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Intrinsic noise and random synaptic inputs generate a fluctuating current across neuron membranes. We
determine the statistics of the output spike train of a biophysical model neuron as a function of the mean and
variance of the fluctuating current, when the current is white noise, or when it derives from Poisson trains of
excitatory and inhibitory postsynaptic conductances. In the first case, the firing rate increases with increasing
variance of the current, whereas in the latter case it decreases. In contrast, the firing rate is independent of
variance (for constant mean) in the commonly used random walk, and perfect integrate-and-fire models for
spike generation. The model neuron can be in the current-dominated state, representative of neurons in the in
vitro slice preparation, or in the fluctuation-dominated state, representative of in vivo neurons. We discuss the
functional relevance of these states to cortical information processing.

PACS number(s): 87.19.La, 87.17.Nn, 87.17.Aa

I. INTRODUCTION

The random-walk (RW) [1,2], and integrate-and-fire
(IAF) models [3] were introduced to account for the stochas-
tic discharge of neurons that was measured experimentally.
Recently, the highly variable discharge of cortical neurons in
vivo has led to renewed interest in these models [4-8]. In
vivo neocortical neurons undergo a constant bombardment
by excitatory and inhibitory postsynaptic potentials (EPSPs
and IPSPs). Under these conditions, the IAF model neuron
produces a regular spike train (low coefficient of variation,
Cy<1, see below), whereas in the cortex the neurons actu-
ally fire with a Cy=~1 [4]. A number of modifications of the
standard IAF have been proposed to make it spike at a higher
Cy, such as balanced excitatory and inhibitory synaptic in-
puts [5,8], physiological gain [9], and partial reset after an
emitted spike [10]. The issue of high Cy values has, how-
ever, only partially been addressed using more realistic bio-
physical model neurons [8,11,12]. How do the Cy values of
the neuronal discharge of a biophysical neuron depend on the
statistical characteristics of its fluctuating input current? How
is the neuron’s in vivo dynamics different from that in the in
vitro preparation?

Here we address these two issues theoretically. We sys-
tematically study a biophysical model neuron with Hodgkin-
Huxley voltage-gated channels. The model neuron produces
short duration action potentials with a fast after-
hyperpolarization, and it can fire at high sustained firing
rates, consistent with the properties of regular and fast spik-
ing cortical neurons [13]. We apply to the model neuron two
fluctuating current drives: a white-noise current with mean /
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and variance D, and a Poisson train of excitatory and inhibi-
tory postsynaptic conductances, characterized by mean %
and variance 7, of the resulting synaptic currents. The main
result is that the source of the fluctuating currents matters:
The firing rate is differently affected by the variance, D, of a
white-noise current drive compared to the variance 7, of a
conductance drive. The commonly used RW model does not
account for this effect of the variance on the firing rate. Also,
the model neuron can be in the fluctuation- or current-
dominated state depending on the value of the variance. The
potential information encoding capacity of the neuron is
qualitatively different in these states.

II. METHODS
A. Model equations

The neuron is modeled as a single compartment with
Hodgkin-Huxley-type voltage-gated sodium and potassium
currents, with the rate functions and values for the maximum
conductances as given in Ref. [14]. Briefly, the equation for
the membrane potential V of a neuron is

av
C’"Ef=

—INa_IK_IL_Isyn+Iapp+Cm‘g' (1)
Here Ing, Ik, 115 Isyns Lapp,> and C,,€ are the sodium, po-
tassium, leak, synaptic, externally applied, and noise cur-
rents, respectively. A detailed description of the model can
be found in Ref. [15]. The currents are measured in xA/cm?
units and C,,=1 uF/cm? is the membrane capacitance. The
resulting equations are integrated using an adapted second-
order Runge-Kutta method designed for stochastic differen-
tial equations [16], with a step size d¢t=0.01 ms. The accu-
racy of the zero noise results was checked against results
obtained with a smaller step size and using a fourth-order
Runge-Kutta algorithm [17].
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There were two types of noise models. The first was a
white-noise current, i.e., (£(£)&(t'))=2D&(t—t") (D is ex-
pressed in mV?/ms) as in [18], and the synaptic current Ly,
in Eq. (1) was set to zero. The second was a sum of inhibi-
tory and excitatory conductances,

