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Abstract. Recent experiments suggest that inhibitory networks of interneurons can synchronize
the neuronal discharge in in vitro hippocampal slices. Subsequent theoretical work has shown
that strong synchronization by mutual inhibition is only moderately robust against neuronal
heterogeneities in the current drive, provided by activation of metabotropic glutamate receptors. In
vivo neurons display greater variability in the interspike intervals due to the presence of synaptic
noise. Noise and heterogeneity affect synchronization properties differently. In this paper we study,
using model simulations, how robust synchronization can be in the presence of synaptic noise and
neuronal heterogeneity. We find that stochastic weak synchronization (SWS) (i.e. when neurons
spike within a short interval from each other, but not necessarily at each period) is produced with
at least a minimum amount of noise and that it is much more robust than strong synchronization
(i.e. when neurons spike at each period). The statistics produced by the SWS population discharge
are consistent with previous experimental data. We also find robust SWS in the gamma-frequency
range (2080 Hz) for a stronger synaptic coupling compared with previous models and for networks
with 10-1000 neurons.

1. Introduction

One of the important properties of the behaviour of the nervous system is the synchronization
of neuronal discharges. It was discovered early on [1], and it has attracted a significant amount
of attention. In recent years the advent of improved experimental techniques has provided
vast amounts of new synchronization data. Concomitantly, there has been a resurgence
in interest and controversy concerning the functional relevance of synchronization. It has
been established that in vivo cortical neurons have noisy spike trains [2] (see also [3]),
and that groups of neurons discharge coherently, as found in population recordings (such
as EEGs, or by arrays of extracellular electrodes; for a review see [4]). These two facts
have sparked major controversies. Firstly, does noise (or precise timing) in neuronal spike
trains contain information [5, 6], or is information merely due to noisy processing of an
average firing rate [7-9]? Secondly, is synchronization functionally (or even statistically)
significant [10, 11], or just an epiphenomenon [9]? In this paper we focus on two different
aspects of synchronization that have received little attention so far. Can realistic neuronal
networks synchronize under the biological conditions of variable intrinsic neuronal properties,
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and the noise-induced neuronal unreliability? What kind of synchronization can be obtained,
and what are its pertinent statistical properties? It is necessary to resolve these two questions
to properly formulate the issues to be studied in experiment, and to analyse different ways
of probing the experimental data. Here we focus our attention on the extensively studied
synchronous gamma oscillations in hippocampus [12-17]. Theoretical and computational
work has shown that mutual inhibition is capable of synchronizing neuronal networks [18,19].
Subsequent in vitro experiments have convincingly established the role of GABA-ergic
hippocampal interneurons in gamma oscillations [12, 14]. Wang and Buzséki studied the
effect of current heterogeneity and partial connectivity on the synchronization of the inhibitory
network [20]. They only found strong synchronization in the gamma-frequency range when
the current heterogeneities were small [20-22]. In strong synchronization all neurons in a local
circuit spike within a short interval of each other. This suggests that strong synchronization can
only be obtained when the intrinsic properties of the neurons are not too different. According
to [20] this would mean a less than 10% difference in current drive, or average firing rate. It
has been hard to pinpoint the amount of variability in intrinsic properties in the in vitro and
in vivo preparations of different brain areas. It is, however, not unreasonable to assume the
presence of more than 10% variability in these preparations. Strong synchronization is also
not robust against noise [22]. It would therefore seem unlikely for strong synchronization to be
present in hippocampus under physiological conditions. Indeed, here we show that stochastic
weak synchronization (SWS) is more prevalent in parameter space, and is also robust against
neuronal heterogeneities and synaptic noise. We conjecture that as a consequence it is much
more likely to occur in neuronal systems.

In SWS, neurons spike within a short interval from each other, but not necessarily at each
period [23-25]. The synchronization is called stochastic, because the particular cycle in which
the neurons fire is random. This makes the properties of this state different from the well known
cluster states studied by previous authors [26-29]. There each neuron always fires at the same
cycle with the same cluster. Both strong and stochastic weak synchronization yield periodic
population oscillations. The difference can then be ascertained using multi-unit recordings.

We use cross correlation analysis to show that noise and heterogeneity affect the
synchronization properties of our network in very different ways. Large enough noise
and heterogeneity will, however, stop strongly synchronized oscillations. We demonstrate
that increasing synaptic coupling does not significantly increase robustness of strong
synchronization. = We then determine for what parameters robust self-induced 40 Hz
synchronous oscillations can be obtained. Finally, we compare the effects on synchronization
of weak and strong synaptic coupling in a single neuron driven by a simulated network input.

2. Methods

2.1. Neuron models

Our aim here is to establish physiological criteria for robust synchronization in the gamma-
frequency range. The use of a biophysically realistic model is therefore of pivotal importance,
trying to balance the amount of complexity versus practical simplicity [30]. We have therefore
not attempted to use the latest available data to construct the most detailed multi-compartmental
model. If we tried to do so, the computer requirements to sample the full relevant parameter
space, and perform our type of analysis, would be extremely demanding even using the
fastest computers. It has been shown, nonetheless, that one and two compartmental models
can accurately generate spike trains of the right shape and frequency [31-33]. Multi-
compartmental models may be necessary, however, to assess the synaptic integration of inputs
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located on different parts of the dendritic tree. This is currently an intensely studied area
in electrophysiology [34-36]. Here we study a model previously introduced by others [20].
The model has been shown to reproduce the salient features of the dynamics of hippocampal
interneurons. The neurons are modelled as a single compartment with Hodgkin-Huxley-type
sodium and potassium channels. In this work all the neurons are connected all to all, and to
themselves via inhibitory GABA 4-synapses. The equation for the membrane potential of a
neuron is (the index i of the ith neuron is omitted)

dv
Cma:—INa—IK—IL—Isyn+I+Cm§' (1)

Here we use the leak current I;, = g, (V — E) the sodium current Iy, = gNamgoh(V —Eng),
the potassium current /g = gxn*(V — Eg), and the synaptic current gy = goynS(V — Egyp).
The Gaussian noise variable is denoted as & (see below), and [ is the tonic drive. The channel
kinetics are given in terms of m, n, and s. They satisfy the following first-order kinetic
equations,

%; = {(ax (1 = x) — Brx). 2
Here x labels the different kinetic variables m, n, and A, and ¢ = 5 is a dimensionless timescale
that can be used to tune the temperature-dependent speed with which the channels open or
close. The rate constants are [20],

—0.1(V +35)
Oy = )
exp(—0.1(V +35)) — 1
B = 4exp(—(V +60)/18),
ap = 0.07 exp(—(V + 58)/20),
1

Br = ,

exp(—0.1(V +28)) + 1
—0.01(V +34)
" exp(—0.1(V +34) — I’

Bn = 0.125exp(—(V +44)/80).

