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Abstract. We study the stability and information encoding capacity of synchronized states in a neuronal network
model that represents part of thalamic circuitry. Our model neurons have a Hodgkin-Huxley-type low-threshold
calcium channel, display postinhibitory rebound, and are connected via GABAergic inhibitory synapses.

We find that there is a threshold in synaptic strength, t., below which there are no stable spiking network states.
Above threshold the stable spiking state is a cluster state, where different groups of neurons fire consecutively,
and each neuron fires with the same cluster each time. Weak noise destabilizes this state, but stronger noise drives
the system into a different, self-organized, stochastically synchronized state. Neuronal firing is still organized in
clusters, but individual neurons can hop from cluster to cluster. Noise can actually induce and sustain such a state
below the threshold of synaptic strength. We do find a qualitative difference in the firing patterns between small
(~10 neurons) and large (~1000 neurons) networks. )

We determine the information content of the spike trains in terms of two separate contributions: the spike-time
jitter around cluster firing times, and the hopping from cluster to cluster. We quantify the information loss due to
temporally correlated interspike intervals. Recent experiments on the locust olfactory system and striatal neurons
suggest that the nervous system may actually use these two channels to encode separate and unique information.

Keywords: inhibition, neural network, synchronization, noise, information

1. Introduction sory modalities of one object into one unified percept.

The neural mechanisms that underlie synchronization

The brain receives an enormous amount of information
transduced by peripheral sense organs. This massive
information influx is coded and decoded in ways that
are not yet fully understood in cognitive neuroscience.
Recent studies have focused on specific neural sub-
strates for binding mechanisms. Binding is the process
by which the brain combines different aspects of sen-

in different parts of the brain are only partly understood.
There is the suggestion that synchronization may be
relevant to binding (Singer and Gray, 1995). Recent
experiments have shown that inhibitory interneurons
in the hippocampus (Whittington et al., 1995), the tha-
lamic reticular nucleus (Steriade et al., 1993), and the
locust olfactory system (MacLeod and Laurent, 1996)
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can indeed synchronize neuronal discharges. Subse-
quent theoretical analysis of networks of interneurons
has shown that strong synchronization by mutual inhi-
bition is only moderately robust against neuronal het-
erogeneities (Wang and Buzsaki, 1996) and synaptic
noise (Tiesinga et al., 1998). In strong synchroniza-
tion all the neurons fire with a short time-interval from
each other.

In most experiments to date one measures the activity
of one neuron or a small population of neurons. Pe-
riodic oscillations (extracellular or subthreshold intra-
cellular) measured in these experiments are consistent
with strong as well as weak synchronization. In weak
synchronization the average neuronal activity is peri-
odic, without each individual neuron having to fire at
each period. Often theoretical analyses, however, have
focused on strong synchronization. Here we conjecture
that weak synchronization is robust against neuronal
heterogeneities and synaptic noise and consequently is
much more likely to occur in neuronal systems. Fur-
thermore, we show that it can encode more information
compared to strongly synchronized states. We present
numerical results of weak synchronization in a simple
model of a network of thalamic neurons that supports
our conjecture. We use a thalamic network as an ex-
ample due to the wealth of modeling information that
is already available. The mechanism we discuss here,
however, has more general applicability.

The thalamus acts as a relay for most of the sensory
information that travels to cortical structures. It regu-
lates sleep-wake cycles (Steriade et al., 1993), and it
may be involved in early stimulus binding (Sillito et al.,
1994). The lateral geniculate nucleus (LGN) and thala-
mic reticular nucleus (TRN) that are involved in vision
have been studied extensively. Neurons of the thalamus
express low-threshold calcium currents (Jahnsen and
Llinés, 1984), and they rebound after a sustained hy-
perpolarization. It has been shown experimentally and
in model calculations that inhibitory neurons can syn-
chronize neuronal discharges in the thalamus (Wang
and Rinzel, 1993; Wang et al., 1995; Golomb and
Rinzel, 1994b; von Krosigk et al., 1993; Bal et al.,
1995) and produce traveling waves (Rinzel et al., 1998;
Destexhe and Sejnowski, 1996; Destexhe et al., 1996;
Golomb et al., 1996; Tiesinga et al., 1998).

The hallmark of weak synchronization is multi-
modal interspike interval (ISI) histograms (ISIH). The
IST occurs only near multiples of a particular time-
scale, such as the period of the population activity
T. Multimodality of the ISIH has been observed in
the LGN (Funke et al., 1996), and it was attributed

to the action of inhibitory neurons. Multimodal ISIH
have also been found in model simulations of cou-
pled inhibitory networks in the presence of noise
(Golomb and Rinzel, 1994a) and in systems exhibiting
stochastic resonance (SR) due to a periodic drive
(Wiesenfeld and Moss, 1995). A theoretical mecha-
nism for autonomous stochastic resonance (ASR) was
proposed in a recent paper (Longtin, 1997). There the
periodic drive was replaced by a periodic mode in an
internal kinetic variable, such that the spikes ride on
top of subthreshold voltage oscillations. In our work
the periodic neuronal activity in the noise-driven sys-
tem is self-induced by the network. This mechanism
is absent in unconnected single neurons, or in a single
element with autosynaptic feedback.