Isyn=gese(t)(V—Ee)+gisi(t)(v_'Ei)a )

where the maximum conductance is g,=g;=2.0 mS/cm?,
and the reversal potentials are E,=0 mV and E;=—75 mV,
for the excitatory and inhibitory synapses, respectively. Uni-
tary EPSPs (IPSPs) are modeled as quantal conductance in-
creases, As,=0.001 (As;=0.005), in the synaptic kinetic
variable s,(¢) [s;(¢)]. The conductance pulses in s,(¢) and
s;(t) decay exponentially in time with a time constant 7,
=2 ms (7;=10 ms). The postsynaptic potentials are inde-
pendent and Poisson-distributed with average firing rates f,
and f;, respectively. For the simulations of the conductance-
driven neuron, 1=0.10 wA/cm?, yielding a resting mem-
brane potential V= —62.305 mV.

B. Mean and variance of the current for a conductance drive

The goal is to characterize the effects of the average syn-
aptic drive and its variance. This is not as straightforward as
in the white-noise case. The EPSPs and IPSPs open synaptic
channels, and thus result in an increased conductance, a
changed average driving current, and a new resting mem-
brane potential. The statistical properties of the driving force
Iy, are the mean,

775<Isyn>=ﬂe<se>+ﬂi<si>v 3
with B,=g (E,— V) and {(s.)=7.f.As, (with similar ex-

pressions for the inhibitory part in this formula, and the ones
that follow); and the variance,

772"__‘<I§yn>_ 7’2=Ae+Aiv “
with Ae= %ﬂf(%)Ase and Ai= %ﬂ?(s,-)AS,- .

To keep 7 constant, with the membrane potential clamped
at Vi, it is necessary to covary Af, and Af; according to

_ BiAs;T;
Afe_ BeASeTe f‘ ’ (5)
whereas to keep 7, constant,
BIAstT;
Af,=————Af;. 6
fe Ay, fi (6)

Here we use fe=fg+Afe andf,-=f?+Af,-, with initial pr-
esynaptic firing rates f 2 and f ? . Because of the effects of the
synaptic conductances on the resting potential, and the pos-
sible generation of action potentials, the mean of the actual
synaptic currents is not constant for constant 7. (This would
only be the case when the synaptic conductances are small
compared to the leak conductance.) The quantities 7 and 7,,
however, do have a clear experimental correlate. They are
the mean and variance of the current that needs to be injected
into a neuron to keep its voltage constant (voltage clamp)
while receiving a specific synaptic drive. Here we investigate

TIESINGA, JOSE, AND SEINOWSKI

PRE 62

how this synaptic drive affects the dynamics of a current-
clamped neuron as a function of 7 and 7,.

C. Calculated quantities

The raw data obtained from the simulations are the volt-
age V(t) traces at discrete times ¢t=n dt. The ith spike time
is defined as the time ¢; (expressed in ms) when the voltage
crosses 0 mV from below. The ith interspike interval (ISI) is
given by 7;,=t;,—t;. We calculate its mean, 751, and stan-
dard deviation oyg;. The coefficient of variation (Cy) is de-
fined as the ratio Cy=o0g/ 75 The firing rate in Hz is
given by f=1000/7ig;. We also determined the interspike
interval histogram (ISIH) in 500 bins of width A7=(50
—400)dt. We calculated the entropy S of the ISIH [19] when
at least 99% of the intervals generated in the simulations are
accounted for in the ISIH:

S=—Z p;logy pi+log, AT 0
13

Here p; is the numerical estimate for the probability of an ISI
falling in bin i. The information rate R is S/ 7ig; -

We performed least-squares fits of the ISIH to a gamma
probability distribution function, P(t), with fitting param-
eters u, r, and 7,4:

r(e__ r=1_—ur(t—7y
P(t)z(#r) (¢ 'r;)(r)e it T

(t>72), (8)

and P is equal to zero for t=<r7,. The fitting parameters can
be related to the moments of the distribution: 7= (1/1)
+74, g15=Upr, and Cy=1[Vr(1+p7y)].

