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Abstract A common experimental neuroscience protocol is to record the single
neuron activity in response to repeated stimulus presentations and ana-
lyze how this activity encodes for stimulus properties. Neurons are em-
bedded in a large network and their response properties depend on the
dynamical state of the network. I discuss how brain chemicals — neu-
romodulators — can dynamically change the coherence and frequency
content of network activity; how the network coherence affects the neu-
ronal response to current injection and how this can form the neural
correlate for an important computation — gain modulation — that the
brain performs.
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1. INTRODUCTION

The brain is a massively interconnected network of neurons that gen-
erates spatiotemporally ordered activity on multiple time and length
scales. Individual neurons produce all-or-none electric events known as
action potentials or spikes. A basic belief in neuroscience is that neurons
encode information using action potentials. The fundamental question
is how information is encoded, transmitted, processed, and decoded in
cortical networks. To make progress, one needs to understand the spik-
ing dynamics of local cortical circuits and how to link their activity
to the coherent macroscopic activity detected in electroencephalograms,
functional magnetic resonance imaging, and magnetoéncephalograms.
Biologically informed application of quantitative techniques based on
nonlinear dynamics, complex systems theory, statistical physics and in-
formation theory are likely to yield important contributions to solving
this class of problems.
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are then systematically varied in order to assess how they are encoded
by the neuron using the spike count.

The mean neuronal firing rate (equal to the spike count normalized
for the duration of the measurement) elicited by a stimulus presentation
can often be written as a product of stimulus attributes. For instance,
the response of neurons in wisual cortex to oriented bars is tuned for
the orientation « (dotted line in Fig. 1A). When the brightness of the
stimulus, ¥, is increased a similar but rescaled tuning curve is obtained
(solid line in Fig. 1A). Hence, the response is a product of the orientation
tuning f(z) and the brightness—induced gain modulation g(y) (Fig. 1A).

Gain modulation is a general computational paradigm in the ner-
vous system and it is observed in many cortical areas (reviewed in Refs.
[1, 2, 3]). Attention could also gain-modulate orientation tuning curves
[4, 5]. Recently, neural correlates of attention were studied experimen-
tally using awake behaving monkeys [6, 7, 8]. Exactly the same two sen-
sory stimuli were presented to the monkey under two conditions: when
it had to pay attention to one of the stimuli to perform a task for which
it was rewarded; and when it did not have to pay attention to that stim-
ulus in order to obtain its reward. During this task, spike trains from
one or more neuron(s) in sensory areas were recorded. The feedforward
sensory input that the recorded neuron received should be the same un-
der both conditions and any difference in neuronal response between the
conditions had to be due to the network state. In one experiment the
response of multiple neurons in the secondary somatosensory cortex to
tactile stimulation of the finger tips was recorded [6]. When the animal
had to pay attention to the tactile stimulus the number of coincident
spikes between two simultaneously recorded neurons increased signifi-
cantly. This effect was independent of changes in firing rate. In the other
experiment [7], two visual stimuli were presented to the animal. The first
stimulus was in the receptive field of the neuron that was recorded from,
whereas the second stimulus was outside the receptive field. The local
field potential — an electrical signal that represents the mean activity
of a group of neighboring neurons — was recorded simultaneously with
the single neuron activity. When the animal focused attention on the
stimulus in the receptive field two changes were observed compared with
when it payed attention to the stimulus outside this receptive field: (1)
the local field potential power in the gamma—frequency band (30-80 Hz)
had increased and (2) the coherence of the single neuron discharge with
the local field potential had increased. However, the firing rate had not-
changed significantly. ‘

Both these experiments show that attention can modulate the state
of cortical networks, in particular, neural synchrony. Here I explore how
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neural synchrony affects the gain of a neuron’s response. A key assump-
tion is that stimulus attribute 2 causes a tuned depolarizing current
I(z) into the neuron (Fig. 1B). The resulting firing rate is given by the
firing rate-versus current curve (f-I) whose gain depends on stimulus
attribute y. Hence, the problem is to determine how the gain of the f-I
depends on the amount of synchrony.

The rest of the paper is organized as follows. First, the effect of
incoherent network activity on the f-I is studied. Second, the generation
of coherent activity by networks is discussed. Then, the effect of coherent
network activity on the f-I is investigated. Finally, gain modulation by
coherent and incoherent network activity is compared.

