed orbit [Fig. 7(Aa)]. The orbits for
different current values were arranged concentrically, the po-
sition of the center did not shift since the average ISI had to
remain the same, however, the diameter of the orbit did vary.
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FIG. 7. (A), (C) interspike-interval and (B) spike-phase return maps for mode locking to a quasiperiodic current. (A),(B) 1:1 mode
locking to T for (a) three current values, (1) I=0.99, (2) I=1.12, and (3) I=1.26 without noise (D=0); (b) I=1.12 and D=10"* and (c)
1=0.99, D=10"*, The amplitudes were A;=0.4 and A,=0.05. The phase was calculated with respect to T;. The scale in (Ac) is different
from that in (Aa) and (Ab). The “donut” in the lower left hand side corner corresponds to the zero-noise orbit (1) in (Aa). (C) Quasiperiodic
mode locking, the average interspike interval was 1/7= 1/T;+ 1/T,. Parameters were (a,1) I=1.40, (2} I=1.46, and (3) I=1.515 with D
=0; (b) I=1.46, and D=10"*%; (c) I=1.40 and D=10"*. The amplitudes were A;=0.4 and A,=0.4. Arrows in (Ac), (Bc), and (Cc)
indicate the initial noise-induced deviation from the attractor; the arrows in (Ca) and (Cb) indicate a sharp excursion in the return map.

The attractor for the current value in the middle of the step
was stable against noise. The return maps consisted of a
cloud of points distributed around the zero-noise orbit. The
attractor for /= 0.99 was unstable against noise. Noise could
prevent spikes from happening, leading to missing spikes
and an interspike interval that was approximately two cycles.
The resulting deviation in spike phase decayed back to zero
over the course of a few cycles. The T, component acted as
a deterministic noise source, the jitter based on p:g; mode
locking oP’ was approximately the sum of two terms,

(oPV) =D+ aA,, )

where «; and o, were proportionality constants. Hence, the
T, component brought the neuron closer to a bifurcation
point, and reduced the stability against noise.

Quasiperiodic mode locking was investigated using phase
and interspike-interval return maps [Fig. 7(C)]. The /7
=1/T,+ 1/T, mode-locking step was considered, three cur-
rent values were used, /=1.40 on the left hand side of the
step, /= 1.46 in the middle of the step and 1.515 on the right
hand side of the step. The phase return map of ' and ¢
consisted of an open orbit (not shown). The interspike inter-
val return map was a closed orbit with a complex shape [Fig.
7(Ca)]. It had a remarkable feature as indicated by the arrows
in Figs. 7(Ca) and 7(Cb). We made sure that the same feature
was also obtained by direct integration of Eq. (1). In the
presence of noise, the orbit in the middle of the step was
stable [Fig. 7(Cb)], whereas the orbit near the edge of the
step was unstable [Fig. 7(Cc)].

(A)
4+
7
2 -
0 . . . ,
0.8 1.0 1.2 1.4 1.6
I
(B)
2/T,=2/T, 3/T,-3/T, 4/T 4T,
3.43 2.30 1.73
3.40 2.25 1.69
0.95 0.98 1.109 1119  1.235 1.238
I I I

FIG. 8. Stability against noise of mode locking to a quasiperi-
odic piecewise constant current. (A) The average interspike interval
(ISI) is plotted as a function of average driving current [ for D
=0 and D=107>. The most stable mode-locking ratios, expressed
as Yr=(p;/q)UT,+(p,y/q,) 1/T,, are indicated in the graph. (B)
Closeup of a few smaller mode-locking steps for D =0. The mode-
locking ratios are given in the graph. Other parameters were, T’
=2, T,=2 V2, and A 1=A,=0.2. Averages were over 3200 spikes
after discarding a transient of 800.
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For A;=A,=04 or 0.2, quasiperiodic mode-locking
steps were also found for other ratios, including multiples of
UT,—uT,: Ur=n(UT,—UT,) for n=2, 3,... (Fig.
8). For these mode-locking steps we found only one attractor
and the ISI return maps did not form closed orbits. Mode-
locking steps for 1/7=3(2/T,—1/T;) and 3(1/T,+ UT,)
were smaller than the current grid (2X 10™*) used in our
simulations. However, when A, was much smaller than A,
for instance, A;=0.4 and A,=0.05, these steps could be
resolved. The dynamics had two attractors and the ISI return
maps did not form closed orbits.