It has been suggested that the brain may encode in-
formation through an ensemble or cluster of neurons
that fire within a short time of each other (Stopfer et al.,
1997; Riehle et al., 1997). A particular neuron may be
part of a cluster for a few cycles before it joins another
neuronal ensemble. This type of dynamics is very sim-
ilar to the neuronal clusters that form in our model sim-
ulations described below. An important problem is how
to quantify the information content of these binding-
like cluster states. The Shannon entropy has been used
as a measure of information content in investigations
of sensory neurons in, for instance, crickets (Levin
and Miller, 1996), and flies (Rieke et al., 1997). It
is, nonetheless, not known how the brain processes in-
formation, and thus it is not clear whether the Shannon
entropy is the correct quantity for this purpose. It does,
however, provide an upper bound on the theoretical in-
formation content of spiking neurons. It also implies
that noise in the nervous system contains information
and that noisy neurons are transmitting more informa-
tion compared to regular noiseless spiking neurons.
We emphasize that this statement is still controver-
sial (Softky and Koch, 1993; Shadlen and Newsome,
1994; Shadlen and Newsome, 1998) because even if
the entropy measure yields consistent results in sen-
sory systems this does not guarantee its relevance to
the central nervous system. With these caveats in mind
we still proceed to characterize the information content
of our neural networks by calculating its well-defined
Shannon entropy.

One would like to calculate both the output entropy
of the model system and the mutual information. The
mutual information quantifies how the ensemble of out-
puts is related to one of the possible realizations of the
input (Rieke et al., 1997), and it involves additional
averagings over a conditional probability distribution,
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which makes it very hard to calculate. Even the simpler
calculation of the Shannon entropy from its definition
in terms of the spike times is a difficult calculation.
Here we shall focus on the Shannon entropy of the
neuronal output of a neuron as part of the complete
network. We also present here some approximations
that allows us to estimate the Shannon entropy using
the interspike interval time series.

2. Methods
2.1. Network Model

Our single-neuron model equation contains a low-
threshold calcium current I¢,, a general leak current
Ip, a synaptic current Iy,, and a noise current Cp, &,
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together with the first-order (Hodgkin-Huxley type)
kinetic equations for the activation m and inactivation h
variables for /¢, and the synaptic variable s. This yields
a neuronal dynamics in terms of four variables, V, m,
h, and s. We have used the kinetics for I¢, and Iy,
as specified in (Rinzel et al., 1998) (a detailed descrip-
tion of the model is given in Appendix A). Our single-
neuron model captures some important features of the
dynamics of thalamic neurons, in particular its post-
inhibitory rebound (PIR). We are presently studying a
more complete model, incorporating thalamocortical
relay neurons and GABAergic thalamic reticular neu-
rons (Destexhe and Sejnowski, 1997), including all the
relevant active currents (Huguenard and McCormick,
1992; McCormick and Huguenard, 1992). Our pre-
liminary results suggest that this does not change the
conclusions of our discussion here.

The neurons in our network are connected all-to-all
by inhibitory GABAergic synapses. Previous studies
(Destexhe et al., 1996; Golomb et al., 1996; Rinzel
et al., 1998) have shown that the precise spatial con-
nectivity is important for the activity propagation. In
this work, we will not consider the spatial characteris-
tics of the neuronal activity. We have studied different
sized systems, varying from N =1 (a single neuron
with autosynaptic feedback) to N = 1000. We also have
included two types of noises in our model, either Gaus-
sian current noise, characterized by (§) =0 and
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with D the strength of the noise, or with Poisson
distributed excitatory postsynaptic potentials (EPSPs)
and inhibitory postsynaptic potentials (IPSPs). In our
previous work we have shown that these two types
of noises are not fully equivalent (Tiesinga and José,
1999). Both can generate, however, similar statistics,
and theoretically Gaussian noise is easier to control
and vary. The results presented here are thus ob-
tained with Gaussian noise. Unless stated differently
the physiological total synaptic conductance used is
gs =2 mS/cm?, and the decay time of the synaptic
channel 7; = 16 ms. The noise strength D is expressed
in units of mV?/ms, time in ms, currents in wA/ecm?,
and voltage in mV.

The resulting differential equations for V;, m;, h;,
s; are numerically integrated using a noise-adapted
second-order Runge-Kutta algorithm (Greenside and
Helfand, 1981) with a time-step df = 0.1 ms. The cal-
culation starts with random initial conditions, with the
initial voltage chosen from a uniform distribution with
a range of 20 mV centered around —68 mV, and m,
h, and s are set equal to their asymptotic values for a
given value of V.

2.2. Calculated Quantities

The raw model output are the time-traces for V;, m;, h;,
and s;. The spike-times are defined as the time when
the voltage V; crosses —30 mV from below. We deter-
mined the standard histograms of interspike intervals
(Rodieck et al., 1962). The instantaneous firing rate, or
frequency f, is defined as the number of action poten-
tials per second in a bin of 2 ms. Both the IST histogram
and f are averaged over all neurons in the network. We
also calculated

1
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which is proportional to the current drive due to the
synaptic connections with other neurons (and itself).
Because the network is connected all-to-all, vyy, is the
same for each neuron and represents an averaged or
mean field type drive. During a periodic oscillation vsy,
varies from its minimum value just before firing to its
maximum value just after firing. The value v,y, =0.01
is reached every cycle, except in the presence of strong
noise. In that case the disperse nature of the firing cre-
ates a background value of vy, above 0.01. The vari-
able & determines the excitability of the neuron, and the
state of the network strongly depends on the h-value
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distribution. To determine the A-distribution prior to
firing we sample h at the time that vy, crosses 0.01
from above. We have determined both the instanta-
neous as well as the time-averaged distribution of A.

We have quantified the network’s spiking activity by
determining the period and periodicity of the neuronal
discharge. We first determine the number n; of neurons
firing in a particular cycle i and their average spiking
time #;. The period is the average over all cycles i of
ti+1 — t;. The periodicity is then defined as N /n, where
n is the average of n; over all cycles, and N is the
number of neurons in the network. For a zero noise
periodic cluster state, the periodicity corresponds to
the number of cycles between consecutive spikings of
a particular neuron. In stochastic cluster states N /n
can take non integer values.