We make the approximation that m follows the asymptotic value mqo(V (2)) = o/ (@m + Bn),
instantaneously. The synaptic gating variable s obeys the following equation [20,37, 38]:

d
d—“: = aF(V,)(1 —s) — Bs, 3)

withe = 12ms™!, B = 1/tsyn, F(Vp) = 1/(exp(—V,/2) + 1), and V), is the presynaptic
potential. The function F (V) is chosen such that when the presynaptic neuron fires, V,, > 0,
the synaptic channel opens. The decay time of the postsynaptic hyperpolarization is chosen
as Tyn = 1/B = 10 ms (or 20 ms in some instances). We use a reversal potential of
Egn = —75 mV for the inhibitory (GABA,) synapses [39]. The standard set of values
for the conductances used in this work is gy, = 35, gx = 9, g1 = 0.1, and gg, = 0.1
(in mS cm~2), and we have taken Ey, = 55 mV, Ex = —90 mV, and E; = —65 mV. The
membrane capacitance is C,, = 1uF cm™2. Unless stated otherwise we will use the standard
set of parameters listed above. When no current value is specified we use I = 1 uA cm™2.
The network will then spike at approximately 39 Hz.

We chose the initial values for the membrane potential at the start of the simulations
uniformly random between —70 and —50 mV. The kinetic variables m, n, h, and s are set
to their asymptotic stationary values corresponding to that starting value of the membrane
potential.
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The resulting equations with noise are integrated using an adapted second-order Runge—
Kutta method [40], with time step d# = 0.01 ms. The accuracy of this integration method was
checked for the dynamical equations without noise (D = 0) by varying d¢ and comparing the
result with the one obtained with the standard fourth-order Runge—Kutta method [41] with a
time-step dz of 0.05 ms.

We normalize all quantities by the surface area of the neuron. This leads to the following
system of units: the membrane potential V in mV, time ¢ in ms, firing rate f in Hz, membrane
capacitance C, in uF cm™2, conductance g, in mS cm~2, voltage noise £ inmV ms™!, strength
of neuroelectric noise D in mV~—2 ms™, the rate constants o, and S, in ms~!, and the current
Iin puA cm™2. The kinetic variables m, n, h, s, and the timescale ¢ are dimensionless. The
results in this paper are expressed in this system of units.

2.2. Heterogeneity and synaptic noise

We have included heterogeneity in the applied current. The current heterogeneity represents
the variation in the intrinsic properties of the neurons in the hippocampus. For each run
we draw the applied current for each neuron from a uniform probability distribution, with
average current / and with variance o}. Experimental measurements of quantities like the
input resistance R;,, the membrane timescale, the spontaneous spiking rate, the shape of the
somatic action potential (amplitude, width, rise and fall time}), and the afterhyperpolarization,
show considerable variance [42—44]. It is hard to determine how much of the variance is
due to measurement errors, and how much it is actually due to intrinsic neuronal variability.
Here we assume that the main effect of the variability is to change the intrinsic frequency
of the neurons (which can be varied using the current drive in our model). Another source
of heterogeneity in in vitro experiments is the glutamate pressure ejection method [14]. It
can lead to an inhomogeneous activation of metabotropic glutamate receptors, and thus to a
variable current. In this paper we will consider o, as a free parameter.

At least three sources of noise can be identified [45]: (i) random inhibitory postsynaptic
potentials (IPSP) and excitatory postsynaptic potentials (EPSP), (ii) stochasticity of the
synaptic transmission, and the (iii) stochasticity of the channel dynamics. Here we assume
that the variability in the neuronal discharge is mainly due to synaptic noise [46]. We have
compared the effects of Poisson distributed spike trains of EPSPs and IPSPs with that of a
Gaussian noise current on interspike interval (ISI) variability. Poisson and Gaussian noises
do not yield identical results. The statistics obtained from both models, however, are similar
in the parameter regime studied here [47]. For the purpose of our studies we consider that
Poisson and Gaussian distributions are two alternate ways of producing noisy spike trains with
particular statistics. Therefore, we consider only Gaussian synaptic noise ; in the current of
each neuron i, with (§;(r)) = 0, and (& (2)&;(¢')) = 2Dé(t — t')6;;. The noise currents in
different neurons are assumed independent.

2.3. Calculated quantities

From our simulations we obtain the time trace for the membrane potential V;(¢) of each neuron.
We determine the spike-trace X; from V; as follows: X;(t) = 1 when V;(¢) crosses 0 mV (i.e.
V(™) < 0 < V(*)), and it is zero elsewhere. From X; we obtain X (£) = ), X; (7). X is
proportional to the instantaneous firing rate of the network. We also calculate the coherence
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function « [20]:

. = Z (A;(nr) Jﬂ(nr)> ' @
7 (R (R, (n))
This function measures the amount of strong synchronization, and depends on the bin size t
of the time discretization

Xinry= ) X )

(n—-Dr<s<nt

In this expression we rebin the original X; into larger bins 7. We use T = 200 df = 2 ms for
oscillations in the gamma-frequency range, or T'/10 for periodic drives with period T .
We also calculate the time autocorrelation function

(x(0)x(0)) = (x)

x = s 6
N (P gy ©
and the cross correlation function

g () = FOYO) — OO o

(X% (y(0)?)
Here x and y can be any of the variables X;, V;,and X. () is a shorthand notation for the time
average, in particular,

N—nmax—1
(x(n7)x(0)) = N—l—— > x(Dx(+m)T). (8)
~Hfmax i35
Here x(nt) is the discretized variable obtained from the simulations (7 = 20 d¢ = 0.2 ms),
Amax = 499 is the maximum difference for which the cross correlations are evaluated, N is
the number averaging steps. We evaluate these quantities since they yield further detailed
quantitative characterization of the network behaviour.