The noise stability of the mode-locking steps was inves-
tigated by comparing the ISI vs current curve for zero noise
with that for D=10"3 [Fig. 8(A)]. Only the 1:1 mode-
locking steps to T;,T, and the step with 1/7=1/T |+ 1/T,
remained in the presence of noise. On these mode-locking
steps there was only one attractor with an ISI return map that
formed a closed orbit.

Thus, there were mode-locked solutions with a rational
winding number with respect to either T or T,, or a rational
combination thereof. In the former case, the non-mode-
locked drive component generated deterministic jitter in the
spike times. Steps with low values of p; and ¢ (p, and gq,)
were more stable against intrinsic noise, and could also re-
main mode locked for a larger amplitude A, (A;). In that
case there were still g; (g,) attractors. The stability of these
attractors to intrinsic noise was reduced since the determin-
istic jitter would bring the attractor closer to a bifurcation
point. For quasiperiodic mode locking there also could be
multiple attractors. However, the corresponding steps were
small. We did not establish a general relationship between
the values of ¢; and g, and the number of attractors that
would be observed. For most of the examples studied here,
there was only one attractor for quasiperiodic mode locking.
The steps with an ISI return map that formed a closed orbit
were most stable. However, we did not establish whether this
observation holds in general.

V. DISCUSSION
A. Noise stability of attractors and bifurcation structure

The bifurcation structure explained the differences in re-
liability between neurons driven by random and periodic
fluctuating currents [26]. For the random fluctuating drive we
found that there was one stable attractor [26]. We conjec-
tured that in general neurons driven by a random fluctuating
current have only one stable attractor [26]. Furthermore, we
conjectured that for any given stimulus parameter the neuron
was close to a bifurcation point for which only a few spike
times changed discontinuously [26]. Only those spike times,
and perhaps a few spike times immediately following a bi-
furcation spike time are unreliable. Hence, for a random
drive, the overall reliability was reduced, but was still high
for most parameter values.

When a periodic drive was injected into the model neu-
ron, mode locking could occur [31,37-47]. During mode
locking the neuron produced p spikes per g cycles and the
spike train would repeat itself each g cycles (here p and q are
positive integers). Hence, there could be multiple stable at-
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tractors with the same winding number. In model simulations
we found that during p:g mode locking there were g attrac-
tors. The attractor was most stable against noise during 1:1
mode locking, when there was only one attractor, and less
reliable outside 1:1 mode locking. Hence, these theoretical
results predict a reliability resonance for a periodic drive that
is absent for a random drive. The reliability of pyramidal
cells and interneurons in rat prefrontal cortical slices has
been studied experimentally with sinusoidal current injection
over a range of frequencies [23]. Pyramidal cells mode
locked in the 5-20 Hz range, whereas interneurons mode-
locked in the 5-50 Hz range [23]. Spike-time reliability was
always highest during 1:1 mode locking [23,25].

A quasiperiodic drive is intermediate between a periodic
and random fluctuating drive since it is not periodic ‘but it
does have deterministic structure. Here we report that the
bifurcation structure of a neuron driven by a quasiperiodic
drive [36] is similar to that for a periodically driven neuron.
In particular, the mode-locking regions were organized in
Amnold tongues. The widest steps corresponded to 1:1 mode
locking to either one of the two components of the drive or
quasiperiodic mode locking with small values for q; and g5,.
On these steps there was only one attractor and the ISI return
map formed a closed orbit. These steps were the most stable
against noise and hence yielded the most reliable discharge.
These results show that reliability is closely correlated to the
number of attractors and the shape of return maps.

B. Reliability and Lyapunov exponents

The zero-noise stability of mode-locked solutions of peri-
odically driven integrate-and-fire neurons was previously
studied in terms of Lyapunov exponents [31,35],

n

I+ f(tes1)

A=-—1+ lim n———————
—1+I+f(tes1)

nesoo End17E1 k=0

, (8

here ¢, was the kth spike time on the attractor, I was the
driving current, and f(¢) was the fluctuating driving current.
All periodic mode-locked solutions had a negative Lyapunov
exponent and were stable [31,35]. The periodic solutions
with a low g value were more stable since the Lyapunov
exponent was more negative (see Fig. 2 in Ref. [31]). When
the neuron remained close to the attractor in the presence of
intrinsic noise, the spike-time jitter was proportional to the
noise standard deviation D. The proportionality constant
depended on the Lyapunov exponent: a more negative the
Lyapunov coefficient resulted in a smaller proportionality
constant, hence, less spike-time jitter. A detailed derivation is
in preparation [32].