2.  RESULTS

2.1. GAIN MODULATION BY “BALANCED”
SYNAPTIC INPUTS.

The impact of network activity on the response properties of neurons
was investigated using model simulations. Full details are given in Ref.
[9] (related work is in Refs. {10, 11, 12]). Briefly, a Hodgkin—Huxley—type
model neuron was driven by a constant current I and a combination of
excitatory and inhibitory shot noises with rates f. and f;, respectively.
The shot noises represented the network inputs. Each pulse generated
a conductance pulse that decayed exponentially in time. The conduc-
tance generated a memnibrane current, Iyy,, given in Eq. (A.1) of the
Appendix. Parameters were chosen to mimick GABA 4 inhibitory and
AMPA excitatory synaptic inputs [13].

A typical voltage response is shown in Fig. 2A. Network background
activity was f. = fi = 750, but during the time interval indicated by
the bar it was reduced to f. = f; = 500. Action potentials are visible as
sharp voltage deflections that cross 0 mV. This computer experiment was
repeated 50 times with different shot noise realizations (trials). The spike

times were plotted as ticks in a rastergram, each row was a different trial -
(Fig. 2Ba). The spike time histogram (STH, Fig. 2Bb) was computed by - 3
counting the number of spikes in 200 ms bins (normalized to yield spikes i3

per trial per second). During the period of reduced network activity
there was an immediate increase in output firing rate. ' ;

The amount of injected depolarizing current was varied for different 1
levels of background activity. The output firing rate increased with the %
level of depolarizing current. Furthermore, the rate of increase — gain }
— of the resulting f-I depended strongly on network act1v1ty a higher
background activity led to a lower gain. g
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Figure 2. Gain modulation by “balanced” synaptic inputs. The background synap-
tic activity was reduced from f; = f. = 750 Hz to 500 Hz between t = 1000 ms and
2000 ms (indicated by the bar in A and Bb). (A) Voltage (in mV) versus time during
the first trial and (B) (a) rastergram and (b) spike time histogram (STH) for 50 trials
is shown. (C) The mean firing rate as a function of injected current I for different
levels of background synaptic activity as is indicated in the graph. Averages were

obtained over 20 s.
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What is the significance of this result? The depolarizing current is
the feedforward signal coming from sensory areas. The neural response
to the signal, I, thus depends on the state of the network the neuron
is embedded in. The firing rate recorded in vivo therefore does not
uniquely represent a particular input signal. However, as pointed out by
Chance & Abbott [14], this mechanism can form the neural substrate
for gain modulation.

The type of network activity the neuron received is sometimes called
balanced [11, 15, 16, 17] (or fluctuation—dominated [9]). The idea is
that the average effect of the excitatory and inhibitory inputs is approx-
imately the.same but opposite in sign, that is, balanced. The mean drive
remains below spiking threshold and spiking is caused by fluctuations.
The fluctuations can be varied by increasing the network activity in such
a way that it remains balanced. For incoherent inputs, Poisson spike
trains with a time-independent rate, there are only two parameters that
can be varied: the rates f; and f. (under the assumption that the uni-
tary amplitude and decay time constant of the pulses remain constant).
However, the synaptic drive yields a mean conductance, Eq. (A.2) and a
mean current, Eq. (A.3) (see Appendix). Only one of these can be held
constant. Hence, one can have either have a balanced “current” [9] or
“conductance” drive [14].

2.2, COHERENT ACTIVITY OF NEURONAL
NETWORKS

Neuronal networks spontaneously generate synchronized oscillations
in different frequency bands. For instance, the human electroencephalo-
gram (EEG) contains multiple synchronous rhythms that reflect spa-
tially and temporally ordered activity [18, 19]. Delta rhythms (0.5 — 2
Hz) are involved in signal detection and decision making [20]; theta os-
cillations (4 — 12 Hz) are related to cognitive processing [21]; and gamma
oscillations (30 — 80 Hz) can be found in a variety of structures under
different behavioral conditions [18, 22, 23]. The neural mechanisms for
these correlated changes in EEG frequency content are unknown, but
they are likely to involve a class of brain chemicals known as neuromod-
ulators [24, 25, 26]. For instance, in vivo studies in cats show that the
level of the neuromodulator acetylcholine in the cortex and hippocam-
pus (a brain area involved in memory processes) is reduced during delta
oscillations, and can be up to four times higher during theta activity -
[27].