We used both the Powell and Marquardt-Levenberg rou-
tines from Ref. [17] to minimize the square of the deviation
between the fitting function and the data. A fit was accept-
able when the average and variance of the ISIH and the
fitting function differed less than 2%, the value of x? (for
optimal bin width, see [17]) was less than 2 and the param-
eters obtained by the different optimization routines differed
by less than 10%.

III. RESULTS
A. White-noise-driven neuron

First consider the behavior of a white-noise-driven neuron
as a function of the driving current I (Fig. 1). The rheobase is
defined as the current /4, at which the neuron starts firing
repetitively, here I ;4.,~0.16. For D =0, the firing rate versus
current (f-I) characteristic resembles a square-root function
above the rheobase [20], and below the rheobase the firing
rate is zero. There is low-frequency noise-induced spiking
below the rheobase for D =0.004. In that case, the Cy starts
out at values close to 1 for currents near the rheobase, but
quickly decreases with increasing current. For stronger noise,
D=2, the f-1I is approximately linear over its entire range
[21], and the Cy does not vary strongly with current.

We studied the output statistics as a function of D for two
current values, I=0.16, close to, but still below, the rheo-
base, and I=0.6, above the rheobase (Fig. 2). The variance
oyg1 increases with increasing D for /=0.6, but decreases for
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FIG. 1. White-noise-driven neuron. (a) The firing rate £, and (b)
the coefficient of variation Cy as a function of injected current /.
From top to bottom, the noise strength is D=8, 2, 0.2, 0.04, and
0.004. Averages are calculated over 20X 10° ms after discarding a
transient of 500 ms. The solid lines for D=8, 2, and 0.2 are running

averages over four points. The original data points are plotted as
small circles.

I=0.16. At the same time, the firing rate increases approxi-
mately as D for I=0.16, whereas it spikes repetitively at an
approximately constant firing rate from D=0 to D~1 for
I=0.6. The model neuron can thus be in two dynamical
states depending on its input: For /=0.16, it is in the
fluctuation-dominated state, and for /=0.60 (D<1), in the
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FIG. 2. White-noise-driven neuron. (a) The firing rate f, (b) the
standard deviation og;, (c) the entropy S per interval, and (d) the
entropy rate R versus noise variance D. We used /=0.16 (filled
circles) and I=0.60 (filled triangles). Averages are calculated over
200X 10* ms after discarding a transient of 5X 10* ms.
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current-dominated state. These results are consistent with the
theory presented in Ref. [20] for the excitable (fluctuation-
dominated) and oscillatory (current-dominated) regime of
their type-I neuron. We also determine the Shannon entropy
[Eq. (7)] of the distribution of ISIs [Fig. 2(c)]. It represents
the maximum amount of information that in principle can be
coded in one interval [22,19]. For I=0.16 it decreases with
D, whereas for I=0.6, it initially increases, and then con-
verges to the /=0.16 result. The information capacity per
interval for =0.16 is higher compared to the capacity for
I=0.6. However, the converse holds for the information rate
R, since the firing rate for I=0.6 is higher.

In Fig. 3, five ISIHs with the corresponding voltage time
traces are shown with D increasing from top to bottom. We
fitted the ISIH to a gamma probability density function (pdf),
given in Eq. (8). For D =0.024, the spike train is regular, the
ISIH is sharp, and it is fitted by a gamma pdf of order r
>30. In fact, a Gaussian distribution is also a good fit (not
shown). For higher D values, the spike train is more variable
and the ISIH is broader. The ISIH is also more asymmetric:
the left-hand side of the ISIH is less stretched compared to
its tail on the right-hand side. The r value of the fitting func-
tion decreases to approximately 3. For D =36, the neuron is
in the fluctuation-dominated regime. The r value is close to
1, corresponding to a Poisson spike train, and the ISIH re-
sembles an exponential distribution. However, the fit shown
in Fig. 3(i) did not satisfy the criteria for a good fit (see Sec.
II). The voltage trace for D =36 resembles those measured in
in vivo experiments [23,24].