Stronger noise induced transitions between different at-
tractors, or missing or extra spikes. The occurrence of these
deviations from the attractor depended on the value of the
Lyapunov exponent and the distance to a bifurcation point.
As mentioned above, Lyapunov exponents characterized how
fast a deviation from an attractor decayed to zero and deter-
mined the amplitude of noise-induced fluctuations around the
zero-noise voltage trace. Deviations from attractors could oc-
cur when this amplitude was large enough to reach a bifur-
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cation point. The Lyapunov exponent depended on the value
of the driving current f(z;) at the spike times on the attractor
[Eq. (8)]. Here, piecewise constant periodic currents were
used and spikes occurred at a phase between 3 and 1 (except
for the parameters values used in Fig. 5). Hence, f(#;) al-
ways had the same value and the Lyapunov exponent only
depended on the average interspike interval. As a result we
could approximately delineate the effect of the bifurcation
structure on the reliability of neural spike trains from that of
the variation of f(z). The result is that both the Lyapunov
exponent and the distance to the bifurcation points are im-
portant determinants of the reliability: the value of the
Lyapunov exponent itself does not predict reliability in ex-
periment, since transitions between attractors occur at
physiological noise levels [26].

C. Asymptotic attractor stability and reliability

In experiments reliability is assessed by presenting the
same stimulus across multiple trials. In model simulations,
this procedure corresponds to injecting the same input stimu-
lus each time with an independent realization of the intrinsic
noise (trial). The attractor reliability R, is defined as the
stability of the attractor against noise and is proportional to
the inverse of the number of distinct spike trains obtained
across a large number of trials [27]. Two spike trains are
distinct when there is at least one spike time that is much

further than D from any spike time in the other spike train -

(D is the variance of the intrinsic noise). When the neuron
remains on one attractor, the spike-time jitter in the nth spike
time (n=1,2,...) across many trials is proportional to VD
and R,=1 [32]. Noise can induce transitions between differ-
ent attractors, or lead to missing or extra spikes. Distinct
spike trains are then obtained across different trials, reliabil-
ity is reduced and the spike-time jitter is not proportional to
VD anymore. In this paper, the asymptotic noise stability of
attractors was determined based on one long trial with be-
tween 2000 and 10 000 spikes. When there are no transitions
between attractors, missing or extra spikes, the spike-phase
Jjitter is proportional to VD and R,=1. This procedure can
underestimate the reliability compared with that obtained for
multiple short trials since transitions between attractors dur-
ing a long trial may not occur on short trials. However, this
only affects the edges of mode-locking steps and the quali-
tative behavior of the reliability was the same (comparison
not shown).

D. Future work

Neurons are more complex than the integrate-and-fire
model neuron studied here. They contain many different
membrane currents [48]. For instance, in model simulations
using cells with a slow calcium-dependent potassium current
(model as in Ref. [49]) convergence to the attractor could
take up to one second. During that period the output spike
train depended on the voltage and other internal variables
such as calcium concentration at stimulus onset. Hence, dur-
ing the transient the discharge might be unreliable. However,
once the attractor was reached it was stable. How do these
slow currents influence reliability under in vivo conditions?
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Neurons also display subthreshold membrane potential oscil-
lations due to active currents [50-52]. The oscillation fre-
quency depended on the type of neuron [23,53]. How does
the bifurcation structure depend on these intrinsic oscilla-
tions? We plan to address these and other issues in future
work.

ACKNOWLEDGMENTS

This work was funded by the Sloan-Swartz Center for
Theoretical Neurobiology at the Salk Institute. I thank Jack
Cowan, Jean-Marc Fellous, Jorge José, Terry Sejnowski, and
Peter Thomas for discussions and useful suggestions. I thank
Peter Thomas also for comments that have improved the pre-
sentation of the paper.

