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Information transmission and recovery in neural communication channels revisited
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Nerve cells in the brain generate all-or-none electric events—spikes—that are transmitted to other nerve
cells via chemical synapses. An important issue in neuroscience is how neurons encode and transmit informa-
tion using spike trains. Recently, signal transduction through two neurons connected by an excitatory chemical
synapse was studied by Eguiaet al. @Phys. Rev. E62, 7111~2000!#. They reported an apparent violation of the
data processing inequality: The mutual information between the input signal and the output of the first neuron
can be lower than the mutual information between the input signal and the output of the second neuron, that
only receives input from the first neuron. We investigate whether it is possible, using a different method, to
retrieve, from the first neuron’s spike train, all the information about the input that is present in the second
neuron’s output. We find that single interspike intervals~ISI’s! from the first neuron, at a resolution of 0.5 time
units, contain more information about the input signal than those of the second neuron. Using a classification
procedure based on the ISI return map, we recover 71% of the input entropy using the first neuron’s spike train,
and only 42% using the second neuron’s spike train. Hence for these spike-train observables the data process-
ing inequality is not violated.

DOI: 10.1103/PhysRevE.64.012901 PACS number~s!: 87.10.1e, 89.70.1c, 05.45.2a
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I. INTRODUCTION

The brain consists of a large number of interconnec
neurons. Neurons generate trains of action potentials, sp
that are transmitted to other neurons via chemical synap
There is an ongoing debate whether the precise spike ti
encode information, or whether only the average spike ra
informative ~see, for instance, Ref.@1# !. It is therefore im-
portant to theoretically study how information can be e
coded in spike trains, and what part can be transmitted ac
synapses. Eguia, Rabinovich, and Abarbanel@2# ~abbreviated
ERA in the remainder of the report! studied the transmissio
of a pulsatile current injected in the first neuron, that proje
to the second neuron via an excitatory chemical synapse,
the output spike train of the second neuron. They found
while information is hidden in the output spike train of th
first neuron, it is actually transmitted to the second neur
and can be reconstructed on the basis of its output s
train. They showed that this leads to an apparent violation
the data processing inequality@3#: The mutual information
between the input and the first neuron is lower than t
between the input and the second neuron.

The data processing inequality is an exact mathema
identity for variables that form a Markov chain@7#. Consider
the variablesX ~the signal!, Y ~the output of neuron 1!, andZ
~the output of neuron 2!. X→Y→Z form a Markov chain,
whenY is a function ofX, Y5 f (X)1h1 andZ is a function
of Y, Z5g(Y)1h2 @hereh1 and h2 are arbitrary functions
that do not depend onX or Y: the mutual information
I (X,h1), I (X,h2), and I (Y,h2) is zero#. The mutual infor-
mation betweenZ andX is then smaller than or equal to th
mutual information betweenY and X, I (X,Z)5I (X,g(Y)
1h2)<I (X,Y) @7#. In numerical work the inequality may b
violated. For instance, in calculating the output spike trai
subthreshold signal might be thresholded away, thoug
might still be transmitted across the synapse. Then the
sumption thatX→Y→Z form a Markov chain is violated
1063-651X/2001/64~1!/012901~4!/$20.00 64 0129
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Furthermore, to calculate the entropy numerically the va
ablesX, Y, andZ need to be discretized into bins of widt
dX, dY, and dZ, respectively. When the signal depende
part ofY is smaller thandY, but the signal dependent part i
Z is larger thandZ, the data processing inequality would b
violated. Here we analyze the results presented by ERA
ing the time series of interspike intervals~ISI’s! of neurons 1
and 2. We find that the mutual information between the
of neuron 1 and the input signal is higher than that of the
of neuron 2 and the input. Furthermore, we find that
information is present at a finer temporal resolution and
larger word length~the number of bins in a symbol! than
studied by ERA.

We first reproduce the results presented in Fig. 2 of ER
and discuss the biophysical basis for the recovery of hid
information. Then we discuss how the input can be rec
structed based on interspike intervals. We conclude wit
discussion of the biophysical properties of the synapse mo
used by ERA.