We have also determined return maps of the inter-
spike intervals. In the first return map we plot the next
ISI, 4, versus the current ISL,, whereas in the second
return map we plot ISI,» versus ISI,. We subsequently
average over all neurons in the network. To obtain

g, (mS/cm‘z)

the corresponding transfer matrices, 7" and T>, respec-
tively, of the presumed Markov process, we divided the
return map into a two-dimensional set of bins bj;. The
bins are centered on multiples i, j of the cycle length,
and their width is also equal to the cycle length, then

Tji = bji/zbji- C))

3. Results

The model considered here contains an inward low-
threshold calcium current, I7, that initiates the calcium
spikes (Zhanetal., 1999). It is inactivated at the resting
membrane potential (RMP, equal to —65.57 mV), and
it is deinactivated at hyperpolarized voltages. For the
neuron to be excitable, & has to be deinactivated (that is
h > 0.305). We illustrate this in Fig. 1A. There are two
V null-clines drawn, one (I) in the absence of a current,
and the other (II) in the presence of a constant hyper-
polarizing current i = —1 pA/cm?. We apply a short
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Figure 1. A:Phase-plane plots of the neuronal dynamics for the variables h and V. The plotted nullclines correspond to dh/dt = 0 (dot-dashed
line), and dV /dt =0 (solid lines), I = —1.0 (top) and I =0.0 (bottom). The phase trajectory of a neuron released after 10 ms (dotted), and
200 ms (dashed) from a hyperpolarizing current pulse / = —1. B: Top curves for V, and bottom curves for &, plotted as a function of time for
s =5ms < 7, (solid lines), and curves t; = 16 ms > 7, (dashed lines), both with g; =2.0. The horizontal lines represent the value h = 0.305.
C: Phase-diagram t; vs. g;. Stable oscillations for 7, > 7.(g;) are shaded while the unstable ones t; < t.(g;) are colored white (see main text

for details).
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(10 ms) and a long pulse (200 ms) with strength i. The
phase point moves to II, and the s value starts increas-
ing with time-scale 7; = 500 ms (see Appendix A). On
termination of the short pulse the phase point moves
back to I, without generating a spike. When the long
pulse ends, however, the A-value is too high, and the
phase point misses the nearby branch of I and generates
a calcium spike.

The necessary hyperpolarization is supplied by the
inhibitory postsynaptic potential (IPSP) generated by
the activity of other neurons in the network. The
strength of the IPSPs is determined by the value of
the synaptic conductance g; and the decay time 7;.
The critical value for periodic oscillations is defined
as 7, = T.(gs, N), which depends on the number N of
neurons in the network. For 7; < 1., the oscillation dies
out after a finite number of action potentials. In Fig. 1B
we show the voltage trace oscillations below and above
threshold for N =1 (single neuron with autosynaptic
feedback). At the start of the simulation the neuron is
released from a hyperpolarized voltage. For subthresh-
old values of 7 the neuron produces a few spikes be-
fore returning to RMP. During each spike the average
value decreases, since the inhibitory drive is not strong
enough to replenish the loss due to the depolarization
of the spike. Above threshold a periodic spike train
is produced. The h-value varies periodically, it de-
creases during the spike, and it increases during the
inhibition. The subthreshold spike train has therefore a
much smaller ISI compared to the one above threshold.
We have determined the boundary between stable and
unstable oscillations as function of g; (Fig. 1A). The
terms stable and unstable refer to the stability of the
spiking limit cycle reached from a hyperpolarized ini-
tial condition. The minimum duration z; of the IPSP
needed for deinactivation increases for weaker synap-
tic coupling g;. The region of stability in Fig. 1C is
also bounded from above. For larger values of 7, the
firing rate decreases with increasing t;, until the firing
stops (at Ty =390 for g; =2). These large values for
T, are not further considered in this article. We have
not systematically varied the parameters 7o and 13 (see
Appendix A). However, we find that increasing 7
moves the 7;(g;) boundary downward, whereas in-
creasing t; moves it upward. The situation for a real
network (N > 1) is more complicated, since the initial
voltages play an important role. If, for instance, we
would start with neurons clamped at their resting mem-
brane potential nothing will happen. To obtain aspiking
network state we therefore always start the simulations

with part or all the neurons clamped at hyperpolarizing
voltages. With uniform initial conditions all neurons
are clamped at the same voltage value. The threshold
7. for self-sustained oscillations is then equal to the
one for a single neuron (Fig. 2A). Above threshold this
network is in a coherent state: all neurons spike at
the same time. For random initial conditions the ini-
tial voltage is chosen from a uniform distribution with a
range of 20 mV around a hyperpolarized average value.
In that case the network can sustain stable oscillations
for lower values of t; (Fig. 2B). The network settles in
a state where groups of neurons fire simultaneously. It
is easy to understand why such cluster states emerge.
Starting from random initial conditions each neuron
will have a different phase and will thus reach the spike
threshold at a different time. The first neurons to fire
will cause an inhibition that blocks other neurons (fur-
ther from threshold) from firing. They can fire only
after the decay of the inhibition (a few ;). Periodic
oscillations in the network are sustained by inhibition
waves produced by the activity of deinactivated neu-
rons. The oscillations automatically become coher-
ent, with the initial phase differences between cluster
neurons driven to zero. In the simplest cluster state
each neuron fires with the same ISI. The time between
consecutive cluster firings, or cycle length, may vary
since the strength of inhibition depends on the cluster
size. Neurons will fire only when vy, is below a cer-
tain value: the higher the initial value (proportional to
cluster size), the longer it takes to decay to this value.
The precise threshold value of vy, depends on state
variables such as k. For higher h-values the neuron
can fire at higher values of v,y,. More complex cluster
states may also contain neurons that fire with different
frequencies.