APPENDIX

For clarity, the notation in this appendix differs from that
in the main text as follows. The constant depolarizing current
I and fluctuating current f(¢) are combined into a fluctuating
current denoted by I(¢). The two current values of the piece-
wise constant current will be denoted by subscripts 0 and 1,
and the two components of the quasiperiodic current will be
indicated by superscripts A and B. In the following four sec-
tions the analytical spike-time maps used in the numerical
simulations are derived for the periodic piecewise constant
drive without and with noise, and for the quasiperiodic
piecewise constant drive without and with noise, respec-
tively.

Neuron driven by a periodic piecewise constant current

The neuron is driven by a piecewise constant current ()
with period T, I(t)=1, when mod(s,7)<T; and it is I,
when mod(¢,T)=T,. [Note that in the notation of the main
text, [;=I—A, I;=I+A, and T,=T/2.]

The solution to

av_ V+I

with initial condition V(¢;)=0 is

V(t)=e""2[h(ty)—h(1))],

where
t
h(t)= j ds e’l(s)
0

N r ”
=> e("‘l)Tf ds e“I(s)+eNTf ds e’I(s)
n=1 0 0

1— NT
—+eNr(7),

=q
l—e

with 7=¢—NT,
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r(T)=des e’ l(s)=Iy(e™ 1), 7<T,
0

=a,+I(e"—e"), =T,
and
a;=IyeT1—1),
a=a;+I,(eT—e™).
A spike is generated when V(#,)=1, yielding
h(ty)—h(t)=e";

using t{=NT+ 7 and t,=N,T+ 7,, we get

NoT+ 7y

e (eMT—eNaTy+ eNoTr(7,)—eMiTr( 7).

1-eT

Combining all the terms containing 7, on the left hand side
yields

en=B.+e My,

with

and

where AN=N,— N;. The solution to the y, equation has to
satisfy 0= 7,<<T and the solution to the y_ equation has to
satisfy T;<7,<T. All different values AN=0,1,... were
tried until a solution was found.

Neuron with intrinsic noise driven by a periodic piecewise
constant current

In the presence of intrinsic noise, the dynamics is

dV_
T —V+I(t)+E&(2),

with (£(2))=0, (&@)&(t"))=D&(t~1t"). The equation for
the next spike time ¢,, starting from V(¢,)=0, is

V(t)=e [ (1) —h(z))]+Ax=1,
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where y is Gaussian white noise with mean zero and unit

variance, and
A= \/g[l —e 2T,

Here, we assume that the noise trajectory £(¢) leading to y at
t, does not lead to a threshold crossing prior to ¢,. Prelimi-
nary simulations using direct integration yield a spike-time
variance similar to that obtained via the algorithm discussed
here.

The resulting equation is squared to remove the square
root,

(A1)

[h(t2) ~h(t1) ~ P =2 (e¥1— ),

yielding,
2
T—_er(e_ANT_ 1)+r(72)—e*ANTr(7'1)—eT2
2
=DX (€272 271~ 28NT)
2 b

which is equivalent to
Dy’
(TI:X 5:)2_ 5 (xZ 6271—2ANT),

where x=¢", n,=I,—1, n_=I1;—1, and

6+:

(T )= ()~ Iy,
—-e

o_=

l_eT(e_ANT_ 1)—e_ANTr(7'1)+a1—IleT1.

The result is a quadratic equation in x,

(77%:— DTX2 x2428.pax+| &+ DTXZe“l““NT =qx?
+2bx+c=0, (A2)

with a solution
x=- fr}—m. (A3)

Q

a

The resulting algorithm is as follows. Generate a Gaussian
deviate y, and calculate r(7;) and 7.. Calculate
8+, a, b, and ¢ for a given AN and solve the quadratic
equation. Iterate over AN=0,1,... until a solution is ob-
tained for the correct sign of x that satisfies 0<7,<T, for
the &, equation or T1=<7,<T for the §_ equation.
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Neuron driven by a quasiperiodic piecewise constant current

The neuron is driven by a sum of two periodic piecewise
constant currents, I(z)=1I4(¢)+1I5(z), with I*=TI/ when 0
smod(t,TA)<T? and IA=I? when T’?smod(t,TA)<TA,
likewise, I® =15 when 0<mod(z,T72)<T% and I®=1% when
Tlf <mod(z,T8)<T". (In the notation of the main text, I‘g
=IR—A,, I=IR+A,, I5=112—4,, B=I2+A,, T}
=T,/2, and TS=T,/2.)