We also consider the more conventional interspike interval histogram (ISTH) [48], averaged
over all network neurons. From the ISIH one can obtain two statistics: the average ISI, sy,
and the standard deviation of the ISI, o1s;. The ratio oys/7is1 is known as the coefficient of
variation (CV). The average firing rate is f = 1/7ys;, and the population standard deviation of
fisoy:

o=y fi—- 1% ©)
j

where f; = 1/t is the average firing rate of the jth neuron. In addition, we plot rastergrams,
with the action potential of each neuron plotted as a filled circle, with the y-coordinate given
by the neuron index and the x-coordinate by the spiking time.

To analyse the stochastic weak synchronization network dynamics we need to apply a
different method. In figure 1 we illustrate the various quantities that are introduced and
defined below. The population period t, is different from the population averaged ISI, and
to estimate it we proceed as follows. First we determine the firing rate X (t) as before in
1 ms bins. In the stochastic weak synchronization state X (¢) will consist of a number of
approximately equidistant peaks of finite width. We use the position of the first maximum
at nonzero frequency in the Fourier trgnsforAm, to obtain an estimate T for the period Tn. We
calculate the weight or cluster size N} = (X(t)), the average position ¢, = (tX(¢))/N;, and

the width o} = \/ 2X@)/ Ni — (#8)? of the ith peak. The time average (-) is taken over a
range [—0.35T, 0.357T7] about the estimated position #:~! + T of the peak. We calculated the
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Figure 1. Definition of the parameters characterizing the SWS state. Here we show illustrative
results for the statistical quantities introduced in the methods section using data from an example
of a weakly synchronized state. From top to bottom we plot a rastergram, the corresponding
instantaneous firing rate and its close-up. A cluster in a given cycle i is characterized by the

average spike time té, the number of spikes Né', and the standard deviation, o}, of spike times.

The instantaneous cycle period r,’,"” is the difference in consecutive average spike times. As is
explained in the text, the average over all cycles of N¢, o/, and 1, are denoted as N¢, o, and ,,
respectively.

number of spikes that fall outside this region. If the average number of missed spikes is more
than one per cycle we reject the cluster state. The instantaneous cycle length (the time between
two consecutive cluster firings) is defined as t/*! = £*1 — ¢!, We determine the average cluster
size N. = (N%), its CV(N.) = /((N})?) — N2/N,, the average cycle length 7, = (t!), its
CV(t,) = /((t})?) — 12/7,, and the average width 0. = (o). Here the average (-) is given
by the sum over all cycles in the run (after discarding a transient).

We characterize the strength of the synchronization using a modified kw and CVy (see
below), where W stands for weak. In the SWS state the ISIH has multiple peaks. The CV
of the ISI receives contributions from the variance within each peak, and also of the variance
between the multiple peaks. We are only interested in the former, and the conventional CV is
thus an overestimate. Instead we use

CVy = 0./, (10)

which is related to the average width of one peak in the ISIH. (Note that for a constant
instantaneous firing rate CVy = 1/ V12 = 0.29.) The coherence x measures the number
of coincident spikes between two spike trains. Consider two neurons that do not spike at
each cycle, but when they both do, the spikes are coincident (that is in the same bin). If the
probability of spiking in a cycle is p = N./N, and both neurons fire statistically independent,
we obtain ¥ = p in (4). These neurons can be considered synchronous and we want ¥ = 1.
We therefore normalize « by p, and denote it as ky to indicate this fact:

N
Kw =K FC . (1 1)
There is a subtlety in the calculation of the average firing rate. In the deterministic noiseless
case one ISI is enough to determine the average value (after discarding the transient). (Note

that counting the number of spikes in a fixed interval is not an efficient way to determine
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the exact firing rate.) In the presence of noise, however, we need to have, say at least ten
ISIs to accurately determine the ensemble average properties of the random model, where the
randomness comes from the noise. In networks with large current heterogeneities there are
neurons with high and very low firing rates (figure 12). The average ISI for the low firing rate
is less accurate than for the high firing rate neurons in the network. However, it carries equal
weight in the conventional average tis; = i 7j5;- We have therefore used a weighted average

st = ) 1,Tig/ 2 ; 1y (here nj is the number of intervals over which zjg; is calculated), and
the approximate identity N./t, ~ N;/tis1 can be used as a check. N; is the number of active
neurons, defined as the neurons that have more than two ISIs after the transient.

We have also studied the behaviour of a single neuron driven by a simulated network input
with period T'. We define the phase of the nth output spike at time ¢, as ¢, = t,/T mod 1.
The average (-) over all spikes is then ¢ = (¢,), and the standard deviation oy = /{¢Z) — $>.
oy is the single neuron equivalent of C V. The network input is applied at phase ¢ = %

3. Results

3.1. Non-robustness of strong synchronization

In this section we describe the results of our simulations for a network of N = 100 interneurons,
connected all to all, with either synaptic noise (SN), or current heterogeneities (CH). In figure 2
we plot the coherence parameter « (defined in (4)) versus the strength of the synaptic noise
D, and versus the standard deviation of the current heterogeneities o;. We find that strong
synchronization is lost for approximately D > 0.10 mV? ms~! and o; > 0.1 A cm™~2 (with
the standard set of parameters listed in the methods section). The mechanism by which strong
synchronization is lost, however, is different in the CH case compared with the mechanism
with SN. This difference shows up only if we study the whole state of the network using
cross correlation functions, instead of the average quantities shown in figure 2. Wang and
Buzsaki [20] (in what follows we refer to this reference as WB) have already analysed the
case with current heterogeneity. We have reproduced part of their work, and we will refer
to their corresponding figures. In both CH and SN cases the neuronal firing rate decreases
when the network desynchronizes. We have plotted the time-trace of the synaptic drive s(z)
in figures 2(c) and (d). The phasic part decreases, and the tonic part of s(¢) increases with
increasing D and o;. The increased tonic part is responsible for the lower average firing rate.
The firing rate of the CH neurons saturates (when averaged over enough realizations of the
current heterogeneitiest), whereas for the SN it increases steadily as a function of D for large
values of D. The single-neuron firing rate increases with D [47], but tonic inhibition saturates
to its highest value in the asynchronous network. The dispersion o's (see the methods section)
with CH is larger than the one in SN (not shown). In SN all neurons have identical intrinsic
properties, and the expectation value for the average frequency of each neuron is the same.
The dispersion o in this case represents the fluctuations in the average ISI due to the finite
averaging time. With CH the neurons have different intrinsic frequencies, and the dispersion
oy increases with o7 (and does not go to zero after a long averaging time; see WB figure 5B). In
figures 3(I) and (IT) we compare the correlation functions for the SN and CH cases, respectively.
In (a) we have the strongly synchronous network, in (c¢) the asynchronous network, and in (b)
a transition state. The difference between SN and CH becomes clear when one considers the
cross correlation functions. With CH the number of pairs that are phase locked drops gradually
(see WB figure 8E). The pairs that are phase locked, are tightly phase locked (figure 31(b)1,

t This assumes fl””t;% FDAl = f(lyy).

