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Abstract

We have studied the e!ects of two types of noise in simple model neurons with Hodgkin}
Huxley voltage-gated channels. We have considered Gaussian noise currents, and Poisson-
distributed excitatory and inhibitory postsynaptic potentials. We determined the distribution of
interspike intervals, and calculated its average, q

ISI
, and the coe$cient of variation (CV). The

neuronal dynamics is analyzed in the CV}q
ISI

diagram in terms of equi-noise strength D, and
equi-drive I

!11
curves. For the Gaussian case one can distinguish four regions of neuronal

dynamics. An equivalent analysis is carried out in the Poisson case. In the latter case the
behavior is more complicated. ( 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Noise appears to be ubiquitous in neurons of the nervous system. Noise may derive
from multiple sources, including the stochastic nature of the opening of voltage-gated
channels and the quantal release of vesicles with neurotransmitters in synaptic
transmission. Functionally, an important source has been the incoherent activity of
presynaptic neurons that impinge on each individual neuron. The spontaneous
neuronal activity due to this synaptic noise has been measured in a number of
di!erent neurons (see e.g. Ref. [12]). Synaptic noise has been included in some models
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in a wide variety of di!erent ways [2}4,11]. Sometimes important qualitative aspects
of the noise are not considered, and in most cases a rigorous justi"cation for the
amount and type of noise that is being used, is absent. Because of this the measured
characteristics of the noise often bear no clear connection to the corresponding
quantities in the theoretical model calculations. It is important to have a simple, but
physiologically realistic, model for neurons so as to allow for a systematic study of
collective e!ects in large neuronal networks. The statistics of the action potential
onset times are in that respect as important, or sometimes even more important, than
the precise shape of the action potential. The functional behavior of neurons is
a!ected by noise, heterogeneities, and cortical architecture. As an example, the
synchronization of neuronal "ring can be eliminated as well as re-established when
increasing the noise strength [9,10]. In some parts of the brain robust synchronization
may be needed, for it is purported to be a possible mechanism for binding [7], whereas
in other parts it is detrimental, for it may lead to epileptic seizures. There are speci"c
mechanisms by which networks of neurons themselves can change the noise strength,
and there are also external means for changing it. It is essential to have a quantitative
understanding of these mechanisms and the e!ect of noise when studying fundamental
issues, such as binding, as well as for clinical applications in understanding epilepsy. In
this paper we carefully compare two di!erent relevant models for noise in a single
neuron.

2. Methods

The prototypical neuron considered here is a hippocampal interneuron. It is
modeled as a single compartment with Hodgkin}Huxley type of voltage-gated
sodium and potassium currents, with the rate functions and values for the maximum
conductances given in Ref. [13]. The equation for an individual neuron is then
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and C

.
m are the sodium, potassium, leak, synaptic, externally

applied and noise currents in lA/cm2, respectively. C
.
"1 lF/cm2 is the membrane

capacitance. Our numerical implementation has been discussed in Ref. [9]. We study
two types of noise models here:

Gaussian. The noise is a Gaussian distributed, delta correlated, current, with
Sm(t)T"0, and Sm(t)m(t@)T"2Dd(t!t@) (the noise strength D is expressed in mV2/ms).
The synaptic current I

4:/
is set to zero.

Poisson. Here the synaptic current I
4:/

in Eq. (1) is the sum of an inhibitory and
excitatory channel of the form I

4:/
"g

4:/
s(t)(<!E

4:/
). The maximum conductance is

g
4:/

"0.1 mS/cm2, and the reversal potential is E
4:/

"0 mV, and E
4:/

"!75 mV,
for the excitatory and inhibitory synapses, respectively. Postsynaptic potentials (PSP)
are modeled as quantal increases, *s, in the synaptic kinetic variable s(t). The PSPs are
independent and Poisson distributed with frequency f; s(t) decays exponentially in
time with a time constant q

4:/
; D"0, and I

!11
"0.10.
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The raw data obtained from the simulations are the voltage <(t) traces at discrete
times t"nq (we take q"0.2 ms), which give the ith spike-time t

i
, and the ith

interspike interval (ISI) q
i
"t

i`1
!t

i
. We calculated the histogram of interspike

intervals (ISIH), the average ISI, q
ISI

, its standard deviation p
ISI

, and the coe$cient of
variation (CV) equal to p

ISI
/q

ISI
. We have also calculated standard autocorrelation

functions: g
x
(t)"Sx(t)x(0)T!SxT2, where x can be the membrane voltage<(t), or the

ISI q
i
, and g

x
is normalized by the equal time variance. The S ) T denotes the time

average over all discrete times nq in the "rst case, and an average over all ISI in the
latter. Another useful measure is the joint distribution of ranked (or ordered in
magnitude) ISIs (JRIS) [5]. The JRIS is a set of points plotted in a plane, of which the
x-coordinate is given by the rank of q

i
, and the y-coordinate by the rank of the

previous value q
i~1

.