The in vitro hippocampal preparation has provided a simplified frame-
work, which allows the mechanisms underlying theta, delta and gamma -
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rhythms, and the transitions between the rhythms to be studied. Acti-
vation of the CA3 region in hippocampus, using the agonist carbachol (a
substance with similar effects as acetylcholine), results in synchronous
population activity in the delta [28, 29], theta [30, 29, 31, 32, 33}, and
gamma {29, 34] bands. The carbachol concentration in the slice deter-
mines which of the three oscillations will occur or predominate [29).

The biophysical effects of carbachol have been studied extensively.
Each neuron has a diverse set of voltage-gated ionic channels in its
membrane. The density and types of channels determines a neuron'’s dy-
namics. Carbachol blocks several channels in a concentration dependent
manner [35, 36]. This makes neurons more excitable, unmasking sub-
threshold membrane potential oscillations in the theta—frequency range
[37, 29]. In addition, carbachol reduces the average strength of excita-~
tory synaptic coupling between neurons (38, 39, 40]. Therefore, carba-
chol changes the intrinsic neuronal dynamics and the network dynam-
ics, which has ‘made it difficult to dissect these two contributions solely
by experimental methods. Recently my colleagues and I determined
using model simulations under what conditions, and by what mecha-
nisms, the hippocampal area CA3 can support the CCH-§, CCH-6, and
CCH-~ oscillations [41]. In particular, we investigated how carbachol
induced transitions between these states in a concentration dependent
manner. These results show that even a single neuromodulator can exert
a powerful control on the coherence and frequency content of network
activity. I will now focus on gamma oscillations in networks of interneu-
rons [42, 43, 44}, since, as mentioned in the introduction, gamma-band
activity is thought to be important for attention. Attention was asso-
ciated with increased synchrony of the modulatory input but the mean
firing rate did not significantly increase. I explored under what condi-
tions synchrony of a coupled network could be varied independently of
mean firing rate. The result for an all-to-all coupled inhibitory net-
work is shown in Fig. 3A. The neurons in this network are connected
by inhibitory synapses. Hence, when a particular neuron becomes more
active, it reduces the activity of the neurons it is connected to.

A depolarizing current pulse of 500 ms duration was applied to all neu-
rons at t = 1000 ms. The pulse represented the effects of, for instance,
the release of acetylcholine. Initially, the network was asynchronous,
the spike time histogram did not have any peaks and the mean firing
rate in the network was approximately 8 Hz. It took approximately 300
ms for the network to synchronize, at that time sharp peaks appeared
in the spike time histogram. The firing rate only increased marginally
to 9 Hz. It is, of course, not known whether the effects of attention
can be represented by a depolarizing current or whether the attention—
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£ Figure 3. (A) The inhibitory network synchronized in response to a brief depo-
o larizing current pulse (indicated by the bar) to 25% of the neurons. (B) Coherent
network discharge was modelled as (top) an inhomogeneous Poisson spike train with
(bottomm) a spike time probability density consisting of a periodic sequence of Gaus-
sians of width ;. The probability density was normalized so that the mean rate was

fi.

related networks have an all-to-all architecture. However, the results
are a proof of principle that it is possible to modulate neural synchrony.
independently of mean network activity.

Synchronous network activity can be modelled in a less computa-
tionally intensive way as is shown in Fig. 3B. The network spike time .-
histogram consisted of a sequence of Gaussian functions with width oi. -
Input spike times were generated as a Poisson process from the STH
[44, 45, 46]. The degree of neural synchrony was correlated with the
width, o;, of peaks in the STH. Low values of o; corresponded to high
synchrony and high values of o; corresponded to low synchrony. As be- . !
fore, each spike generated unitary conductance pulses of amplitude As;
and a decay time 7; (see Appendix for details). '
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2.3. GAIN MODULATION BY NEURAL
SYNCHRONY.