lay—
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Figure 2. Noise and heterogeneity destroy strong synchronization. Coherence parameter « (dashed
curve, left-hand scale), and average network frequency f (continuous curve, right-hand scale)
versus (a) noise strength D (with o; = 0) and () current heterogeneity o7 (with D = 0). After a
transient of 1 s, (@) time averages were computed over 3 s, and () 2 s. In (b) each point represents
the results of one independent value of the current heterogeneity. In (c), (d) we plot the synaptic
drive s(2), (c) for oy = 0 with D = 0, 0.01, 0.04, and 0.09 from top to bottom; whereas in
(d) D = 0 witho; = 0, 0.01, 0.04, and 0.09 from top to bottom. The curves are offset by multiples
of As = 1. We used the standard set of parameters described in the methods section.

4-5), and there is no dispersion in the cross correlations, only a relative phase. Even in the
asynchronous state the autocorrelation function gx, for a single neuron is sharp, i.e. the neuron
fires regularly with a fixed frequency (figures 3I(c)1 and (c)8). The population average of gx,,
however, is disordered (figure 3I(c)7), since each of the neurons has a different firing rate. In
the SN neurons case there is already dispersion due to the noise-induced jitter in the spike
time, in the autocorrelation figure 3II(a)l, and in the cross correlations (figures 3II(a)2-5).
The dispersion increases gradually with D. The difference between the CH and SN cases is
also evident in the distribution of k values for each pair in the network (figure 4, WB figure 8E).
For SN there is a well defined peak, with the average shifting to lower values as D increases,
(figures 4(a)—(c)), whereas for CH there is a broad distribution for small o; (figure 4(d)), a peak
at low values of x combined with a broad distribution for moderate values of o; (figure 4(e)).
For higher values of o, the network is in an asynchronous regime, and only the peak for low «
values is present (figure 4(f)). We have compared the ISTH for a network neuron with the ISTH
of an isolated neuron (not shown), and also the values of 7i5; and oys; (figures 5(a) and (b)).
The CV of the network neuron is higher than the CV of an isolated neuron which in turn is
higher than the CV of an isolated neuron with autosynaptic feedback. The inhibitory coupling
in the network increases the effect of the noise compared with uncoupled neurons: the jitter
in the spike times reduces the phasic component of s(z) (figure 2(c)). This effect does not
take place in a neuron with autosynaptic feedback: the size of the phasic component does not
decrease with D, only the timing deteriorates.
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I Current Heterogeneity
a b C

Figure 3. Noise and heterogeneity abolish strong synchronization in different ways: cross
correlations. (I) Loss of synchrony due to current heterogeneities: (a) oy = 0.02, (b) 0.07,
(c) 0.08, respectively. (II) Loss of synchrony due to synaptic noise: D = 0.01 (a), 0.04 (b),
0.09 (c), respectively. In 1 and 8 we plot the autocorrelation of X; (spike train of neuron 1); in
2-5 we plot the cross correlation of X; with X, ..., X5, respectively; in 6 we show the cross
correlations between X; and X ;, averaged over all pairs , j; in 7 we plot the autocorrelation of X;,
averaged over all neurons, and in 9 the auto correlation of the total spiking rate X; in 10 we show
the rastergrams of the network, i.e. neuron number versus spiking time. The timescale bar, shown
in I(c)7, applies to curves 1-9, (a)—(c) in I and II. The y-axis is in arbitrary units, and the same
scale is used for the curves in 1-6, and 7-9, except for the curves II{a) 7,8 and II(b) 7,8, which are
rescaled by a factor of 10. After a transient of 1 s, the time averages are computed over 2 s (I), and
3 s (IT). We used the standard set of parameters described in the methods section.

3.2. Effect of synaptic coupling strength on robustness of strong synchronization

We have also studied the effect of varying the synaptic coupling strength g.y,. For large enough
D the network will be asynchronous. We find that the network frequency in that case decreases
with increasing values of gy, (figure 6). For an asynchronous network the synaptic drive has
a constant tonic hyperpolarizing conductance, decreasing the firing rate. The stronger the
coupling the larger the decrease. The synchronization measured by the parameter « displays
a different behaviour. In figure 6(c) we plot the k versus g, curve for one specific value
D = 0.02. We have chosen I for each gy, such that the firing rate is approximately 39 Hz,
these current values are listed in the caption. It is interesting to note that in this case stronger
coupling does not necessarily mean a higher value of x. The coherence « has a local maximum
for geyn = 0.1, for higher values of gy, & decreases (see WB figure 12B). For gsyn > 0.3,
Kk starts increasing again. We have studied the underlying dynamics of this non-monotonous
behaviour. In figures 7(c) and (d) we plot the ISIH for different values of ggy,. For ggy, = 0.2
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Figure 3. (Continued)

one finds more than one peak. In the rastergrams (figures 7(a) and (b)), one can see that the
dynamics corresponds to a population that has a well defined frequency, but individual neurons
sometimes miss, or skip, a period. Despite this small asynchrony when the neuron fires, it does
so in synchrony with the others. As a consequence the rastergrams look much more ordered
compared with the one for gy, = 0.1 at the same noise strength D = 0.002.

3.3. Larger gsy, leads to robust stochastic weak synchronization

In this section we discuss the robust 40 Hz rhythms found for higher gqy, values. We have
doubled the synaptic decay constant to T, = 20. Here we will evaluate the modified C Vw
(equation (10)) and kw (equation (11)), characterizing the weak synchronization, as mentioned
in the methods section.