II. RESULTS

A. Biophysical basis for information recovery

In Fig. 1 we have reproduced the results shown in Fig
of ERA for a different input spike train. The dynamical equ
tions were like those of ERA, and a subset of them was lis
in Refs.@5,6#. A synaptic currentJ1 consisting of nine pulses
was injected into the neuron 1@Fig. 1~A!, curvea#. In ‘‘burst
coding space’’ events are defined as hyperpolarizations in
membrane potentialx, that cross the thresholdxthr521
from above. Only two pulses were transduced into a hyp
polarization of the first neuron that went belowxthr521
@Fig. 1~A!, curveb#, whereas in the second neuron eight
the nine pulses could be identified as events in the memb
potentialx @Fig. 1~A!, curve c#. Hence the data processin
inequality is violated in burst coding space as reported
ERA. Although the third pulse@Fig. 1~B!, curvea# was not
©2001 The American Physical Society01-1
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FIG. 1. ~A! The synaptic input
current J1 ~curve a), the mem-
brane potentialx1 of the first neu-
ron ~curve b), andx2 of the sec-
ond neuron ~curve c), and the
interspike intervals of neuron 1
t i

1 , ~curve d) and neuron 2,t i
2

~curvec), are plotted as functions
of time t. ~B! Curve a (J1), b
(x1), c @the neurotransmitter con
centration n(t)#, d the synaptic
currentJ2 to neuron 2, ande x2 vs
time. In curvec the threshold con-
centrationn054 ~dashed line! is
also plotted. Parameter values a
given in Ref.@5#.
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transduced into a visible hyperpolarization in neuron 1, it
increase the interspike interval@Fig. 1~B!, curveb#, and the
membrane potential was close to~but above! xthr521 for a
longer time. As a result, the neurotransmitter concentra
dropped below the threshold,n054, of the synaptic conduc
tance@Fig. 1~B!, curvec# and the synaptic current droppe
from J2'0.4 to zero@Fig. 1~B!, curved#. This ‘‘inhibitory’’
pulse inJ2 is a factor 20 larger than the one inJ1, and hence
caused a large increase in the interspike interval of neuro
and a pronounced hyperpolarization@Fig. 1~B!, curvee#.

The signal transduction mechanism is therefore as
lows. Increases in the ISI of the first neuron are a relia
indicator of the presence and time of an inhibitory pulse. T
thresholdn0 was tuned so that a small increase in the
causedn to drop belown0, leading to a large reduction in th
synaptic current into neuron 2, but for the unperturbed ISn
always stayed aboven0.

The amount of hyperpolarization induced by the sig
depends on the value of the internal neuronal variablesy, z,
and w, that vary in time. Hence, depending on the arriv
time of the input pulse, a small or large hyperpolarizati
was induced. The probability for a large hyperpolarizati
increased with increasing pulse amplitude. ForJ0520.05 in
the first neuron, the probability was quite low. Since t
amplitude ofJ2 is about a factor 20 large thanJ1, the signal-
induced reduction inn(t) reliably induced a hyperpolariza
tion belowxthr521 in neuron 2. Thus the biophysical su
strate for the recovery of hidden information is the high
gain of the second synapse compared to the first one.

B. Mutual information analysis

Each presynaptic pulse inJ1 led to an increase in the
current interspike interval of neuron 1,t i

15t i 11
1 2t i

1 @Fig.
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FIG. 2. Interspike intervals of neuron 1 contain informatio
about the input. The interspike intervalt i

1 is plotted vs its starting
time t i ~solid line!; the presence of an input pulse during the interv
is indicated with a filled circle. Also shown is the histogram of I
values during which~B! no input pulse occurred, and~C! an input
pulse occurred; the bin width is 0.5. For clarity, bin entriesnISI

above 200 were cut off in the graph. During a simulation run o
3105 time units, 805 input pulses were injected, resulting in 235
interspike intervals for neuron 1 and 38897 for neuron 2. Mo
parameters are given in the text and in Ref.@5#.
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FIG. 3. ~Color! Classification
procedure using the return ma
for ~A! neuron 1 and~B! neuron 2.
The data are the same as in Fig.
(t i ,t i 11) was assigned a variabl
ni and classificationci , whereni

51, when there was an inpu
pulse during intervalt i , and ni

50 otherwise. (t i ,t i 11) was di-
vided into a two-dimensional se
of bins (k,l ) with a height and
width equal to 1. The number o
points in bin (k,l ) with n50,
akl , and n51, bkl , was deter-
mined. When (t i ,t i 11) fell in bin
(k,l ), it was classified asci51
when bkl>akl , and ci50 other-
wise. Curvea: The return map,
ni50 ~black symbols! and ni51
~red symbols!. Curveb: The clas-
sification bins (k,l ) color coded
according tobkl.akl ~red!, bkl