The neuron received two types of inputs, a feedforward projection

that was modelled as a constant depolarizing current and a modulatory
input representing, for instance, the effects of attention. The modulatory
input was modelled as an synchronous inhibitory synaptic drive. The
effects of attention were modelled by reducing o; from 8 ms to 2 ms
during a 500 ms long pulse (indicated by the bar in Fig. 4A). Without
attention the neuron did not fire, but as soon as input synchrony was
increased it started firing. The attentional effect was reversible: as soon
as the synchrony was reduced to its original value the neuron stopped
firing,
. There were two sources of variability in the synaptic inputs: jitter
in the position of the Gaussian peaks in the spike time density for the
Poisson process (Fig. 3B, bottom) and the particular realization of the
Poisson spike train given a particular spike time density (Fig. 3B, top).
To assess the effect of the variability on the neuronal response the sim-
ulation was repeated 500 times with independent realizations (Fig. 4B).
The transient increase of synchrony reliably led to an increased firing
rate (Fig. 4Ba). The resulting spike time histogram during the period
of increased input synchrony was flat. This means that although there
were signs of output periodicity during a given trial (Fig. 4A), the tim-
ing across different trials was not. maintained. Hence, in this case, the
precise timing of spikes on a given trial does not carry stimulus infor-
mation. Note, however, that the spike time histogram obtained from an
ensemble of neurons receiving the same synaptic drive will be peaked.

The firing rate versus current characteristic was determined for three
values of the synchrony parameter o; (Fig. 4C): As before, the firing
rate increased with the level of depolarizing current. However, the rate
of increase was higher for more synchronous inputs, that is, lower val-
~ues of o;. At first instance, this may seem counterintuitive: A more
synchronous inhibitory drive results in a more effective inhibition yet
it yields a higher firing rate. Just after the arrival of the input pulses
the synaptic conductance reaches its highest value. Over a time period
on the order of the synaptic decay constant, 7;, the conductance de-
cays to its lowest value. The synaptic drive thus has two components,
the phasic component, quantified as the difference between maximum
and minimum conductance value, and the tonic component equal to the
minimum conductance value. The neuron can only fire when inhibition
has sufficiently decayed. Whether or not a neuron can fire is deter-
mined by the value of the tonic component. Higher synchrony — lower
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o; — leads to a higher phasic and a lower tonic component. The pa-
rameters of the simulations were chosen such that for an asynchronous
drive, 0; = 10 ms, the tonic'component was so large that the neuron did
not spike, whereas for a synchronous drive it could fire. An alternative
viewpoint is as follows. " The neuron can be approximately considered
as a threshold device. The parameters were tuned so that the neuron
was below threshold and could only fire when voltage fluctuations drove
it across threshold. A higher phasic component leads to larger voltage
fluctuations, hence a higher firing rate. This hypothesis was confirmed
by comparing the variance of voltage fluctuations with the firing rate
when varying o; (results not shown).

Gain modulation with synchrony is only possible when the firing rate
was actually modulated by o;. The conditions under which this occurred
were determined. Two parameters were important: the frequency, fres,
of the synchronous inhibitory barrages (equal to the inverse of the dis-
tance between consecutive Gaussian peaks in Fig. 3B, the default value
was fnet = 40 Hz) and the synaptic decay time constant 7;. A measure
for the maximal gain is the firing rate for o; = 1 divided by the firing
rate for o; = 10. This ratio had an optimal value as a function of fy.
For 7; = 10 ms — the default value used here to model GABA 4 synap-
tic inputs — the position of the optimum was in the gamma frequency
range. The position of thé optimum depended on 7;: it shifted to higher
frequencies as 7; was decreased. Full details will be given elsewhere
[47, 48] o

3. DISCUSSION

Gain modulation is an important computational mechanism for rep-
resenting two or more stimulus attributes in a neuron’s firing rate. Here
two possible mechanisms for implementing gain modulation were pre-
sented. They work by modulating the response to feedforward sensory
inputs that were modelled as a depolarizing current. The mechanisms
were studied by calculating the firing rate versus current characteristic
(f-I). The first mechanism is based on balanced synaptic inputs and
was proposed by Chance & Abbott [14]. The gain of the f—I was re-
duced by proportionally increasing both the excitatory and inhibitory <
activity. An alternative mechanism proposed here is based on modulat-  *
ing synchrony. The gain of the f—I increased with synchrony. I also .
showed using model simulations that network synchrony could easily be
manipulated using neuromodulators. The gain modulation corresponds
to a multiplicative rescaling of the f — —I. This is sometimes hard to
assess from the f — I curves themselves. However, the sensitivity of the