In figure 8 we vary gg, from 0.05 to 2.5 with a spacing of 0.05. The neuron number is
kept equal to N = 100, and we use [ = 2.0, and o; = 0. For D = 0.0 and o; = O the
network is in a strongly synchronized state, with the network frequency f, the same as the
single-neuron firing rate f. The frequency is exactly the same as the one for a single neuron
with autosynaptic feedback, as one would expect. This coherent state can be arrived at from
many different random initial conditions.

For weak noise, D = 0.008, the network stays in a strongly synchronized state for
&syn < 0.25. For higher gy, skipping starts to occur, the fractional cluster size decreases
from values close to one to values below one-half at gs, = 1.2. At that point the network
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Figure 4. Noise and heterogeneity abolish strong synchronization in different ways: coincidence
variables «;;. (a)—(f) distribution of « values for individual pairs (i, j), (g)—(i) difference in driving
current Al = |I; — | versus «;, ;. In (a)~(c) o7 = O and (a) D = 0.01, () 0.04, (¢) 0.09. Whereas
in (d)-(i) D = 0 and (d), (g) o7 = 0.02, (e), (k) 0.04, and (f), (i) 0.15. A transient of S00 ms was
discarded before averaging over 2000 ms. We used the standard set of parameters described in the
methods section.
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Figure 5. Inhibitory coupling increases the spike-time jitter in individual neurons. (a) Average
interspike interval tysy, and (b) coefficient of variation (CV), plotted versus noise strength D. We
consider three different cases, averages over all neurons in the network (circles), isolated neuron
with autosynaptic feedback (diamonds), isolated neuron without feedback (squares). For all curves
I = 1.0 except for the single neuron without feedback, there / = 0.61. The averaging times are
10 s (network), and 200 s (isolated neuron).

is in a real (albeit stochastic) cluster state, on average the neuron only fires once every two
cycles. We will refer to all states for which certain active neurons do not fire at each cycle
as a SWS network. The network frequency, f,, and the single-neuron firing rate, f, both
decrease with increasing gg». When the network settles in the SWS state f starts to differ
considerably from its value at the D = O state. The strength of synchronization increases with
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! j ' Figure 6. Coincidence « at constant network frequency varies
05 non-monotonously with coupling. (a) Network frequency, f, and
C (b) synchronization parameter, «, plotted versus noise strength D,
¥ for different values of the synaptic coupling and applied current
[ ] (gsyn» I) = (0.02,0.6955),(0.1,1.0), (0.3, 1.625), and (0.5, 2.15),
labelled by (1)—(4), respectively. The value of the applied current
0.0 . L . | . is chosen such that the neuron network will fire at f & 39.05 Hz
0.0 0.2 0.4 at D = 0. In (c) we plot ¥ versus ggyn for D = 0.02 at the
2 aforementioned current values. Time averages are computed over
Eqyn (mS/em’) 10 s after a transient of 1 s.

8syn» that is, CVy decreases and kw increases. For values gs,q > 2.0, CVy and kw slowly
saturate.

For stronger noise, say D = 0.04 and D = 0.20, the network is asynchronous for low
values of gsyn. We have therefore excluded these points based on the criteria discussed in the
methods section. The network frequency starts out at a higher value, and the neuronal firing
rate at a lower rate compared with the D = 0.008 case. The strength of synchronization, «w
and CVy, is reduced compared with the one for D = 0.008, but still increases with g,. Note
that all the neurons in the network still have a nonzero firing rate. We illustrate in figure 9, using
rastergrams and the firing rate, how increasing gy, for D = 0.2 drives the network from an
asynchronous to a synchronized cluster state. It is thus possible to obtain weakly synchronized
oscillations in a network consisting of 100 neurons in the frequency range between 20 and
40 Hz.

We find that noise is necessary to obtain SWS (figure 10). We have studied SWS in the
presence of weak current heterogeneities, say for oy = 0.02. Without noise (D = 0) the
network is in an strongly synchronized state, and « displays a maximum as a function of ggyn
(WB figure 12B). One also clearly notices the effect of suppression [21]: for larger gy, the
inhibition of faster spiking neurons stops the firing of neurons driven by a smaller current.
As a result the total number N; of active neurons gradually drops (figure 10(f)). For a small
amount of noise, D = 0.008, the situation changes dramatically. A SWS state is obtained,
and all neurons remain active (Ny/N = 1), while « saturates for ggy, > 0.5, and the value
of « for gy > 0.8 is even higher than without noise. Thus noise may actually improve the
coincidence. Of course noise does increase the width, C Vi, of the peaks in the instantaneous
firing rate. The single neuron firing rate decreases significantly compared with that for D = 0,
whereas the network frequency is only weakly affected.
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Figure 7. Stronger synaptic coupling leads to skipping of cycles. Rastergrams comparison,
(@) gsyn = 0.1, I = 1.0, and (b) gsyn = 0.5, I = 2.15, with noise strength D = 0.002. We
also compare the ISIHs for different values of the synaptic coupling gsyn = 0.5 (1), 0.2 (2), and
0.05 (3), and for different values of the noise strength D equal to (c) 0.014, (d) 0.034. The values of
the applied currents are / = 2.15, 1.331, and 0.8145 for (1), (2), and (3), respectively. Timescale
bar is shown in (d)1, the y-scale is arbitrary but the same for all curves in (c), (d). For clarity the
top of (c)1 and (d)1 are cut off. An initial transient of 10 s in (a) and (b) was discarded. After a
transient of 1 s, time averages were taken over 10 s (c), (d).

‘We have performed numerical simulations for system sizes N = 10, 20, 50, 100, 200, and
1000 (figure 11). We have used the following parameters values: I = 5.0, D = 0.2, goyn = 1,
Toyn = 20, and o7 = 0.1. The network frequency increases with system size, whereas the firing
rate stays approximately constant with a dip around N = 50. The measures for coherence, kw
and CVy, are also only weakly dependent on the system size.