,akl ~black! andbkl5akl ~blue!.
Curvec: Results of the classifica
tion procedure; each (t i ,t i 11) is
color coded,ni51, ci51 ~red!,
ni50, ci50 ~black!, ni51, ci

50 ~green!, and ni50, ci51
~blue!. The insets in curvesb and
c are close-ups.
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2~A!#. Heret i
1 is the i th spike time of neuron 1. For simplic

ity, the superscripts 1, 2 ont are suppressed in the following
A variable ni was assigned to eacht i , ni51 when there
was an input pulse during the intervalt i ~i.e., betweent i

1

and t i 11
1 ), and ni50, otherwise. The mutual informatio

between t i and ni was MISI5SISI2@(12p1)SISI,0
1p1SISI,1#, p1 was the fraction of interspike intervals wit
ni51, SISI52(tpISI(t)log2 pISI(t), and SISI,n5
2(tpISI,n(t)log2 pISI,n(t); pISI was the binned histogram o
all interspike intervals, and its sum was normalized to
Likewise, pISI,n was the normalized histogram of interspik
intervals with ni5n and n50 or 1 @Figs. 2~B! and 2~C!#.
The entropy of the input signal isSinput52(12p1)log2(1
2p1)2p1log2 p1. For the example considered here,Sinput
50.215 bits per interval, andMISI /Sinput50.446.

An input pulse to neuron 1 did not always result in
increase of the ISI of the second neuron during which
pulse occurred. Instead, the next interval or the one after
was increased. Therefore, we took the mean of three c
secutive ISI’s as the spike-train observablet* . The mutual
informationMISI8 betweent* andn was calculated as before
yielding MISI8 /Sinput8 50.362.
01290
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More information could be recovered from the first ne
ron’s spike train by considering two consecutive ISI’s~Fig.
3!. Each point (t i ,t i 11) was characterized byni , and its
classificationci . ci51 when it was classified as having a
input pulse during intervalt i and ci50 otherwise@Figs.
3~A!, curvec, and 3~B!, curvec#. qc is the number of inter-
vals with ci5c, qnc is the number of intervals with bothni
5n, and ci5c. The mutual information between the inpu
variablen and classification variablec was given by

Mclass5Sinput1~12 p̂1!@p00 log 2 p001~12p00!log2

3~12p00!#1 p̂1@p11 log2 p111~12p11!log2

3~12p11!#. ~1!

Here p005q00/q0 , p115q11/q1 , p̂1 is the fraction of inter-
vals classified as event, andSinput was as defined above. Fo
the example in Fig. 3, we obtainedMclass/Sinput50.708 for
the first neuron with a bin size of 131, andMclass8 /Sinput8
50.423 for the second neuron.

For the example considered here the data processing
equality is not violated, whereas in the work of ERA it
1-3
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violated for the same model parameters. In the work of ER
a temporal resolution between 3 and 30 was used, wit
word size up to 16 for the spike-based mutual informati
The coding fraction, the mutual information divided by th
input entropy, varied between 1023 and 0.4. Here the coding
fraction, based on a single ISI, was close to their up
range. Our calculation took into account spike timing a
resolution of Dt50.5; for equivalent accuracy the wor
length in the work of ERA should beISI/Dt.70. Hence we
infer that the calculations of ERA were not performed a
high enough temporal resolution to extract all the inform
tion in neuron 1’s spike train. Our results show that for ze
noise most of the information about the input can be
tracted from the spike train of neuron 1@6#.