Sufficiently strong noise can induce and maintain a
spiking network state even for 7, < .. Again we have
to distinguish between single neurons and a network.
The noise-induced dynamics of a single neuron with
autosynaptic feedback will not yield a periodic spike-
trace. Instead, the ISI distribution has a peak for short
times due to ISIs within the spike trains and an expo-
nential distribution for the intervals between the end
of one and the start of another spike train. We show
some representative voltage traces in Fig. 3C. Close to
threshold and with weak noise the neuron produces a
long transient that dies out eventually. Stronger noise
can spontaneously induce a spike. The inhibition in-
duced by the spike then manages to produce a short
spike train. The number of spikes in this train depends
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Figure 2. Voltage traces for neuron one of an N = 1000 neuron network of all-to-all connected with (A) uniform initial conditions, (B) random
initial conditions, (C) uniform initial conditions with noise (D =0.02, here a transient of 100 ms was discarded), for three different values of
7, = 16, 13, 9 (from top to bottom). A voltage and time scale bar is shown in the lower left graph.
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Figure 3. Noise-driven single neuron dynamics with autosynaptic feedback. A: Phase-diagram of neuronal behavior as a function of noise
strength D, for different values of t;. No activity (solid line), spontaneous single spikes (dashed line), spontaneous spike-trains (filled circles).
B: ISIH for (top) t; = 15 and D =0.76; (bottom) 7; =10 and D =2. C: Representative voltage (top) and h (bottom) time traces for D =0.26
(solid lines) and D = 0.76 (dashed lines) with t; = 15.
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Figure 4. Each panel consists of a gray-scale coded instantaneous h value distribution for consecutive cycles (top) and the time-averaged h
distribution (over at least 500 cycles) (bottom). From left to right, top to bottom, the noise-values are D =0, 0.0024, 0.008, 0.8. In the upper
left panel (A) the delta function peaks in the h-distribution have been broadened to enhance visibility.

on the distance from threshold. This makes the dynam-
ics discussed here essentially different from stochastic
resonance, since in that case one would obtain a multi-
modal distribution, with peaks at multiples of the driv-
ing frequency.

We studied the dynamics of the cluster states in a net-
work with N = 1000, in terms of the variables shown
in Figs. 4 and 5. We focused on four values for D =0,
0.0024, 0.008, and 0.8. An important variable in our
analysis is A, the inactivation variable of Ir, since the
model neuron is excitable only when £ is large enough.
The distribution of A values in the network will tell us
which neurons are excitable and which ones need to be
deinactivated by further inhibition cycles. The regular-
ity of the network dynamics is further reflected in the
periodicity of f and vyy, (Fig. 5) and their autocorrela-

tion function (not shown). Note that vy, itself acts as a
drive on the neurons. A higher value of vyy, leads to a
higher threshold for spike initiation. As a consequence
the larger the distance between peak and through of
Usyn, the more noise is needed to spike out of sync.

We can identify four different types of regimes. For
zero noise (D=0) the system is in a state with five
clusters of unequal size. The distribution of cluster sizes
is determined by the initial conditions. At each time a
neuron can only have one of five h-values. This set
of h-values goes through a modulation with a period
of five cycles (Fig. 4A). The derived quantities V, h,
VUsyn, and f (Fig. 5A) go through the same modulations.
When all the clusters have the same size, there are no
such modulations, and the & histogram would consist
of only 5 peaks.
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Figure 5. Four panels with the same D values given in Fig. 4: from left to right, top to bottom, the noise-values are D =0, 0.0024, 0.008, 0.8.
We plot in each panel from top to bottom the V and # functions of neuron one, the population average vsy, of the synaptic variables s;, and the

instantaneous firing rate f as a function of time.

Immediately after firing, the neuron is partially dein-
activated with each subsequent cycle until it is excitable
again (see the A time traces in Fig. 5). The neuron then
has to wait its turn to become disinhibited and fire be-
fore other clusters do. When there is noise, there is
dispersion in the spike firing times. In the absence of
time delay there is only a short time interval during
which neurons can fire before the inhibition blocks all
other firings during one cycle. As a result, clusters lose
neurons whose spike has been noise delayed, and other
clusters gain those neurons as members. In addition,
noise can cause neurons to fire before the rest in their
cluster.

Weak noise (D =0.0024) disorders the system. The
network starts out with unequal cluster sizes (due to
the initial conditions). Large clusters lose more neu-
ron members than smaller ones. Weak noise, however,
is not strong enough to equalize their numbers on the

time-scale considered (5 x 10* ms). Instead the clus-
ter sizes start to vary in a somewhat stochastic fashion,
leading to an erratic firing rate (Fig. 5B) and a fluctu-
ating period. The time-averaged £ histogram is very
broad (Fig. 4B).

For stronger noise (D =0.008) the average cluster
size becomes stationary after a brief transient. The
h-values that the neurons of different clusters cycle
through are, on the average, the same. As aresult there
are six smooth peaks in the A-histogram. The peaks
become sharper for more deinactivated values, and the
h-distribution is stationary (on the average it is the same
foreach cycle). The actual neurons that fire in each clus-
ter changes with time. This state is stable up to a noise
strength of approximately D = 1 (for N = 1000).