The cycle-to-cycle fluctuations in cluster size vary approximately as ~/N (figure 11(g)).
The strength of the inhibition is determined by the number of neurons that fired in the previous
cluster, and in turn it determines at what time the first neurons become disinhibited. One
therefore expects cluster size fluctuations and cycle length fluctuations to be intimately related.
Indeed, the standard deviation of cycle length varies as 1/+/N with N the number of neurons
(figure 11(k)). This means that larger networks are better at generating a precise cycle length,
whereas size does not matter as much for the coincidence of spikes measured by xy and C Vyy.

In each simulation we randomly draw a set of driving currents I; for each neuron j from a
uniform probability distribution. The results one obtains may critically depend on the particular
realization of driving currents. One expects that for larger systems this is less of a problem.
The population distribution of I is more likely to approach the original ensemble distribution
of currents for a given neuron. Here we have studied the range of values for the measured
quantities (f,, f, and so on) for ten different realizations. We find that for most quantities (for
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Figure 8. Properties of SWS as function of the synaptic coupling strength. We plot (a) network
frequency f,, (b) single-neuron firing rate f, (¢) cluster size N, normalized by systemsize N = 100,
(d) kw, (e) coefficient of variation CVy of ISI, and (f) standard deviation of the network period
T, Versus synaptic strength gsyn, for different values of D = 0.008 (dotted curves), D = 0.04
(dot-dashed curves) and D = 0.2 (solid curves). gsyn is varied from 0.05 to 2.5 in increments
of 0.05. For D = 0.04 (D = 0.2) the first 6 (14) points have been removed according to the
criterium given in the methods section. In (b) we have added the firing rate of a single neuron
with autosynaptic feedback (thick solid curve), and the network for D = 0 (open circles). Other
parameters are o7 = 0, I = 2.0, Tgys = 20. A 500 ms transient is discarded, and averages are
taken over 2000 ms. To smooth (d)-(f) we have performed running averages over five points, the
original points are denoted by dots.

these parameter values) the range of values decreases with N, and for N > 500 one realization
will give a result close to the expectation value.

We now vary oy and D for the following fixed parameter set N = 1000, gyn = 2,
Toyn = 20, and I = 3.5 (figures 12, 13). For D = 0 and 0; = 0 the network is strongly
synchronized at 20 Hz. The instantaneous firing rate consists of a sequence of regularly
spaced delta functions (figure 12(e)), the ISIH has a single delta peak at 50 ms (figure 12(b)),
and all neurons spike at the same frequency (figure 12(a)). Increasing D increases the network
frequency, but decreases the single-neuron firing rate (figure 13). The population activity is
still periodic (figure 12(f)), but the peaks have a finite width (as well as the ISIH), and the ISTH
becomes multimodal. This process continues with the ISTH spreading out more and more,
with the CVyy increasing, and xy decreasing.

As mentioned before we need some noise to generate an SWS state. Here weuse D = 0.2,
while at the same time varying o;. For finite o; there is still a coherent population activity
(figure 12(g)), despite the fact that neurons have different firing rates (figure 12(c)). Increasing
o will reduce coherence, kw decreases and C Vi increases. At the same time both f, and f
increase (figure 13(d)). This is different from the effect of increasing D. Higher o, leads to
suppression, with fast spiking neurons preventing slower ones from firing, and as a result part
of the inhibition disappears, while further increasing the firing rate and its average (calculated
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Figure 9. Increasing synaptic coupling leads to synchronized network oscillations. We plot in
each panel (top) rastergrams and (bottom) instantaneous firing rates, with bin size 1 ms. The data
represent four points on the D = 0.2 curves in figure 8 at (@) gsyn = 0.15, (b) 0.3, (¢) 0.5, (@) 1.0.
The scale bar in (d) corresponds to five spikes in a 1 ms bin.
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Figure 10. Noise can prevent suppression and can increase coincidence xw. We plot (a)—(e) as in
figure 8, (f) number N; of active neurons for different values of D = 0.0 (solid curves), D = 0.008
(dot-dashed curves). Other parameters are o7 = 0.02, I = 2.0, Tgyp = 20. The smoothed (c)—(f)
plots were obtained as in figure 8.
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Figure 11. Most network properties saturate for N > 100. We plot (a) network frequency f;,,
(b) single-neuron firing rate f, (¢) coefficient of variation C Vi of ISL, (d) «w, (e) cluster size N,
normalized by system size N, (f) number of active neurons N; normalized by N, (g) coefficient of
variation of N, () standard deviation of the network period t, versus system size N (N = 10, 20,
50, 100, 200, 500, 1000). We show results for ten different realizations of the current distribution
(open circles), and their average (solid curves). Other parameters areo; = 0.10, D = 0.2, = 5.0,
&syn = 1.0, and 75y, = 20. A 500 ms transient is discarded, and averages are over at least 2000 ms.

from the active neurons). (Note that the suppression here is different from that at D = 0,
the fast spiking neurons still produce a periodic population oscillation.) On the other hand,
noise increases the tonic inhibition for each neuron, and thus leads to a reduced firing rate.
In addition, the progression of the asynchronous state is different. The first peak in the ISTH
becomes broader, and the higher order ones have a reduced prominence (figure 12(d)). For
increasing D the peaks just wash out.

3.4. A single neuron driven by a simulated network input

A neuron in a network of neurons is driven by other neurons by a spike train of IPSPs (with
unitary conductance gqn/N). The statistics of the spike trains are given by the instantaneous
firing rate X(¢), which in turn can be characterized by a period 1, cluster size N,, and jitter
o, (see the methods section and figure 1). We have investigated the dynamics of a single
neuron driven by a simulated network input (figure 14). We generate spike trains as a Poisson
process from a realistic X (t), with parameters t, = 25, N = 100, N, = 62.5, o, = 0.5
(CVw = 0.02), and inject these into the neuron. The input corresponds to that of a weakly
synchronized network, N, < N. However, since the inputs are independent, it may also
be interpreted as a strongly synchronized network with a synaptic strength gynNc/N and
consisting of N, neurons. The neuron is weakly synchronized to the network’s input when its
average phase ¢ is close to the phase of the input, %, and the output jitter o4 is not much larger
than CVy. (Note that o4 averaged over all network neurons would be equal to C Vy.) Strong
synchronization requires that all neurons also fire with the same period, that is f = 40 Hz.
In figure 14 we compare the weak coupling case, gs,n = 0.1, to the strong coupling case,
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Figure 12. Synchronized network oscillations can exist despite large variations in the individual
spiking rates. We plot in (a), (c) the interspike intervals (ISI) of the network neurons sorted from
the lowest to highest value, and (), (d) the ISIHs. In (a), (c) we used different values of the noise
strength, from top to bottom D = 0.0, 0.04, 0.08, 0.36, and 0.56, with o7 = 0. In (¢), (d) from
top to bottom a7 = 0 (1), 0.173 (2), 0.346 (3), 0.520 (4), and 0.693 (5), with D = (0.2. After a
transient of 500 ms, the time average is computed over 2 s. We plot the instantaneous firing rate as
a function of time for (¢) D = 0,07 = 0, (f) D = 0.56, 07 = 0, and (g) D = 0.2, o7 = 0.35. The
scale bars are () 500 imp s, (f), (g) 50 imp s™!. We used 7 = 3.5, Tgyn = 20, N = 1000, and
8syn = 2.0.