Starting from V{(#,;)=0, the equation for the next spike
time ¢, is again given by

V(t)=e " 2[h(ty) —h(1})]=1. (A4)

However, now h(t) is the sum of two terms,

h(t)=j0tds e’ I(s)=hA(t)+hB(1),

with
___eNATA
W) = ——r +eM T A(A),
—e
__ _NBTE
hB(t)=a® ” -5 +eNBTBrB(TB),
—e
and

rA(TA)=I'3(e’A— 1), 7A<Tf
=a’1‘+1f(eTA—e7J?), =77,

BB =18 -1), #<T?
=af+1?(e’ﬂ~erll}), P=18,
aA=a/1‘+I/1‘(eTA—e7J1‘),
aB=af+I?(eTB—eTf),

=1 1),
aB=1B(eTI-1),
where 1=NATA+ #=NBT2+ 78, With the substitution ¢,

=N{T{+ 4 =NiTS+ 7} and 1,=N3T}+ 4=N3T5+ 75,
Eq. (A4) reads

A ApA _NATA
eTZ+AN T =e N|T [hA(t2)—hA(tl)'i'hB(tz)—hB(tl)]

A
[24 ArA AxA
= 1_eTA(1—eAN T )+€AN T rA(T/Z\)_rA(T/I‘\)
B
+ _ETB(eAI—eA2)+eA2rB(7’24—A)
~eburt(s),
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where ANA=N4-N%, A=NETE—-N4TA, A,=NBTP
—N{T4, A,=N3TB—N{T* and 5= 74— A. Combining the
terms that contain e’g yields

A
e2(ni+nt)+ 6+ 6%+ 65 =0,
with
A A
e =e®V T (15— 1),

A A
ph=eANT (1’1‘—1)

)’
B _ ,A,—ArB
77+_e 2 I()a
B _ A,—AyB
nN-=e 2 I]a

and

&=V (1),
& ZeANATA( a? —Iferlq),
& =e™(=1),

88 =B all;—lferlli),

A B

ArA
v R R G

—eAer(Tf).

o=

Ap_ L4
(e“1—e"2)

For each value of N’; and N2 , there are four possible solu-
tions for ¢™. The sign of the A drive at time ¢, is denoted by
54 and the sign of the B drive is SZ. BEach combination of
S§4=+ and $8==+ could be a solution. The real solution
needs to satisfy, 0< 74 <T% for $4=+ or T{<73<T* for
SA=—, and 0<75<T? for =+ or TP<£<T® for §*
= —, where, as before, 7"29 = 7’3—A. The algorithm uses dif-
ferent values of N3 and N5 until a solution that satisfies the
constraints is found. The tried values N and N5 are ordered
such that consecutive values of ¢=max(N5T4,N5T?) in-
crease monotonically.

Neuron with intrinsic noise driven by a quasiperiodic
piecewise constant current

In the presence of noise Eq. (A4) reads

V(ty)=e""2[h(ty)—h(t))]+Ax=1,

where \ is given by Eq. (A1). Using ¢, =N4T%+ 7 and 1,
=N4T4+ 74, we obtain
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e MIT [ h(ty) = h(t;)]— e HAN'T?

D
+ \/—2—(exp[27§+ 2ANATA] - M) x=0, (A5)

this is rewritten as

D
xCi+Co+ \/z<x2e2“”"""~e”?>x=o, (A6)

s — AL B =5+ + 88 wi
with x=e™, C;=9%+ 75, and C,= 8+ 65+ 6, with the
7’s and &’s defined as in the preceding section. x is one of
the two solutions of the quadratic equation,

D 2
(xCy+ Cy)2= ; (x2e28NATA _ 2oty

rewritten as

ax*+2bx+c¢=0,

PHYSICAL REVIEW E 65 041913

with solution

b 1
x=——*—\b’=aqc,
a a
where,
Dx
a= C%— _2 2ANATA,
b:CICZ’
2
c=Ci+——e*n.

Different values for N4 and N5 are tried as described in the
preceding section.
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