The cycle-to-cycle fluctuations in cluster sizes in-
creases with increasing D. The inhibition that each
cluster receives (proportional to v,y,) varies, and as a
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result the width of the peaks in the 4 histogram in-
creases. The cluster size also decreases with increasing
D, and the amplitude of vy, oscillations also decreases.
The stability of a cluster can be defined as the fraction
of neurons that are still part of a given cluster the next
time it fires. This is related to the number and weight of
the peaks in the ISIH, and it decreases with D. The neu-
ron spends most of its time in an excited state (flat part
of h(t), Fig. SD) waiting for its noise-induced spike
threshold to fall in the inhibition free window. For that
reason it is unlikely to fire with the same cluster as in
the previous time. Finally, for larger noise strengths,
D > 1, the firing is no longer organized in clusters (not
shown), since the noise has become so large that during
an inhibition free window not enough neurons fire co-
herently to create a large enough inhibition to block the
discharge until the next cycle. As a result there are no
quiescent periods defining cycles and no distinct cycles
either.

The cluster states can be quantitatively described by
the average cycle length (period) and the periodicity
(number of cycles) of the response (see Methods). We
have studied these two quantities as a function of D
for different values of t; for N = 1000 and for differ-
ent system sizes for 7; = 16 (Fig. 6). For smaller 7
the amount of inhibition available for deinactivation is
lower, and the periodicity increases since the deinac-
tivation has to be spread out over more cycles. The
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cycle-period, being proportional to t;, also decreases.
In addition, the oscillation needs a higher minimum
value of D to sustain itself, since the average cluster
size is given by the system size over the periodicity.
When it becomes too small, the periodic component
in the inhibition becomes too small, and as a result
the cluster state dies. The noise strength for which
this happens is only weakly dependent on ;. Note that
the periodic component is proportional to the cluster
size normalized by the network size; in addition, it de-
creases with increasing jitter. There is, however, a dif-
ference between large networks (N ~ 1,000) and small
ones (N ~ 10). For small networks, a single neuron can
provide enough inhibition to block neuronal discharge
and thus to maintain a periodic network state. The state
is very robust against noise, even when noise reduces
the cluster to its minimum size (one neuron), it can
still maintain a spiking state. The drawback is that the
fluctuations in cluster size will be of the order of the
cluster size itself, causing the cycle length to vary con-
siderably. Below threshold (not shown) the amount of
noise needed to induce a spiking state increases, and
for very small networks (N <4) failure can occur—
that is, the network becomes quiescent if one neuron
fails to fire. Note that the maximum periodicity that the
system can sustain is bounded by the system size. In
Fig. 6 we see that the periodicity obtained for a given D
decreases with N.

20

o« o

=
Periodicity

D (mV’/ms)

Figure 6. Here we plot the average period (filled symbols, left hand scale), and the periodicity (open symbols, right hand scale) as a function
of D, for t; =8, 10, 13, 16 (for N = 1000) and for different system sizes N = 10, 20, 50, 100, 200, and 1000 (for z; = 16).
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Figure 7. We plot the ISIH (4) and the corresponding SOG fitting function (continuous line) for (A) D =0.008 and (B) D =0.8, both for
N =1000, and 7; = 16. We show the entropy per spike (C) as a function of the number of states n and the jitter sigma and (D) as a function of

the amount of correlation between consecutive ISI (ISIcor) and sigma.

We now discuss the possible information content of
the ISI time series of individual neurons. We assume
that the states are characterized by a periodic popula-
tion activity. This is reflected in the ISI time series
because the IST will only take values close to multiples
of the cycle length. The ISIH will therefore consist of
a series of peaks. If a neuron would consistently spike
with the same cluster, there would be only one peak.
The peak with maximum weight is close to the aver-
age ISI (and periodicity) of the network, and the other
peaks correspond to the ISI where the neuron changed
cluster. The relative weight of the maximum peak is
thus ameasure of the stability of the clusters. InFig. 7A
and B we show the ISIH of a state with stable and un-
stable clusters, respectively. The width of each peak

represents the jitter around a multiple of 7. We find
that the ISIH of an individual network neuron is to a
very good approximation the same as the population
averaged ISIH. This does not mean that all the neu-
rons fire independently, it only states that all individual
neurons have identical properties and that in the long
run the statistics of their time-series are the same. Our
analysis is therefore performed on the population av-
eraged ISIH, and we also use the population averaged
return map. We find that the ISIH is well described
by a sum of Gaussians (SOG) of different widths (see
Appendix B) and that the width increases with the the
peak number. In Appendix B we derive an expres-
sion given in Eq. (13) for the entropy of the SOG. We
see that the number of peaks and their weight —luster
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hopping— and their width —jitter within the cluster—
yield two distinct contributions to the information en-
coding capacity. In Fig. 7C we plot the entropy as a
function of width o (taken constant for all peaks) and
the total number of n peaks (weighted with a cosine
envelope, Eq. (17)). In our simulations we find that the
amount of jitter and the number of peaks are closely
correlated and grow with D.

Our present entropy calculations assume that there
is no correlation between consecutive ISIs. For a given
amount of correlation y (see Appendix B) the entropy
per spike will decrease. We have quantified this in a
model calculation for n =2 and various amounts of
correlation y (see Fig. 7D).