8syn = 1.0. In both cases the firing rate of the neuron increases with increasing current drive
(figures 14(c) and (f)). A prominent feature here is the presence of an entrainment step. On an
entrainment step the firing rate is constant for a range of current values, and equal to a fraction
of the driving frequency, 2 farive (the neuron fires n action potentials during m cycles of the
external drive). In this case n = m = 1. For weak coupling the jitter oy is only small on
the entrainment step itself (figure 14(b)). However, on the step, ¢ varies with the value of the
current drive (figure 14(a)). The phase ¢ will only be close to % for a small current range. This
generic feature of entrainment steps explains why strong synchronization is not robust against
current heterogeneity. We have also studied the effect of a noise current with D = 0.04. The
jitter increases dramatically, oy > 0.2, even for current values on the D = 0 entrainment step.
In other words, strong synchronization is also not very robust against noise.

We now discuss the strong coupling case. For current values below the entrainment step
there is a large current range where ¢ is close to %, and oy < 0.05. Here one would obtain
weak synchronization in the network case. This state is thus more robust against current
heterogeneity. We note that it is hard to distinguish the D = 0 from the D = 0.04 curves
(figures 14(d)—(f)). The dynamics here is therefore also more robust against noise.
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Figure 13. Variation of SWS properties as a function of noise and as a function of heterogeneity.
We plot in (a), (d) the network frequency f,, (solid curve, left-hand scale) and single neuron firing
rate f (dashed curve, right-hand scale); (b), (¢) coherence «w (solid curve) and the C Vy (dashed
curve); (c), (f) cluster size N, and number of active neurons N divided by N; as function of (a)—(c)
noise variance D, and (d)—(f) current heterogeneity o;. We used the following parameters [ = 3.5,
Teyn = 20, gsyn = 0, and N = 1000, for (a)—(c) with o7 = 0, and for (d)—(f) the same parameters
with D = 0.2.

4. Discussion

Previous authors have recognized that strong synchronization is only moderately robust against
neuronal heterogeneity [20,21]. We have previously shown that the same holds if we include
synaptic noise [22]. The basic premise of synchronization by mutual inhibition is clear, for the
network consists of intrinsically periodically spiking neurons. Their output produces a periodic
synaptic drive, which in turn is fed back into the network. Inhibition thus allows a phase lock at
zero relative phase with this drive. Heterogeneity and noise reduces the phasic, and increases
the tonic part of the synaptic drive, leading to a reduction in synchronization, and eventually
leading to an asynchronous state (figures 2(c) and (d)). The synchronization behaviour of
networks of physiological realistic neurons, however, is by no means fully understood. In
this work we showed that the loss of synchronization proceeds via different mechanisms
in the presence of synaptic noise compared with the presence of current heterogeneity.
This is evident from the cross correlations shown in figures 3 and 4. We also found that
the noise-induced precision loss in the uncoupled neuron is exacerbated by the inhibitory
coupling. All of these could seem obvious based on previous work on heterogeneity [20,21].
However, its consequences for real-life biological networks had not been fully appreciated
before. Our results, combined with previous results, show that there is a problem with strong
synchronization by mutual inhibition, since it is unlikely to occur in in vitro or in vivo systems.
(There are exceptions, such as for example the pacemaker nucleus in electric fish [49], where
the neurons are coupled via gap junctions.) The aim of this paper was to treat the problem
of how one can obtain robust synchronization in the presence of synaptic noise and neuronal
heterogeneity. Our results are twofold. First, methods to increase the robustness of strong
synchronization have been ineffective. Second, we showed that robust SWS can be obtained
for biophysically realistic parameter values. SWS is consistent with previous experimental
data. In what follows we discuss these two results in more detail.
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Figure 14. Response of single neuron to simulated network input. We plot in (a), (d) the average
phase ¢, (b), (¢) the phase jitter o, and (c), (f) the firing rate f. The coupling strength in (a)—(c)
is geyn = 0.1, and in (d)—(f) 1.0. The noise strengths are D = 0 (solid curves), and D = 0.04
(dot-dashed curves). In (d), (e) the lines represent running averages over five points, the actual
data are denoted by dots. The network input consists of N = 100 neurons of which N, = 62.5 fire
each cycle, 7, = 25, o, = 0.5 (i.e. CVyw = 0.02), and the unitary conductance is gsyn/100 (see
the methods section for details). The input phase is defined as ¢ = % A transient of 500 ms was
discarded, and averages were calculated over 5 x 10* ms.

From the results stated above, we believe that strong synchronization is not robust enough.
To make sure that we do not prematurely discard strong synchronization by mutual inhibition
we made an effort to increase its robustness. In this paper we tried two simple methods to
increase robustness of strong synchronization. One was to increase the synaptic coupling
Zsyn» since inhibition is responsible for synchronization. It is then quite natural to expect that
increasing the strength of inhibition increases robustness. The fact that this does not happen is
surprising. For current heterogeneity this is in part due to suppression [20,21]. We have also
studied this effect for synaptic noise in more detail. We found that neurons skip periods for
higher values of g, (see figure 7). In other words, the strongly synchronized state becomes
unstable, and a weakly synchronized state emerges. This weakly synchronized state looked
more coherent (figures 7(a) and (b)), and it provided the impetus for our further studies of the
robustness of the SWS states.