The entropy of the Gaussian, gamma, and exponential dis-
tributions are, respectively [19],

SGuss=10g; o151+ 7 logy 2 e, ©)

S gamma=1082 os1+10g, I'(r) +[(1—r)¢f(r) +r]/In2,
(10)
Sexp'_— 10g2 O'ISI'I' 1/In2. (11)

Here I' is the gamma function and ¢ is its logarithmic de-
rivative [25)]. The entropy depends on o as log; oygp with
an additive constant that depends on the shape of the distri-
bution. The Gaussian distribution has the highest entropy for
a given variance: the additive constant is log, 2we~2.05,
compared to 1/In2~1.44 for the exponential distribution.
The additive constant for the gamma pdf takes a value be-
tween the Gaussian and exponential result: for r=1, S,mm,
=Sexp» and for large r, Sgumma— SGauss- Therefore, there is
an optimum in the entropy per interval in Fig. 2(c), since
there is a maximum in o itself [Fig. 2(b)] and the r value
of the distribution decreases from r>30 to r=1.

B. Conductance-driven neuron

For the conductance-driven neuron, we use 7 and 7, as
parameters, but in the simulations we actually vary the pr-
esynaptic firing rates f; and f,. Since the firing rates are
always positive, it is not possible to have a finite # while at
the same time 7,=0. The current-dominated regime found
in the white-noise-driven neuron for low variance and mod-
erate mean is small in the conductance-driven neuron for the
parameter values used here.
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FIG. 3. White-noise-driven neuron. Left-hand
side: ISIH (solid line), and the gamma probability
density function fitted to it (dashed line) as a
function of the interspike interval 7; right-hand
side: corresponding voltage time traces. From top
to bottom, D=0.024 (a,b), 0.08 (c,d), 0.8 (e,f), 4
(g.h), and 36 (i,j) with I=0.6. The fitting param-
eters are (u,r,7;,x*)=(0.096,30.0,15.6,1.3),
(0.071,17.1,11.9,1.2), (0.061,3.29.0,1.2),
(0.059,1.6,5.9,3.0), and (0.10,1.0,3.2,4.2), re-
spectively. See text for details. Averages are cal-
culated over 200X 10° ms after discarding a tran-
sient of 500 ms.

i' T T T 50
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0 20 40 60 800 900
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We first keep 7, constant, and vary 7. The results are
similar to those in Fig. 1. The firing rate increases when
increasing 7, but the Cy and the entropy per interval de-
crease [Fig. 4(I)]. Note that the f-# characteristic is sublin-
ear for small » [Fig. 4(Ia)].

The behavior for constant # and varying 7, is shown in
Fig. 4(1). The firing rate now decreases with increasing vari-
ance. This counterintuitive effect occurs because in order to
increase the variance, more synaptic channels need to be
opened. As a result, the total conductance increases (i.e., the
input resistance is reduced), making it harder for the current
to drive the neuron to a spiking threshold. Hence the firing
rate decreases. The Cy increases with the variance 7,, as for

the white-noise-driven neuron.

In Fig. 5 we show the ISIHs and the gamma-pdf least-
squares fit. The r value of the fitting function decreases from
approximately 3 to 1 with decreasing #. The first three fits
have relatively high x? values, due to significant deviations
of the ISIH from a gamma pdf for large ISI values. However,
the deviations for ISI values near the mode of the distribu-
tion are small and the fit appears reasonable.

C. Comparison of Cy- 75 curves

In Fig. 6, we compare (a) the RW and IAF models, (b) the
white-noise-driven, and (c) the conductance-driven neuron.
We plot the Cy versus 7ig; curves for constant mean of the

FIG. 4. Conductance-driven neuron. (a) The
firing rate f, (b) the coefficient of variation Cy,

(c) the entropy S per interval, versus (I) the mean
drive 7 and (II) the variance of the drive 7,.
Here (I) 7,=0.0251 (circles), 0.137 (squares),
and 0.216 (diamonds); and (II) %=0.0997
(circles), 0.174 (squares), and 0.263 (diamonds).

Averages are calculated over at least 200X 10°
ms after discarding a transient of at least 5% 10°

ms.