We have analyzed the sequence of ISIs for D = 0.008
to ascertain whether and to what extent it can be con-
sidered to be a Markov process. We have chosen a
low noise level since in that case one would expect
to find the largest correlations. In Fig. 7A we show
the ISIH, and in Fig. 8A the corresponding first return
map. The ISI dynamics can, to a good approximation,
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be considered as a two-state system. As explained in
Appendix B, the transfer matrix can then be
parametrized by p (the weight of the largest peak) and
by é. The latter is a measure for the deviation from a re-
newal process, if § =0 there is no correlation between
consecutive ISIs. Other parameters entering the en-
tropy calculation are o} and o3, the standard deviation
of the peaks in the SOG. The simulation run (including
the transient) is divided in 10 blocks containing approx-
imately an equal number of ISIs per block. We have
plotted p, § and oy, o in Fig. 8B-D. After an initial
transient the last nine blocks yield stationary values.
For a true Markov process the transfer matrix T, for
the second return map should be equal to the product
T - T. The p-values of the two matrices are nearly
identical (Fig. 8C-D). The expected value 8, for the
second return map is close to zero. The calculated value
of 8, is indeed significantly closer to zero than 8.

A different way to look at the correlations is by con-
sidering the clusters themselves. We have then deter-
mined how many neurons from a given cluster fire with
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Figure 8. A:Return map. B: Variances o) (circle), and o5 (square). C: Weight of first peak p. D: Nonrenewal parameter § as a function of the
block number. In C and D we plot the parameters for T (circles), T; (squares) and T2 (diamonds). Data is for N = 1,000 network, D =0.008.

Each block contains about 14,000 ISIs.
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another cluster the next time. This analysis yielded
equivalent results as compared to the ISI case (not
shown here).

4. Discussion

In recent years considerable attention, as well as con-
troversy, has been directed at studying the variabil-
ity of neuronal discharge in the cortex (Shadlen and
Newsome, 1998). It is beyond doubt that neurons in
vivo are noisy. The question is whether exact spike-
times matter—that is, if the jitter in spike times rep-
resents information, for instance, quantified by the
Shannon entropy—or if only the average firing rate
matters. If spike times do matter, then the synchro-
nized discharge has a special significance. An impor-
tant question is whether the nervous system is sensitive
to synchronization or not. Our work is relevant in shed-
ding light to this fundamental question in two ways. We
have shown that noisy neurons can synchronize without
the need of a strong external drive and that the synchro-
nized neuronal discharge has a potentially high infor-
mation content. To place our results in a proper context
we will now discuss these points in more detail below.

The model studied here, and other models similar
to the one considered here, have been studied before
by different authors. Most of these studies have been
mainly concerned with a different issue—that is, the
origin of spindle oscillations in the thalamus. Some
of the findings in these studies are, however, of direct
relevance to our article. Here we will briefly discuss
the results from these studies that are of relevance to
our analysis. The novel aspects of our results are dis-
cussed in the remainder of the Discussion. Golomb
and Rinzel (1994a) first showed that cluster states oc-
cur in inhibitory networks consisting of neurons with
a low-threshold calcium current (ir). They also noted
that noise can cause neurons to hop from one clus-
ter to another, yielding a multimodal ISIH. This result
forms the basis for the further investigation we are pre-
senting in this article. The genesis of spindle oscilla-
tions was further studied in models that included both
thalamo-cortical relays cells as well as thalamic reticu-
lar neurons with many active currents (including i7 and
i) (Golomb and Rinzel 1994b; Destexhe et al., 1994;
Wang et al., 1995). The important role of iy in tha-
lamic oscillations has been reviewed by Destexhe and
Sejnowski (1996). Recently it was shown in experi-
ment that a block of i), abolishes the refractory period
between active bursting states in spindles, but it does

not significantly change the nature of the active state
itself (Liithi et al., 1998). This current may therefore
play an important role in initiation and termination of
the active states we have studied here, but it should
not affect the information capacity of the active state.
Kopell and LeMasson (1994) showed that cluster states
also appear in models with an h-current (i) and stan-
dard sodium and potassium channels. They proposed
that in these states the individual elements in the net-
work and the population activity may serve different
computational roles.

Therole that inhibitory interneurons play in the func-
tioning of the nervous system has long been unclear.
It is hard to find, and to record from interneurons, be-
cause they are rather small. Moreover the output of
the nervous system is mostly generated by the prin-
cipal neurons, so early investigations studied mainly
the pyramidal neurons. In recent years it has become
clear that inhibition plays a major role in synchroniz-
ing principal neurons in, for example, the hippocampus
(Traub et al., 1996), the thalamus (Steriade et al., 1993),
and the locust olfactory system (MacLeod and Lau-
rent, 1996). The mechanism by which synchronized
oscillations are generated in the brain is only partly
understood. In vivo many different rhythms of differ-
ent frequency have been observed. Pharmacological
manipulations of slices in in vitro experiments have
elucidated some aspects of the synchronization mecha-
nism. For instance, Traub and coworkers (Whittington,
et al., 1995; Traub et al., 1996) showed that GABA 4-
mediated inhibition is responsible for the synchroniza-
tion in hippocampal slices. Slice experiments, however,
suffer from the drawback that the natural afferents are
cut, and therefore the synaptic activity givingrise to the
in vivo variability is absent. Recent theoretical work
has shown that in fact synchronization by mutual in-
hibition is not robust against neuronal heterogeneities
(Wang and Buzséki, 1996) and synaptic noise (Tiesinga
et al., 1998). In theoretical investigations one usually
only considers strong synchronization. In strong syn-
chronization one imposes the strong constraint that
each neuron has to fire within a short interval from
each other. Here we propose that weak synchroniza-
tion may in fact be more prevalent in networks con-
nected by chemical synapses. In weak synchronization
the average neuronal activity is periodic, without each
individual neuron having to fire at each period. Weak
synchronization is for example consistent with the ex-
periments in (Traub et al., 1996). There are exceptions.
For example, recent experiments on weakly electric
fish show that neurons in the pacemaker nucleus are
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strongly synchronized (Moortgat et al., 1998). There,
however, synchronization can possibly be attributed to
electric gap junctions.

