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Information transmission and recovery in neural communication channels revisited
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Nerve cells in the brain generate all-or-none electric events—spikes—that are transmitted to other nerve
cells via chemical synapses. An important issue in neuroscience is how neurons encode and transmit informa-
tion using spike trains. Recently, signal transduction through two neurons connected by an excitatory chemical
synapse was studied by Egw@ital.[Phys. Rev. B62, 7111(2000]. They reported an apparent violation of the
data processing inequality: The mutual information between the input signal and the output of the first neuron
can be lower than the mutual information between the input signal and the output of the second neuron, that
only receives input from the first neuron. We investigate whether it is possible, using a different method, to
retrieve, from the first neuron’s spike train, all the information about the input that is present in the second
neuron’s output. We find that single interspike interv@®’s) from the first neuron, at a resolution of 0.5 time
units, contain more information about the input signal than those of the second neuron. Using a classification
procedure based on the ISI return map, we recover 71% of the input entropy using the first neuron’s spike train,
and only 42% using the second neuron’s spike train. Hence for these spike-train observables the data process-
ing inequality is not violated.
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[. INTRODUCTION Furthermore, to calculate the entropy numerically the vari-
ablesX, Y, andZ need to be discretized into bins of width

The brain consists of a large number of interconnected X, dY, anddZ, respectively. When the signal dependent
neurons. Neurons generate trains of action potentials, spikegart of Y is smaller thardY, but the signal dependent part in
that are transmitted to other neurons via chemical synapse&.is larger thandZ, the data processing inequality would be
There is an ongoing debate whether the precise spike timegolated. Here we analyze the results presented by ERA us-
encode information, or whether only the average spike rate i#1g the time series of interspike interval§I's) of neurons 1
informative (see, for instance, Refl1]). It is therefore im- and 2. We find that the mutual information between the ISI
portant to theoretically study how information can be en-of neuron 1 and the input signal is higher than that of the ISI
coded in spike trains, and what part can be transmitted acrosd neuron 2 and the input. Furthermore, we find that the
synapses. Eguia, Rabinovich, and Abarbg@gl(abbreviated information is present at a finer temporal resolution and a
ERA in the remainder of the repomstudied the transmission larger word length(the number of bins in a symbothan
of a pulsatile current injected in the first neuron, that projectsstudied by ERA.
to the second neuron via an excitatory chemical synapse, into We first reproduce the results presented in Fig. 2 of ERA,
the output spike train of the second neuron. They found tha@nd discuss the biophysical basis for the recovery of hidden
while information is hidden in the output spike train of the information. Then we discuss how the input can be recon-
first neuron, it is actually transmitted to the second neuronstructed based on interspike intervals. We conclude with a
and can be reconstructed on the basis of its output spikdiscussion of the biophysical properties of the synapse model
train. They showed that this leads to an apparent violation ofised by ERA.
the data processing inequalifg]: The mutual information
between the input and the first neuron is lower than that Il. RESULTS
between the input and the second neuron.

The data processing inequality is an exact mathematical
identity for variables that form a Markov chajiii]. Consider In Fig. 1 we have reproduced the results shown in Fig. 2
the variablesX (the signal, Y (the output of neuron)landZ  of ERA for a different input spike train. The dynamical equa-
(the output of neuron)2 X—Y—Z form a Markov chain, tions were like those of ERA, and a subset of them was listed
whenY is a function ofX, Y=f(X)+h; andZ is a function  in Refs.[5,6]. A synaptic currend; consisting of nine pulses
of Y, Z=g(Y)+h, [hereh; andh, are arbitrary functions was injected into the neuron[Eig. 1(A), curvea]. In “burst
that do not depend oX or Y: the mutual information coding space” events are defined as hyperpolarizations in the
[(X,hy), 1(X,hy), andI(Y,h,) is zerd. The mutual infor- membrane potentiak, that cross the thresholg,,,=—1
mation betweerZ and X is then smaller than or equal to the from above. Only two pulses were transduced into a hyper-
mutual information betweery and X, 1(X,Z)=1(X,g(Y) polarization of the first neuron that went below, =—1
+hy)<I(X,Y) [7]. In numerical work the inequality may be [Fig. 1(A), curveb], whereas in the second neuron eight of
violated. For instance, in calculating the output spike train ahe nine pulses could be identified as events in the membrane
subthreshold signal might be thresholded away, though ipotentialx [Fig. 1(A), curvec]. Hence the data processing
might still be transmitted across the synapse. Then the asequality is violated in burst coding space as reported by
sumption thatX—Y—Z form a Markov chain is violated. ERA. Although the third puls¢Fig. 1(B), curvea] was not