(7 B\e\"\e\_
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FIG. 5. Conductance-driven neuron. Left-
hand side: ISIH (solid line), and the gamma prob-
ability density function fitted to it (dashed line) as
a function of the interspike interval 7; right-hand
side: corresponding voltage time traces. From top
to bottom: 7=0.254 (a,b), 0.151 (c,d), 0.069
(e,f), 0.023 (g,h) with 7,=0.0251. The fitting pa-
rameters are (u,r,7,,x°)=1(0.048,3.3,27.2,28),
(0.021,1.7,36.4,5.9), (0.0051,1.3,43.9,2.44), and
(0.0015,1.1,52.0,1.1), respectively. See text for
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details. Averages are calculated over 5000X 10
ms after discarding a transient of 5 X 10> ms. The
action potentials appear to vary in amplitude.
This is due to the undersampling of the voltage

L
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1
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trace at 0.5 ms for display purposes.

0.00
0 500 1000 0
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current drive (solid lines), d, I, and 7, respectively, and for
constant variance (dashed lines), D, D, and 17,, respectively.

The mean and variance of the interspike intervals can be
calculated analytically for the RW and perfect IAF model.
For the RW model, we have [26].

é
7'151=2»
éD
TSI (12)
D DTISI
Cy= - 7

Here d is the mean and D the variance of the drive, and @ is
the spiking threshold. In the perfect IAF model, the mem-
brane potential does not decay in time, and the postsynaptic
potentials are modeled as & pulses with strength g; and a,,
for inhibitory and excitatory pulses, respectively. In that
case, Egs. (12) also hold [26], with d=a,f,—a;f; and D
=a3fe+a,?f,- and presynaptic firing rates f; and f,. In Fig.
6(a), we plot the constant D and d lines according to Egs.
(12). The solid curves in Fig. 6(a) are parallel to the Cy axis.
The firing rate is constant; only the Cy increases with D. The
dashed curves are convex, Cy~ Tja.

In Fig. 6(b) there are two types of solid lines. Solid lines
that start at Cy=0 with a finite value of 75 (current-
dominated regime). On these lines the firing rate is constant
while the Cy increases. However, for higher Cy values these
lines curve towards the left of the graph: the Cy and the
firing rate increase at the same time. The other solid line (we
show only one example, denoted by an asterisk *) starts out
at large 7ig; values with a finite Cy value (fluctuation-
dominated regime). The dashed lines all curve upwards; the
Cy increases with increasing 7ig;. Thus the same noise vari-
ance D leads to comparatively more jitter for lower firing
rates.

For the conductance-driven neuron [Fig. 6(c)], the solid
lines curve toward the right: the Cy and 75 increase at the

1000 2000 3000 4000 5000
t (ms)

same time, because the firing rate decreases with variance
[see also Fig. 4(a)]. The dashed curves are concave com-
pared to convex in Figs. 6(a) and 6(b).

In summary, the most important difference between the
four different neuron/driving force models is their behavior

1.0 |

J 0.5

0.0

1.0

J 0.5

0.0
10

Ty (MS)

FIG. 6. The Cy versus g curves for (a) RW and perfect IAF
model, (b) white-noise-driven neuron, and (c) conductance-driven
neuron. On the solid lines the mean current is kept constant,
whereas on the dashed lines the variance is kept constant. The
curves in (b) and (c) are obtained from numerical simulations,
whereas those in (a) are the analytical results from Eq. (12). The
parameter values in (b) are, for solid lines from right to left, /
=0.16, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9; and for the dashed
lines from bottom to top, D =0.004, 0.04, 0.20, 2.0, and 8.0. In (c)
we have from right to left (solid lines), #=0.10, 0.17, and 0.2629;
and from bottom to top (dashed lines), 7,=0.015, 0.025, and
0.041. Averages are calculated over at least 200X 10> ms after dis-
carding a transient of at least 500 ms.
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as a function of the variance of the fluctuating current. For
the white-noise-driven neuron, the firing rate increases with
the variance, whereas in the conductance-driven neuron it
decreases, and for the RW and perfect IAF models it remains
the same.