[

From neuron to brain 109

A

30

-80

0 200 400 600 800 1000

500

Trials

STH (Hz)

0 500 1000
t (ms)

Figure 4.  Gain modulation by synchrony. The synchony was increased between
t = 270 ms and 520 ms by decreasing o; from 8 ms to 2 ms. (A) Voltage (in mV)
versus time during one trial, (B) (a) rastergram and (b) STH for 500 trials. (C) f-I
characteristic for different values of o;, as is labeled in the graph.

firing rate to current changes, df /dI, plotted versus I or f yields a better
test of multiplicative rescaling (L.F. Abbott, personal communication).

The underlying biophysics was similar for both mechanisms: it uses
the fact that neurons are threshold devices. The membrane voltage of
the neuron is on average subthreshold and spikes are induced by fluctu-
ations. The gain is adjusted by changing the variance of the fluctuations
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while the neuron remains subthreshold. For balanced synaptic inputs,
the fluctuations are modulated by covarying excitatory and inhibitory
input rates at a fixed ratio. Increasing input rates changes both the mean
synaptic conductance as well as the mean current. The ratio between f;
and fe can be chosen to keep either the mean current or mean conduc-
tance constant, but not both at the same time. Hence, the distance to
threshold may also change during manipulations of the balanced synap-
tic input. For gain modulation with synchrony, the mean conductance
always remained the same, and the mean driving current changed very
little for the parameters considered here (results not shown). Hence, syn-
chrony works by directly affecting voltage fluctuations, without changing
the means of the drive.

The dynamics of single neurons is often studied in the in vitro prepa-
ration. A slice of cortical tissue is kept “alive” in a solution resembling
corticospinal fluid. A depolarizing current is injected into the neuron
using an intracellular electrode and the voltage response is recorded.
The firing rate of the neuron — number of action potentials per second
— is then determined as a function of the amplitude, I, of the injected
current. In vitro neurons do not receive the synaptic drive due to net-
work activity. Recently, experimental techniques have been developed to
study “in vivo” dynamics of neurons using the in vitro slice preparation.
The network activity is.injected into the neuron using so—called dynamic
clamp [49]. Some of the modelling results reported here were confirmed
using this technique [47]. Hence, both mechanisms could potentially
subserve gain modulation in cortical tissue. Recent experiments have
shown that modulating network coherence is an important component
of attention, but a conclusive in vivo experiment explicitly linking at-
tentional gain modulation to synchrony is still lacking. Furthermore, an
important theoretical issue is how to generalize gain modulation of one
neuron to that of a interacting network of neurons.
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Appendix

The synaptic drive injected into the model neuron was a sum of inhibitory and
excitatory conductances, ' ’

Loym = gese()(V = o) + gisi(t)(V — ). (A1)

Where the conductance was g. = gi = 1.0mS/cm?, and the reversal potentials were
E. =0mV and E; = -75 mV, for the excitatory (AMPA) and inhibitory (GABA )
synapses, respectively. Unitary excitatory (inhibitory) postsynaptic potentials were
modelled as quantal conductance increases, Ase = 0.02 (As; = 0.05), in the synaptic
kinetic variable s.(t) (si(t)). The conductance pulses in s.(t) and s;(t) decayed ex-
ponentially in time with a time constant 7, = 2. ms (; = 10 ms). The postsynaptic
potentials were independent and formed either & homogeneous or an inhomogeneous
(see Fig. 3B) Poisson process with average rates f. and f;, respectively.
The mean of the total synaptic conductance was,

(Gsyn) = ge(se) + gi(8i), (A.2)
and the mean of the driving current Iy was
<I‘ll'l) = Be(se) + Bi(si), (A.3)

with B = ge(Ee — Vrest), and (se) = 7TefeAs. (with similar expressions for the
inhibitory part); Viest was the resting membrane potential. The last expression is
only valid for weak synaptic drives, unlike the ones used here, see Ref. [9] for details.
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