A. Biophysical basis for information recovery
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transduced into a visible hyperpolarization in neuron 1, it did A
increase the interspike intervifig. 1(B), curveb], and the .
membrane potential was close (taut above x,,, = — 1 for a 100 4
longer time. As a result, the neurotransmitter concentration TAI . ?f ]
dropped below the thresholdg=4, of the synaptic conduc- ! 1 —% \\ A
tance[Fig. 1(B), curvec] and the synaptic current dropped \/ ‘V/
from J,~0.4 to zerd Fig. 1(B), curved]. This “inhibitory” 10 0 : 20'0 4000
pulse inJ, is a factor 20 larger than the onedn, and hence t
caused a large increase in the interspike interval of neuron 2 !
and a pronounced hyperpolarizatifdfig. 1(B), curvee]. 200 B ‘ ‘
The signal transduction mechanism is therefore as fol- no input spike
lows. Increases in the ISI of the first neuron are a reliable
indicator of the presence and time of an inhibitory pulse. The D 100 .
thresholdny was tuned so that a small increase in the ISI 1
caused to drop belowng, leading to a large reduction in the 0 " ] JﬂL
synaptic current into neuron 2, but for the unperturbedn S| C
always stayed above,. 200 T 1
The amount of hyperpolarization induced by the signal input spike
depends on the value of the internal neuronal variaples N 100 i
and w, that vary in time. Hence, depending on the arrival
time of the input pulse, a small or large hyperpolarization ‘ L oml
was induced. The probability for a large hyperpolarization 010 60 110
increased with increasing pulse amplitude. Fg+ —0.05 in ISI
the first neuron, the probability was quite low. Since the
amplitude ofJ, is about a factor 20 large thak, the signal- FIG. 2. Interspike intervals of neuron 1 contain information

induced reduction im(t) reliably induced a hyperpolariza- about the input. The interspike intervaf is plotted vs its starting
tion belowx,,= —1 in neuron 2. Thus the biophysical sub- timet; (solid line); the presence of an input pulse during the interval
strate for the recovery of hidden information is the higheris indicated with a filled circle. Also shown is the histogram of ISI

gain of the second synapse compared to the first one. values during whici(B) no input pulse occurred, ar(€) an input
pulse occurred; the bin width is 0.5. For clarity, bin entrigs,

above 200 were cut off in the graph. During a simulation run of 8
X 10° time units, 805 input pulses were injected, resulting in 23595

Each presynaptic pulse i3, led to an increase in the interspike intervals for neuron 1 and 38897 for neuron 2. Model
current interspike interval of neuron I'=t! ,—t' [Fig.  parameters are given in the text and in R&}.

B. Mutual information analysis
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FIG. 3. (Color Classification
50 procedure using the return map
for (A) neuron 1 andB) neuron 2.
The data are the same as in Fig. 2.
(7i,7+1) Was assigned a variable
n; and classificatiort;, wheren;
=1, when there was an input
pulse during intervalr;, and n;
=0 otherwise. ¢, 7i,1) was di-
vided into a two-dimensional set
of bins (k,I) with a height and
width equal to 1. The number of
points in bin k,l) with n=0,
ay, andn=1, By, was deter-
mined. When ¢;, 7, 1) fell in bin
(k,I), it was classified ag;=1
when B, =« , andc;=0 other-
wise. Curvea: The return map,
n;=0 (black symbolg andn;=1
a . 140 (red symbols Curveb: The clas-
sification bins k,I) color coded
according to B> ay (red, By
<ay (black and By,= ay, (blue).
i+ Curvec: Results of the classifica-
tion procedure; eachr(,7,.q) is
color coded,n;=1, ¢;=1 (red,
n;=0, ¢;=0 (black, n;=1, c;
=0 (green, and n;=0, ¢;=1
(blue). The insets in curveb and
c are close-ups.
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2(A)]. Heretil is theith spike time of neuron 1. For simplic- More information could be recovered from the first neu-
ity, the superscripts 1, 2 onare suppressed in the following. ron’s spike train by considering two consecutive ISFg.

A variable n; was assigned to each, nj=1 when there 3). Each point ¢;,7,,;) was characterized by;, and its
was an input pulse during the interval (i.e., betweertil classificationc; . ¢;=1 when it was classified as having an
and t',,), and n;=0, otherwise. The mutual information iNPut pulse during interval; and c;=0 otherwise[Figs.
between 7, and n, was M;g=Sg—[(1-P1)Ssio 3(A), curvec, and 3!3), curvec]. q; is .the numbe_r of inter-
+p1Sis11], p1 was the fraction of interspike intervals with Vals withci=c, gn is the number of intervals with both
n=1, Sisi= —=.pisi(7)10g, pisi(7), and  Sgn= =n, andc;=c. The_r_nut_ual qurmatlon be_tween the input
—3.Pisin(7)10g; Pisin(7); Pis) Was the binned histogram of variablen and classification variable was given by

all interspike intervals, and its sum was normalized to 1. -

Likewise, pjs; , was the normalized histogram of interspike Meiass= Sinput (1= P1)[P00l0g 2 Poot (1~ Poo)10g;
intervals withn;=n andn=0 or 1[Figs. 2B) and 2C)]. -

The entropy of the input signal i§,p,= — (1—p1)logy(1 X (1= Poo) ]+ Pl P1110Gz Past (1~ P1s)log
—py)—piog; p;. For the example considered her$, . X(1-p)]. )
=0.215 bits per interval, antfl g, /S, = 0.446. .