Recent experimental work shows that the CV of neurons on an entrainment step is reduced
compared with the CV outside the step [50]. A clear physiological correlate in hippocampus of
this drive, however, is lacking at present time. Since we tried to reject our conjecture, this lack
of physiological realism is not a problem. We did find a moderate increase in robustness with a
periodic drive, that is not as effective as one would have intuited, however (Tiesinga and José,
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unpublished observations). In fact the inhibitory connections reduce the increase in robustness
compared with the increase in the single uncoupled neuron. If we add a subthreshold periodic
drive with noise to a quiescent neuron we obtain weak synchronization. This is known as
stochastic resonance in excitable systems [51]. To summarize: our attempts to significantly
increase robustness of strong synchronization failed. Instead we found weak synchronization,
which turned out to be easier to find in parameter space than strong synchronization.

If one accepts the fact, however, that strong synchronization is not robust against noise and
heterogeneity, and that periodic population oscillations are found in experiments, then one has
to carefully consider the possible relevance of weak synchronization. Weak synchronization
as well as strong synchronization lead to a periodic population discharge, and specifically to
an inhibitory synaptic drive indistinguishable from the one found in pyramidal neurons in [14].
Moreover, the clusters that form in stochastic weak synchronization bear a resemblance to the
neuronal assemblies found in some experiments [52], and that are thought to play a role in
putative binding [53]. The question then is: is SWS more robust, and can it be found for the
gamma-frequency range for biophysically realistic parameters? What is needed is a higher total
synaptic conductance, and noise. The necessary amount of noise is very small, i.e. D > 0.004
is sufficient. The noise prevents the occurrence of suppression (figure 10). In suppression the
faster neurons prevent the slower ones from firing. This reduces the inhibition of the faster ones,
and allows them to fire at different frequencies and at a random relative phases. Suppression is
thus detrimental to synchronization. Noise-induced jitter helps suppressed neurons to escape.
(Note: for strong heterogeneities suppression can also occur at non-zero noise, see figure 13
and the corresponding text. However, there is still a periodic discharge in that case.) A higher
total synaptic conductance is necessary for two reasons. The inhibition generated by a cluster,
i.e. only part of the network, should be strong enough to prevent the other neurons from firing
out of sync. In addition this effective inhibition should be stronger than that necessary one
for the strong synchronization we obtained here. This becomes clear when considering a
single neuron driven by a simulated network input. For strong synchronization one can choose
a current value on the entrainment step (see figure 14). An entrainment step exists for any
value of gyn. Of course, the current range for which the step occurs, varies. However, weak
synchronization occurs below the entrainment step. For weak coupling, gsya = 0.1, the output
jitter o is too high to allow for a synchronized state. The jitter will only be low enough for
significantly stronger coupling, e.g. gsyn = 1.0 (figure 14(e)).

We obtained SWS for different system sizes (we studied networks from 10 to 1000
neurons). The coincidence properties (xw, and CVy) did not vary much with size. The
temporal precision of the population oscillation, however, increases approximately as 1/+/N
(figure 11(h)). Large networks can thus produce precise pacemaker rhythms. In addition, the
statistical quantities in a small networks show more variation with different realizations of the
current drive.

It is of considerable interest to understand why weak synchronization is so much more
robust and prevalent compared with strong synchronization. In strong synchronization one
requires an equal firing rate for each neuron, while weak synchronization requires only close
coincident spikes. By definition, then, weak synchronization is easier to generate. Strong
synchronization is only possible (depending on intrinsic properties) for a small difference
in driving currents. There is a price to pay, for there will be a phase difference between the
firings of each neuron. Pairs with alarge phase difference are less stable against the influence of
noise. Strong synchronization can thus only occurif all neurons have roughly the same intrinsic
spiking frequency, or when there is a gap junction coupling between them. In section 3.3 we
found network parameters for which coincidence could be maintained, despite highly variable
and noisy firing rates of the neuronal populations. The allowable levels of ¢; and D for which
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one still obtains SWS are much higher than the o; < 0.10 and D < 0.10 for which strong
synchronization was obtained by Wang and Buzsaki [20].

Our work, and also arecent study [21], is to a large extent based on the recent contributions
by Wang and Buzséki [20]. It is therefore important to briefly reiterate, and spell out how our
work extends the work of Wang and Buzsaki, and how it differs from the work of White
et al [21]. Here we have included the effect of synaptic noise, that was not considered
by Wang and Buzsdki. We have shown that for the purposes of our modelling work a
Gaussian white noise current can adequately reproduce experimental ranges of CV [47]. We
found that biophysically realistic amounts of noise do affect the synchronization we have
studied. As we discussed above, the noise effects are also different from those of current
heterogeneity. Another important difference is that previous works [20,21] only studied strong
synchronization. Here we have proposed that stochastic weak synchronization underlies the
synchronized population oscillations in the hippocampus. For this reason our robust 40 Hz
population rhythms were obtained for different values of the coupling parameters gsyn, Toyn,
the driving current I, and the system size N, as compared with previous work [20]. In our
computational work we actually needed a small amount of noise to be able to generate weak
synchronization.

The synchronization properties of large networks may be of some mathematical interest.
Our networks are small, and probably the behaviour can change quantitatively when increasing
the network size significantly. However, in this paper we only addressed the question as to
whether networks of physiologically realistic size and connectivity can robustly synchronize.
Recent experimental work suggests that interneurons contact on the order of 60 other
interneurons [54]. For this reason we only vary our network size between N = 10 and
1000.

In the introduction we mentioned recent in vivo work and the controversies on the
functional relevance and role played by synchronization. Our work obviously does not
contribute to the understanding of the function of synchronization. An important question
is what kind of synchronization can be sustained in biophysically realistic networks. Traub
and co-workers [ 12—15]looked for physiological correlates of the gamma rhythms using in vitro
experiments and computational modelling. Their results show the crucial role of inhibition,
and have provided much of the impetus for our work. The nervous system produces, for
some unknown reason, periodic population activity using circuitry consisting of noisy and
heterogeneous neurons. Our results establish that it is possible for inhibitory neurons to be the
driving force for synchronization under these conditions. In future work we will investigate
what role these interneurons play in generating gamma-oscillations in full networks consisting
of inhibitory interneurons and excitatory pyramidal cells [55].
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