IV. DISCUSSION

The model neuron can be in two different dynamical
states that have clear physiological correlates. Neurons in the
in vitro slice preparation are characterized by a low intrinsic
noise level [27], and they receive little synaptic drive. This
suggests that their dynamics is current-dominated. In con-
trast, in vivo neurons are constantly being bombarded by
EPSPs and IPSPs, and fire at high Cy values [8]. Indeed,
recent experiments show that the input resistance of cortical
neurons in vivo can be up to five times lower than their input
resistance in the absence of synaptic inputs [23,24]. The vari-
ance of the voltage fluctuations is also higher with synaptic
inputs present [23,24]. This resembles the fluctuation-
dominated conductance-driven state reported in this paper. In
what follows, we discuss the functionally relevant differ-
ences between these two states and suggest future experi-
ments.

The f-1I in the current-dominated state is highly nonlinear.
Close to the rheobase, a small increase in input current can
lead to a large increase in firing rate. The f-I in the
fluctuation-dominated state is linear for white-noise-driven
neurons, and it can be sublinear for conductance-driven neu-
rons. The dynamical range is much larger in fluctuation-
dominated, conductance-driven neurons. As a result, cortical
neurons are able to maintain their firing rate within a fixed
range despite their constant synaptic bombardment and a
wide range of input frequencies [8].

In the current-dominated state, the ISI are distributed ac-
cording to a Gaussian, or gamma (with r>1) [Eq. (8)], prob-
ability distribution. The information capacity of a Gaussian
distribution is maximal at a given value for the variance
os1- Therefore, the potential information content is maximal
in the interspike intervals or, equivalently, in the instanta-
neous firing rate, 1/7; (see Sec. II). In the fluctuation-
dominated state, the ISI are distributed according to a
gamma distribution with r values close to 1. A Poisson spike
train (r=1) has the highest information rate per spike time
at a given firing rate [28,19]. In the fluctuation-dominated
state, therefore, the potential information content of the spike
times is maximal. This suggests that the nature of informa-
tion processing might be different in the fluctuation versus
current-dominated states. It also lends support to the idea
that the neuron can act as a rate coder or a spike-time coder
depending on the input types.

Simple models, such as the perfect IAF and RW, were
used in previous studies of neuronal variability [1,3,8]. These
models can produce spike trains with almost any value for
the firing rate and Cy for more or less realistic parameter
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values [9,10]. This approach is useful when considering a
neuron in isolation. However, in a network of neurons it is
also important to correctly model how a neuron responds to
dynamical changes in the mean and variance of the fluctuat-
ing drive. Here we have shown that these models do not
account for the variance effects of fluctuating currents that
were observed in more realistic biophysical models. It is im-
portant to include the contributions of synaptic noise explic-
itly as synaptic conductances. Salinas and Sejnowski [29]
have shown that the leaky IAF model can account for the
variability observed in experiment [8] if synaptic conduc-
tances are included. An important issue is whether and to
what extent that would change results obtained previously in
networks of integrate-and-fire neurons without synaptic con-
ductances, such as, for example, Refs. [8,30,31]. This re-
mains for future study.

We have also studied the statistics of the output spike
train of a biophysical model neuron as a function of the mean
and variance of the stochastic driving current. As mentioned
before, the input parameters have a clear experimental ana-
log: they are the mean and variance of the injected currents
in voltage-clamp mode that are necessary to keep the neuron
at a constant membrane potential. However, during current-
clamp mode the voltage is able to change according the neu-
ronal dynamics, allowing the statistics of the output spike
train to be determined. Using in vivo measurements of the
mean and variance of the fluctuating current, and the distri-
bution of EPSP and IPSP characteristics, one can estimate
the presynaptic spiking rates f; and f, using Eqgs. (3) and (4).
The output statistics can subsequently be measured in the
current-clamp mode. During in vivo experiments, however,
one has relatively little control over the statistics of the syn-
aptic inputs, but during in vifro experiments one can inject a
current with arbitrary statistical properties. One of the key
results in this paper is that the source of the variance matters:
a current drive is different from a conductance drive. One
therefore has to inject conductances into the neuron using the
recently developed dynamic-clamp technique [32]. The Cy
versus 7ig; diagrams can then be reconstructed by systemati-
cally varying f; and f,,. Can the in vivo dynamics of neurons
be reproduced in the in vitro preparation by injecting synap-
tic conductances? Does the firing rate of neurons decrease
when the variance of the fluctuating current is increased?
Experiments are presently in progress to address these ques-
tions [33].
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