3. Results

In our stochastic Gaussian model we can identify as relevant variables the noise-
strength (D) and driving force (I

!11
). The intuitive notion of the e!ect of weak and

strong noise, and below and above threshold driving forces, leads us to the schematic
phase diagram with four regions shown in Fig. 1. In the same "gure we also show
representative voltage traces, g

V
, and ISIHs for each of these regions. The ISIHs in this

Fig. 1. Di!erent regimes of single neuron behavior with Gaussian noise. In (a)}(d) we plot voltage traces<,
the voltage autocorrelations g

V
, the ISIHs, and a "t to the ISIH by a gamma distribution,

P(t)"(kr)r(t!q
$
)r~1e~kr(t~q$)/C(r) when t'q

$
, and equal to 0 when t4q

$
The "tting parameters (k, r, q

$
)

are (a) (0.032, 1.14, 5.60); (b) (0.039, 2.37, 1.4); (c) (0.0025, 1.27, 32.2); (d) (0.044, 15.5, 18.7). The scale bar for the
voltage traces is shown to the right of (a). The time scale for g

V
and ISIH is shown in (a). We used

(a) I
!11

"0, D"7.6, (b) I
!11

"0.38, D"0.8, (c) I
!11

"0.0, D"0.4, and (d) I
!11

"0.38, D"0.04. The
correlation functions and the histograms were calculated using an averaging time of 200 s. In (e) we give
a qualitative phase diagram denoting the di!erent regimes.
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"gure are "tted to a gamma probability distribution function [1]. To study these
regions quantitatively we plot the equi-D and equi-I

!11
curves in a CV}q

ISI
diagram.

The distinction between regions I and III is not that clear. For the Poisson case we
found it useful to parametrize the curves in terms of the analytic average g"SI

4:/
T,

and the variance g
2
"SI2

4:/
T!g2. The resulting CV}q

ISI
diagram looks quite di!er-

ent. The equi-g are directed to the right for increasing CV. In addition the CV has
a maximum value on these curves, due to the saturation of the inhibitory channel. The
theoretical average value for s is close to its maximum value of one, and as a result the
actual average will be reduced, and the variance decreased. One should note that we
have "xed the *s and q

4:/
values, since for di!erent values one may obtain qualita-

tively di!erent CV}q
ISI

diagrams. An important di!erence between the Poisson and
Gaussian noises, that is not clear from the ISIHs, are the time correlations. We "nd
that for q

4:/
A1, consecutive ISIs are correlated. This can clearly be seen in g

ISI
and the

JRISs (not shown here). In addition, the autocorrelations g
V

of the voltage #uctu-
ations are also di!erent. We have derived analytic expressions for g

V
that are useful to

determine the statistics of the EPSP and IPSP inputs (not shown here).

4. Conclusions

We have compared the ISI distributions obtained from Gaussian and Poisson noise
calculations. We can, given a proper value of q

ISI
and CV, in both noise cases "nd a set

of model parameters that yield the same statistics. In the Gaussian case this set of
parameters would be unique. The model parameters of Poisson noise, however, have
a direct physiological meaning: the size *s and time scale q

4:/
can be directly obtained

from experimental measurements of individual EPSPs and IPSPs. This obviously
constrains the ranges of CV and q

ISI
values one can obtain, but these observed values

can be directly translated into the presynaptic "ring rates f
EPSP

and f
IPSP

(Fig. 2). In
addition, the e!ects of correlated ISIs and synaptic saturation are included. In
summary, Gaussian noise o!ers a simple way of evaluating the e!ect of a certain CV
and q

ISI
value on for example the dynamics of a large network of model neurons. But

Poisson noise is necessary to directly compare to experiments.
Our results can also be used to compare the Shannon entropy of the presynaptic

input to the Shannon entropy of the ISI output. We "nd that synaptic saturation
signi"cantly reduces the maximal information rate of the neuron. For a few cases we
have determined the mutual information between the inputs and outputs. The ques-
tion of how the brain encodes information ranks amongst the most important in
cognitive neuroscience. A major controversy has arisen as to whether the brain uses
a rate coding or a temporal coding strategy [6,8]. For this issue to be resolved it is
important to know how much information a neuron can encode as part of a large
network, or what is the range of CV under physiological conditions. Here we have
determined the CV values for simple models that are nonetheless more realistic than
integrate and "re models [1]. We plan to study the information processing capabilities
of the networks of two compartment pyramidal neurons using the same methods.
A more extensive discussion of the results mentioned here will appear elsewhere [14].
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Fig. 2. We plot the results from our calculation with (a) equi-D and equi-I
!11

, and (b) equi-g and equi-g
2

curves. Selected curves are labeled by their value. For the Poisson case we used (*s, q
4:/

)"(0.02,2 ms) and
(0.10, 10 ms) for excitatory and inhibitory channels, respectively. For these values the increments in
f
EPSP

and f
IPSP

are linearly related with ratio 5.09 on equi-g, and ratio -5.19 on equi-g
2
curves. The patterns in

(a) correspond to those in Fig. 1(a).
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