Weak synchronization is associated with a periodic
drive. This drive is either generated externally, as is the
case with stochastic resonance (Wiesenfeld and Moss,
1995; Gluckman et al., 1996), or it is generated intrin-
sically by the network as it happens here. The neuron
then skips periods, which it can either do determin-
istically (usually one peak in ISIH), or stochastically
(multimodal ISTH). In both cases the network dynam-
ics consists of clusters of neurons firing together. But
in the latter case the neuronal composition of the clus-
ters varies with time. A neuron that at a certain point
fired with a certain cluster A can fire the next time
with another cluster B. This mechanism yields a syn-
chronization that is robust against noise, and neuronal
heterogeneity.

Oscillating neural assemblies do play an important
role in the functioning of the invertebrate nervous sys-
tem. In a series of seminal experiments on the bee
and locust olfactory system, Laurent and Davidowitz
(1994) have shown that different odors activate over-
lapping ensembles of projection neurons. The periodic
discharge of the ensembles is coherent on a cycle-by-
cycle basis. Odors may be classified from the tem-
poral firing pattern of projection neurons (Wehr and
Laurent, 1996). Synchronization of the projection neu-
rons may be abolished by applying picrotoxin and with-
out changing their individual response characteristics
(MacLeod and Laurent, 1996). This desynchronization
was shown to impair the ability of bees to distinguish
two closely related odors (Stopfer et al., 1997), and sub-
sequently a population of neurons was found that was
sensitive to the synchronization of projection neurons
(MacLeod and Laurent, 1998). The ability to distin-
guish between two odors, based on their spike trains,
was then reduced under desynchronized conditions.

We find that the information content, defined by the
Shannon entropy of the spike-time distribution, con-
tains three contributions. First, the jitter in the spike
times around the cluster firing time. Second, the distri-
bution of the number of cycles between two consecutive
spikes, and finally the correlation between consecutive
ISIs. Our analysis has been performed on the (average)
output of a single neuron. One has to await the devel-
opment of fast computational techniques to tackle the
more challenging problem of quantifying the informa-
tion output of the network, while taking into account
the correlation in spike times between different neurons
due to the cluster state. Our single-neuron spike-train

results, however, may have direct relevance to recent
experimental work on striatal neurons (Stern et al.,
1998). Striatal neurons can be in the down (hyperpolar-
ized, quiescent) or in the up-state (depolarized, noisy).
The transitions to the up-state are precisely timed and
synchronous. The fine-structure in the spike train is
asynchronous. Stern and coworkers (1998) have sug-
gested that the brain may use these two channels to
encode different types of information.

The issue of information content of synchronized os-
cillations in thalamus has not been considered before.
Very recently, however, investigators considered the in-
formation encoding of visual stimuli by bursts (calcium
spikes) in the lateral geniculate nucleus of thalamus
(Reinagel et al., 1999). They determined both the in-
formation capacity (our Eq. (13)), the transmitted in-
formation, and their ratio (the coding efficiency). They
found that burst considered as unitary events code for
about 1.4 bits of information per burst at a time scale
of 4.96 ms. The coding efficiency increases with the
stimulus variance. Our information capacity (Fig. 7)
takes values between 1 to 10 bit per spike at a shorter
time scale of 1 ms, and is consistent with their results.
Additional work (Zhan et al., 1999) suggests that the
calcium spikes have a similar all-or-none character as
conventional sodium/potassium action potential. This
lends further support to the putative role of bursts in in-
formation coding. Our work shows the effects of syn-
chrony and correlation on information capacity. This
could not be addressed experimentally (Reinagel et al.,
1999).

We have studied the dependence of these oscillations
on network parameters. We find that there is difference
between small (around 10 neurons) and large networks
(a few hundred neurons), under the conditions of hav-
ing a fixed total synaptic drive per neuron. For small
networks one needs more noise to drive the subthresh-
old network into stable oscillations. These oscillations
are very robust against increases in the noise level, and
the fluctuations in the time between two cluster fir-
ings (cycle length) increases with the amount of noise.
For large networks strong noise causes an instability,
and the stable cluster size for a given amount of noise
becomes too small to inhibit out of sync neuronal dis-
charges. For intermediate noise-strengths the neuronal
dynamics self-organizes itself into a stochastically syn-
chronized state. We also find that the farther the net-
work is below threshold, more noise is necessary to
induce a spiking state. The mechanism to create the
oscillations is due to the competition between the ex-
citatory deinactivating and the inhibitory effect of the
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same synaptic drive. Each cycle will deinactivate neu-
rons, until they are excitable again. The neuron then
has to await the decay of inhibition created by more ex-
citable neurons. For some parameter values the latter
stage is absent, and the dynamics is fully deinactivation
dominated. The important time-scales in the dynamics
are the deinactivation time-scale 1; and the synaptic
decay time ;. The cycle or population period scales
directly with ;. Our results therefore predict that by
pharmacologically decreasing t; one can increase the
cycle frequency.

In summary, the brain has circuitry capable of syn-
chronizing with heterogeneous components and in the
presence of noise. The spike trains of the synchronized
discharge still contain information. Whether the brain
utilizes this mechanism to synchronize and, more im-
portant, whether it uses the information in the precise
temporal sequence are still open questions awaiting fur-
ther study.