An input pulse to neuron 1 did not always result in anHere pgg=0go/do, P12=0d11/91, P1 is the fraction of inter-
increase of the ISI of the second neuron during which theyals classified as event, a4, ,,; was as defined above. For
pulse occurred. Instead, the next interval or the one after thahe example in Fig. 3, we obtain@d,ss/ Sinpur= 0.708 for
was increased. Therefore, we took the mean of three conhe first neuron with a bin size of X1, andM/,dS

. . . t
secutive ISI's as the spike-train observabfe The mutual =0.423 for the second neuron. P
informationM|g, betweenr* andn was calculated as before,  For the example considered here the data processing in-
yielding Mg/ Si .= 0.362. equality is not violated, whereas in the work of ERA it is
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violated for the same model parameters. In the work of ERAfion n(t): gs,n=0 for n<4 andgs,,=0.1 forn>4. Again,
a temporal resolution between 3 and 30 was used, with this is not a critical feature, for a more gradual dependence
word size up to 16 for the spike-based mutual informationonn (a lower\ value), similar results were obtained. Third,
The coding fraction, the mutual information divided by the the threshold for neurotransmitter releasgjs=—1, and is
input entropy, varied between 1®and 0.4. Here the coding below the “afterhyperpolarization” of the model neuron
fraction, based on a single ISI, was close to their uppefluring regular spiking. In cortical synapses the threshold
range. Our calculation took into account spike timing at avas, say, betweer-50 and 0 mV, corresponding &,
length in the work of ERA should bkSI/At>70. Hence we ~could still be obtained when the value of was chosen
infer that the calculations of ERA were not performed at a@Ppropriately. The present value, = —1, may be appro-
high enough temporal resolution to extract all the informa-Priate for graded synapses, such as, for instance in the retina
tion in neuron 1's spike train. Our results show that for zerol9]- Therefore, the results of ERA are expected to hold for
noise most of the information about the input can be ex/nore general synaptic dynamifk0].
tracted from the spike train of neuron[@].

I1l. CONCLUSION

C. Biophysics of synaptic signal transduction In summary, the main premise of ERA remains true: the

A presynaptic action potential, arriving at a presynaptic"PUt signal may be hidden at one processing stage only to be
terminal, leads to neurotransmitter release across the synapfiecovered at a later stage. Their results also indicated that
cleft, opening ionic channels in the postsynaptic membrandlformation may be encoded in spike trains at vastly differ-
The resulting synaptic current in the postsynaptic neuron is §Nt témporal resolutions. To decode this information, more
product of the conductanag,, of the opened channels and sophisticated methods may be required, such as, for instance,
the electric driving force;e, —Xpost- Herexe, is the rever- f[hose b_aseq on return maps. However, the data processing
sal potential, andk,,s; is the membrane potential of the |nequa!!ty still rf-‘ma'”s Va.l'd' Here we proposed a methoq by
postsynaptic neuron. The published synapse model of ER)Q’h.'Ch hidden '”fofma“on can be extracted from sp|ke.
[5] has three features that do not completely account fofrains, gnd. shovyeq in an example .that the data processing
current physiological datésee Ref[4] for models of synap- Inequality is s_at|sf|ed. Mor_e study is n_eeded to de;ermme
tic transmissiop First, the electric driving force is propor- h_OW useful this reconstruction method is, and what its pos-
tional to the presynaptic membrane potential instead of th§Ible neural correlates are.
postsynaptic potentidld]. This means that for a saturated
synapsegsyn=9o for n>n, [5], the drive to neuron 2 is
proportional tox;. Neuron 2 has access to information about | thank Terry Sejnowski and Jorge Jofse their advice,
the input that normally would not cross the synapse, and thadrnaud Delorme for reading the manuscript, and Misha
is also not present in the spike train of neuron 1. For theRabinovich and Reynaldo Pinto for their comments on the
parameters used in Fig. 1, this did not significantly changemanuscript and for providing Ref10] prior to publication.
the results. Second, the value of the synaptic conductance This work was supported by the Sloan-Swartz Center for
essentially a step function of the neurotransmitter concentraFheoretical Neurobiology.
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