C. Biophysics of synaptic signal transduction

A presynaptic action potential, arriving at a presynap
terminal, leads to neurotransmitter release across the syn
cleft, opening ionic channels in the postsynaptic membra
The resulting synaptic current in the postsynaptic neuron
product of the conductancegsyn of the opened channels an
the electric driving forcexrev2xpost. Herexrev is the rever-
sal potential, andxpost is the membrane potential of th
postsynaptic neuron. The published synapse model of E
@5# has three features that do not completely account
current physiological data~see Ref.@4# for models of synap-
tic transmission!. First, the electric driving force is propor
tional to the presynaptic membrane potential instead of
postsynaptic potential@8#. This means that for a saturate
synapse,gsyn5g0 for n.n0 @5#, the drive to neuron 2 is
proportional tox1. Neuron 2 has access to information abo
the input that normally would not cross the synapse, and
is also not present in the spike train of neuron 1. For
parameters used in Fig. 1, this did not significantly chan
the results. Second, the value of the synaptic conductanc
essentially a step function of the neurotransmitter concen
01290
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tion n(t): gsyn50 for n,4 andgsyn50.1 for n.4. Again,
this is not a critical feature, for a more gradual depende
on n ~a lowerl value!, similar results were obtained. Third
the threshold for neurotransmitter release isxthr521, and is
below the ‘‘afterhyperpolarization’’ of the model neuro
during regular spiking. In cortical synapses the thresh
was, say, between250 and 0 mV, corresponding toxthr
between 0 and 1. However, for these values, similar res
could still be obtained when the value ofn0 was chosen
appropriately. The present value,xthr521, may be appro-
priate for graded synapses, such as, for instance in the r
@9#. Therefore, the results of ERA are expected to hold
more general synaptic dynamics@10#.

III. CONCLUSION

In summary, the main premise of ERA remains true:
input signal may be hidden at one processing stage only t
recovered at a later stage. Their results also indicated
information may be encoded in spike trains at vastly diff
ent temporal resolutions. To decode this information, m
sophisticated methods may be required, such as, for insta
those based on return maps. However, the data proces
inequality still remains valid. Here we proposed a method
which ‘‘hidden’’ information can be extracted from spik
trains, and showed in an example that the data proces
inequality is satisfied. More study is needed to determ
how useful this reconstruction method is, and what its p
sible neural correlates are.

ACKNOWLEDGMENTS

I thank Terry Sejnowski and Jorge Jose´ for their advice,
Arnaud Delorme for reading the manuscript, and Mis
Rabinovich and Reynaldo Pinto for their comments on
manuscript and for providing Ref.@10# prior to publication.
This work was supported by the Sloan-Swartz Center
Theoretical Neurobiology.
.

.

@1# M. N. Shadlen and W. T. Newsome, J. Neurosci.18, 3870
~1998!.

@2# M. C. Eguia, M. I. Rabinovich, and H. D. I. Abarbanel, Phys.
Rev. E62, 7111~2000!.

@3# A. Borst and F. Theunissen, Nat. Neurosci.2, 947 ~1999!.
@4# A. Destexhe, Z. F. Mainen, and T. J. Sejnowski, Neural Com

put. 6, 14 ~1994!.
@5# The model equations for neurons 1 and 2 are as given belo

Eq. ~15! of ERA with Jdc15Jdc253.4. We use the same no-
tation as in ERA. The input signal is a synaptic current,
J1(t)5J0( iQ(t2t i)@(t2t i)/t#e2(t2t i )/t; heret is the time,t i

is the i th input spike time,Q is the Heaviside functionQ(x)
51 for x.0 andQ(x)50 for x,0, t510, andJ0520.05.
The spike timet i was generated by ag process of order 2 with
an average interspike interval equal to 1000. The synaptic cu
rent in neuron 2 induced by neuron 1 isJ2(t)5gsyn„xrev

2x1(t)…; heregsyn5g0 /$11exp@2l„n(t)2n0…#% is the syn-
aptic conductance,x1 is the membrane potential of presynaptic
neuron 1,n is the neurotransmitter concentration given by
-

w

r-

dn/dt5Q„x1(t)2xthr…„x1(t)2xthr…2an(t), a50.05, g0

50.1, l550, n054, andxrev53. The set of equations was
integrated using a fourth order Runge-Kutta method@Numeri-
cal Recipes~Ref. @6#!#, with time stepdt50.01.

@6# W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P
Flannery, Numerical Recipes~Cambridge University Press,
Cambridge, 1992!.

@7# T. M. Cover and J. A. Thomas,Elements of Information
Theory~Wiley, New York, 1991!.

@8# The formula for the synaptic current into neuron 2,J2

5gsyn(xrev2x1), in Ref. @2# contained a typographical error.
However, the numerical simulations in Ref.@2# were per-
formed with the correct equation,J25gsyn(xrev2x2) @M. I.
Rabinovich,~private communication!#.

@9# G. M. Shepherd,The Synaptic Organization of the Brain~Ox-
ford University Press, New York, 1998!.

@10# M. I. Rabinovich, R. D. Pinto, E. Tumer, G. Stiesberg, R
Huerta, H. D. I. Abarbanel, and A. I. Selverston~unpublished!.
1-4


