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Abstract

We study the stability and information encoding capacity of synchronized states in a neur-
onal network model that represents part of the thalamic circuitry. Our model neurons have
a Hodgkin}Huxley-type low threshold calcium channel, display post-inhibitory rebound, and
are connected via GABAergic inhibitory synapses. Noise drives both the subthreshold non-
spiking as well as the above threshold regularly spiking state into a self-organized, stochasti-
cally synchronized state. Neuronal "ring is organized in stochastic clusters, with individual
neurons hopping from cluster to cluster. The information content of the resulting spike trains
consists of two separate contributions: the spike-time jitter around cluster "ring times, and the
hopping from cluster to cluster. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The brain receives an enormous amount of information transduced by peripheral
sense organs. This massive information in#ux is coded and decoded in ways that are
not yet fully understood in cognitive neuroscience. Recent studies have focussed on
speci"c neural substrates for binding mechanisms. Binding is the process by which the
brain combines di!erent aspects of sensory modalities of one object into one uni"ed
percept. The neural mechanisms that underlie synchronization in di!erent parts of the
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brain are only partly understood. There is the suggestion that synchronization may be
relevant to binding [9]. In most experiments to date one measures the activity of one
neuron, or a small population of neurons. Periodic oscillations ("eld potential, or
subthreshold intracellular) measured in these experiments are consistent with strong as
well as weak synchronization. In strong synchronization all the neurons "re with a short
time interval from each other. In weak synchronization the average neuronal activity is
periodic, but without having each individual neuron "ring at each period. Often theoret-
ical analyses have, however, focussed on strong synchronization. Here, we conjecture that
weak synchronization is robust against neuronal heterogeneities and synaptic noise, and
consequently it is much more likely to occur in neuronal systems. Furthermore, we
show that it can encode more information compared to strongly synchronized states.
Here, we present numerical results of weak synchronization in a simple model of
a network of thalamic neurons that supports our conjecture. We use a thalamic
network, as an example, due to the wealth of modeling information that is already
available. The mechanism we discuss here, however, has more general applicability.

The hallmark of weak synchronization is multimodal interspike interval (ISI)
histograms (ISIH). The ISI occurs only near multiples of a particular time-scale, e.g.
the period of the population activity ¹. Multimodality of the ISIH has been observed
in the LGN [1], and it was attributed to the action of inhibitory neurons. Multimodal
ISIH have also been found in model simulations of coupled inhibitory networks in the
presence of noise [2] and in systems exhibiting stochastic resonance (SR) due to an
external periodic drive [12]. In our work the periodic neuronal activity in the
noise-driven system is internal and self-induced by the network. This mechanism is
absent in unconnected single neurons, or in a single element with autosynaptic
feedback. Recently, noise-induced periodic oscillations were also found in excitatory
networks [4]. It has been suggested that the brain may encode information through
an ensemble or cluster of neurons that "re within a short time of each other [10,5].
A particular neuron may be part of a cluster for a few cycles, before it joins another
neuronal ensemble. This type of dynamics is very similar to the neuronal clusters that
form in our model simulations described below. An important problem is how to
quantify the information content of these binding-like cluster states. The Shannon
entropy has been used as a measure of information content in investigations of
sensory neurons in, for instance, crickets [3], and #ies [6].

It is, nonetheless, not known how the brain processes information, and thus it is not
clear whether the Shannon entropy is the correct quantity for this purpose. With this
caveat in mind we still proceed to characterize the information content of our neural
networks by calculating its well-de"ned Shannon entropy.

2. Methods

Our single neuron model equation contains a low threshold calcium current I
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Fig. 1. Voltage traces for neuron one of an N"1000 all-to-all connected neuron network with (a) uniform
initial conditions, (b) random initial conditions, (c) uniform initial conditions with noise (D"0.02, without
the transient of 100 ms), for three di!erent values of q

4
"16, 13, 9 (from top to bottom). A voltage and time

scale bar is shown in the lower left graph.

together with the "rst-order (Hodgkin}Huxley type) kinetic equations for the
activation m and inactivation h variables for I

C!
and the synaptic variable s. This

yields a neuronal dynamics in terms of four variables,<, m, h, and s. We have used the
kinetics for I

C!
and I

4:/
as speci"ed in [7].

The neurons in our network are connected all-to-all by inhibitory GABAergic
synapses. We have studied di!erent sized systems, varying from N"1 (a single
neuron with autosynaptic feedback) to N"1000. We also have included a Gaussian
current noise, characterized by SmT"0 and

Sm(t)m(0)T"2Dd(t) (2)

with D the strength of the noise. Unless stated di!erently the physiological total
synaptic conductance used is g

4
"2 mS/cm2, and the decay time of the synaptic

channel q
4
"16 ms. The noise strength D is expressed in units of mV2/ms, time in ms,

currents in lA/cm2, and voltage in mV.
The resulting di!erential equations are numerically integrated using a noise-

adapted second-order Runge}Kutta algorithm [11].

3. Results

In Fig. 1 we show sample voltage traces of the "rst neuron in our network in
di!erent states. Of particular interest is the bottom row in the panel (q

4
"9). The
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Fig. 2. Comparison of information content in synchronized oscillations. We consider (a) strongly synchro-
nized and periodic, (b) strongly synchronized and aperiodic, and (c) weakly synchronized and periodic.
For each case we plot (1) rastergram, (2) instantaneous "ring rate, (3) the ISIH, and (4) the ISIH split into
three components S

0
, S

1
, S

2
. See text for details.

zero-noise oscillations are below threshold, but noise can induce, and is necessary to
maintain, a stochastically synchronized state.