Appendix A: Model Equations

In this appendix we define the models studied in
this article. The dynamics of the voltage V and the
kinetic variables h, s, and m are given by the following
equations:

av
Cn = ~lca— 1L = Iy = Cau,
dh
i (hoo — h)/Th,
ds
E‘ = kfF(Vpre)(l - S) - s/ts.\'"’

m = my (V).
Here the currents are
I =g(V—Ep),
Icq = gCumoo(V)h(V — Eca),
I:yn = gsynsmt(v - Exyn)-
The asymptotic values of the kinetic variables, and the
h time-scale, are specified by
Mo = 1/[1 +exp—(V + 40)/7.4],
heo = 1/[1 + exp(V + 70)/4)], 5)
T, = ¢ (10 + 11 /{1 + exp(V + 50)/3]D).

The synaptic activity is implemented in a standard way
(Wang and Rinzel, 1993). F is chosen such that a presy-

naptic depolarization higher than —35mV will open the
synaptic channels:

F(V)=1/[14exp—(V +35)/2]. ©)

The total synaptic coupling in our all-to-all network is
defined as

1
St = ,Zs" ©)

and is the same for each neuron.

The standard physiological set of parameters we use
in our calculations have the conductances g; =0.4,
gca=1.5, and g, = 2.0 (in mS/cm?), the reversal po-
tentials £, = —70, Ec, = 90, E, = —85 (in mV),
and C,, = 1 uF/em?, 15 = 30, 1, = 500 (in ms),
ky=0.5ms™!, and ¢ = 1.3.

Appendix B: Shannon Entropy Calculation

As mentioned in the main body of the article, we
quantify the information content in the ISI using the
Shannon entropy,

s=- [D(hPe) o (). ®

for the distribution of the spiking times. In this expres-
sion ¢} is the ith spike time of the nth neuron, and D
is the sum over all spiking time possibilities within a
[0, T] interval. We do not try to evaluate this quantity
for the whole network, since at present it is a very hard
calculation to do. Here we will instead calculate the
one neuron entropy in the network, which is expressed
in terms of the distribution P ({z,}) of interspike inter-
vals 1,,, as

- f D)) p({5)) logy p((1))

~ “(N)/dTPISIH(T)l()gz Pisi(r), (9

with (N) the average number of events during time
interval T. We also assume that consecutive ISIs are
randomly independent,

p(t1, -+, ) = I, Pigia(Th). (10)

As explained in the main body of the text the
ISIH obtained from our simulations is, to a good
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approximation, a sum of Gaussians (SOG)—that is,
Pisin(t) = ) ciG(t | > o0), (11)
i
where

G(t | pi,0i) =

exp[—(t—u)*/207], (12)
2:rro'i2

with average u;, standard deviation o, and ¢; is the
relative weight for the ith Gaussian contribution. From
the calculated ISTH, we estimate these parameters from
the weight ¢;, the average ;, and the standard deviation
o; of the ith peak. When (;41 — ;) > o; forall i,
Eq. (9) reduces to

S = (N) (Z ci log, 27re(¢7,-/<75)2 - ZC" log, c,-)

=5 + 5. (13)

These are the two contributions to the entropy of
a multimodal ISTH. A contribution S} due to the jitter
around the average ISI value of a given state / (Shannon
and Weaver, 1949), and the contribution S, due to the
discrete probability distribution of the number of cy-
cles between two spikes. Note that S; depends on the
accuracy or scale with which the ISI can be recorded
and detected (Shannon and Weaver, 1949; Rieke et al.,
1997). The ISIs obtained from our simulations take val-
ues that are multiples of dt =0.01. However, we have
used a scale of o; = 1 ms, which is more comparable
to the spiking precision that is obtained in experiment
(Mainen and Sejnowski, 1995; Reinagel et al., 1999).
In the other limit (u;4) — i) < 03, we numerically
evaluate the entropy from Eq. (9) using the measured
(binned) ISIH.

In Eq. (9) we have assumed that consecutive ISIs are
independent. If consecutive ISIs are correlated, how-
ever, one can use the theory of Markov chains to eval-
uate the Shannon entropy of the spike trains. The ISIs
can belong to n different states, and they have an equi-
librium probability Pe; = (ci, - -, ¢y) to be in any par-
ticular state. From a given state i the ISI can jump to a
new state j with probability T;;, which we can obtain
from a return map (see Methods).

When the ISIs are independent, T}; = c; (that is, the
next state does not depend on the previous state). The
actual ISI in each state also displays some jitter, and it
is distributed according to some ¢; (7). We will assume

that ¢; is Gaussian (as before), and the entropy is then
given by

1
S = _@[(m +1I-(Ta)- P, +Z:C" logci

+ml-(TlogT) - Peq:|
=S5 +5+S;. (14)

We have used the following definitions: m + 1 is
the number of ISIs, (Ta);; = T;joy(TlogT);j =
T;jlog T;j (no summations implied), o = [ dt¢;(t)
log ¢;(t), and - denotes matrix multiplication. Here
we give the explicit formula’s for n =2

(Ta) = o p a(l —q) , (15)
a1(1-p) o2q

(TlogT)
_ plogp
— \( - p)log(1—p)

When the ISIs are independent then S3 =0, and S
and S, reduce to their expression given in Eq. (13).

We have evaluated expression Eq. (13) (see Fig. 7C)
using

(1—-q)log(1—-¢q)
qlogg '
' (16)

1 (2 | 2m(xi+})
CLizi = 5| + sin—”-——==

i1
—sin——-——zn(:t:l 2)>, an

uj=u+ (G —L)Au,

0'j=0'.

Heren=2L+1,i=1, --,L;j=1, --,n;and Ap is
the cycle length (period).

Correlation in consecutive ISIs can be parameter-
ized using a 8, withg=1 + & — p in Egs. (15) and
(16). The resulting correlation between consecutive in-
terspike intervals 7 is defined as

(TiTig1) — (T)?

YO =T ey

(18)

The explicit result for m = 100 is plotted as function of
y in Fig. 7D.
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