We have further studied the dependence of these oscillations on network para-
meters. We "nd that there is a di!erence between small (around 10 neurons) and large
networks (a few hundred neurons), under the conditions of having a "xed total
synaptic drive per neuron. For small networks one needs more noise to drive the
subthreshold network into stable oscillations. These oscillations are very robust
against increases in the noise level, however the #uctuations in the time between two
cluster "rings (cycle length) do increase with the amount of noise. For large networks
strong noise causes an instability, the stable cluster size for a given amount of noise
becomes too small to inhibit out of sync neuronal discharges. For intermediate noise
strengths the neuronal dynamics self-organizes itself into a stochastically synchro-
nized state. We also "nd that the farther the network is below threshold, more noise is
necessary to induce a spiking state. The mechanism to create the oscillations is due to
the competition between the excitatory de-inactivating, and the inhibitory e!ect of the
synaptic drive. Each cycle will de-inactivate neurons, until they are excitable again.
The neuron then has to await the decay of inhibition created by more excitable
neurons. For some parameter values the latter stage is absent, and the dynamics is
fully deinactivation dominated. The important time-scales in the dynamics are the
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deinactivation time-scale q
1

and the synaptic decay time q
4
. The cycle or population

period scales directly with q
4
.

In Fig. 2 we compare the information content of weak versus strong synchroniza-
tion in a cartoon. The information content of the ISIH can be divided up in three
parts: S

0
, the dispersion in cluster "ring times; S

1
, the hopping of neurons from cluster

to cluster; S
2
, the precision of "ring times within a cluster. The information content is

reduced when there are correlations between the ISIs [11]. For strong synchroniza-
tion the information content is in the precision (or lack thereof) S

2
. In that case more

precision, that is better synchronization, corresponds to less information. However for
weak synchronization the information is in S

1
. Synchronization and information

content can therefore be varied independently. Note that one could also code informa-
tion in strongly synchronized oscillations by making them aperiodic (see Fig. 2c).

4. Discussion

In recent years considerable attention, as well as controversy, has been directed at
studying the variability of neuronal discharge in the cortex [8]. It is beyond a doubt that
neurons in vivo are noisy. The question is whether exact spike-times matter *
that is, if the jitter in spike times represents information, for instance quanti"ed by the
Shannon entropy* or if only the average "ring rate matters. If spike times do matter,
then the synchronized discharge has a special signi"cance. An important question is
whether the nervous system is sensitive to synchronization or not. Our work is
relevant in shedding light to this fundamental question in two ways. We have shown
that noisy neurons can synchronize without the need of a strong external drive, and
that the synchronized neuronal discharge has a potentially high information content.
The brain thus has circuitry capable of synchronizing with heterogeneous compo-
nents, and in the presence of noise. Whether the brain utilizes this mechanism to
synchronize, and more importantly whether it uses the information in the precise
temporal sequence is still an open question awaiting further study.

A detailed description of the results mentioned here, will be published else-
where [11].

Acknowledgements

Authors thank T.J. Sejnowski for useful suggestions. Part of the calculations were
performed at the Northeastern University High Performance Computer Center.

References

[1] K. Funke, E. Nelle, B. Li, F. WoK rgoK tter, Corticofugal feedback improves the timing of retino-
geniculate signal transmission, Neuroreport 7 (1996) 2130}2134.

[2] D. Golomb, J. Rinzel, Clustering in globally coupled inhibitory neurons, Physica D 72 (1994) 259}282.

P.H.E. Tiesinga, J.V. Jose& / Neurocomputing 32}33 (2000) 249}254 253



[3] J.E. Levin, J.P. Miller, Broadband neural encoding in the cricket cercal sensory system enhanced by
stochastic resonance, Nature 380 (1996) 165}168.

[4] J. Pham, K. Pakdaman, J.-F. Vibert, Noise-induced coherent oscillations in randomly connected
neural networks, Phys. Rev. E 58 (1998) 3610}3622.

[5] A. Riehle, S. Grun, M. Diesmann, A. Aertsen, Spike synchronization and rate modulation
di!erentially involved in motor cortical function, Science 278 (1997) 1950}1953.

[6] F. Rieke, D. Warland, R.R. de Ruyter van Steveninck, W. Bialek, Spikes: Exploring the Neural Code,
MIT Press, Cambridge, MA, 1997.

[7] J. Rinzel, D. Terman, X.J. Wang, B. Ermentrout, Propagating activity patterns in large-scale
inhibitory neuronal networks, Science 279 (1998) 1351}1355.

[8] M.N. Shadlen, W.T. Newsome, The variable discharge of cortical neurons: implications for
connectivity, computation, and information coding, J. Neurosci. 18 (1998) 3870}3896.

[9] W. Singer, C.M. Gray, Visual feature integration and the temporal correlation hypothesis, Ann. Rev.
Neurosci. 18 (1995) 555}586.

[10] M. Stopfer, S. Bhagavan, B.H. Smith, G. Laurent, Impaired odor discrimination on desynchroniz-
ation of odor-encoding neural assemblies, Nature 390 (1997) 70}74.

[11] P.H.E. Tiesinga, J.V. JoseH , Synchronous clusters in a noisy inhibitory network, J. Comput. Neurosci.
(2000), to appear.

[12] K. Wiesenfeld, F. Moss, Stochastic resonance and the bene"ts of noise: from ice ages to cray"sh and
SQUIDs, Nature 373 (1995) 33}36.

Jorge V. JoseH

Paul H.E. Tiesinga

254 P.H.E. Tiesinga, J.V. Jose& / Neurocomputing 32}33 (2000) 249}254


