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Abstract

The brain produces dynamical rhythms at many frequencies that shift in amplitude and phase.
To understand the functional consequences of mixtures of oscillations at the single cell level, we
recorded the spike trains from single rat cortical neurons in vitro in response to two mixed sine
wave currents. The reliability of spike timing was measured as a function of the relative power,
phase and frequencies of the sine wave mixture. Peaks in the reliability were observed at a pre-
ferred phase di3erence, frequency and relative power. These results have a natural interpretation
in terms of spike train attractors and bifurcations.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The responses of individual neurons depend on the ongoing background activity
that varies with the behavioral state of an animal. The electroencephalogram (EEG)
contains multiple rhythms that re9ect spatially and temporally coherent neural activity
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[1]. Slow oscillations with strong delta rhythms (0.5–2 Hz) are found in slow wave
sleep, oscillations dominated by theta oscillations (4–12 Hz) are related to cognitive
processing and cortico-hippocampal interactions, and gamma oscillations (30–80 Hz)
are found in the cortex and other brain structures under attentive behavioral conditions
[1,3]. Power in the gamma and theta bands is modulated by attention [3]. For example,
the responses recorded from a macaque V4 neuron to the same stimulus were compared
with two conditions, with attention inside or outside the neuron’s receptive Ield. As
attention shifted to the receptive Ields of a cluster of neurons, these became more
synchronized at high frequencies (30–70 Hz) and less so at low frequencies (0–10 Hz)
[3]. In a human visual selective attention task, stimulus presentation induced phase
resetting of di3erent frequency components in the EEG [5].
The reason why the brain exhibits these dynamical rhythms is unknown, but re-

cent experiments suggest that rapidly changing correlations may re9ect internal events
and regulate the 9ow of neural information, rather than its meaning [7]. The reli-
ability of cortical neurons depends in part on the frequency content of their input
[4,9] and pyramidal cells and interneurons are reliable in di3erent frequency ranges
when injected with pure sinusoidal currents of varying frequency [2]. The goal is to
measure spike time reliability when neurons are stimulated by synaptic inputs con-
taining the types of correlated and synchronous inputs that are observed in vivo.
Here we report that reliability is greatly a3ected by the choice of the relative power,
phase and frequencies of two mixed pure sine waves injected into pyramidal cells in
vitro.

2. Methods

Experimental protocols were approved by the Salk Institute Animal Care and Use
Committee and they conform to USDA regulations and NIH guidelines for humane
care and use of laboratory animals. Regularly spiking layer Ive pyramidal neurons in
350 �m-thick coronal slices of rat pre-limbic and/or infra-limbic cortex were injected
with 20 di3erent stimulus waveforms, over multiple trials. Each stimulus waveform
was a sum of two sinusoids:

I(t) = I0 + I1 sin(2�f1t + 2�K�) + I2 sin(2�f2t): (1)

The relative phase (K�), the relative frequency (f2) and the relative power (I1 and
I2) were varied (see Fig. 1). Whole-cell patch-clamp recordings using glass electrodes
(4–10 MM) were performed under visual control at room temperature. Data were ac-
quired in current clamp mode using an Axoclamp 2A ampliIer (Axon Instruments,
Foster City, CA). Data acquisition and current injection used standard computer pro-
tocols [2]. Programs were written in Labview 6.1 (National Instrument, Austin, TX),
and data were acquired with a PCI-16-E1 data acquisition board (National Instrument,
Austin, TX). Data acquisition rate was 10 kHz. Data were analyzed oPine using MAT-
LAB (The Mathworks, Natick, MA).
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Fig. 1. Sample current stimuli and corresponding cell responses. (A) Variation in relative phase of two
sine waves at 5 and 10 Hz. (B) Variation in the frequency of the second sine wave with a 5 Hz fre-
quency for the Irst sine wave. (C) Variation in relative power between two sine waves at � (5 Hz) and
	 (35 Hz). Larger values correspond to more power in the 	 sine wave. Left panels show 10 examples of the
20 stimulus waveforms used, the right panels show corresponding sample rastergrams obtained in response
to the injection. Each response (A–C) was obtained from a di3erent layer 5 pyramidal cell.

3. Results

3.1. Experiment 1

Cells were injected with a constant (100 pA) depolarizing current superimposed on
the sum of two sinusoids of equal amplitude (50 pA each) with 20 di3erent phase
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Fig. 2. E3ects of parameter changes on reliability: (A) variation in relative phase of two sine waves at 5
and 10 Hz; (B) variation in the frequency of the second sine wave (the frequency of the Irst sine wave was
5 Hz); (C) variation in relative power between two sine waves at � (5 Hz) and 	 (35 Hz). Larger values
correspond to more power in the 	 sine wave. Solid curves represent reliability for � and 	 mixture, dashed
curves represent the reliability for � alone, with the same power as for the mixture. Two cells are shown
(dark and grey curves).

o3sets (ranging from K�=0:0 to 0:95) and Ixed frequencies of 5 and 10 Hz, respec-
tively. Fig. 1A shows a few of the injected waveforms and a typical cell’s response.
For K�=0, the cell exhibited a 1:1 Iring pattern locked to the periodic stimulus, Iring
regularly at the fundamental frequency of the stimulus (5 Hz). As the phase o3set K�
increased, the cell Ired earlier and earlier in the stimulus cycle. For K� = 0:30, the
cell exhibited a new Iring pattern with times interspersed between the existing one. As
K� varied from 0.30 to 0.55 the two sets of Iring times shifted gradually while the
fraction of trials with spikes lying in one versus the other shifted smoothly as well. At
K�=0:55, the new pattern dominated, and for larger phase o3sets the Irst pattern no
longer occurred. As the phase o3set continued to increase the spike times continued to
shift until K�= 0:95 where they nearly coincided with the spike times in the original
pattern at K� = 0:0. The reliability of the cell’s response, calculated on a 5 ms time
scale using a correlation-based reliability measure [8], showed a pronounced dip at
K�= 0:45 (Fig. 2A).
In an integrate-and-Ire model neuron driven by the same stimulus, the spike times

also varied smoothly until a critical value of the phase o3set at which a spike time
bifurcation occurred; that is, at the critical value of the phase o3set, a small change
in this parameter caused a discontinuous change in the resultant pattern of spike times
(data not shown). The reliability is expected to show a minimum in the neighborhood of
such a bifurcation point, where two alternative spike response patterns coexist. Because
of the intrinsic noise of the recorded neuron from stochastic ion channel 9uctuations
and other noise sources transitions between the two coexisting patterns occur over a
range of parameters near the critical parameter value.

3.2. Experiment 2

Cells were injected with a constant (100 pA) depolarizing current superimposed on
the sum of two sinusoids of equal amplitudes (50 pA each) and Ixed phase o3set
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(K�= 0:5), at two di3erent frequencies: f1 = 5 Hz and f2 varied from 10 to 105 Hz
in steps of 5 Hz. Fig. 1B shows some of the injected waveforms and a typical cell
response. For f2 = 10; 15; 20 Hz most cells Ired two spikes on each f1-cycle. For
256f26 40 Hz the cell reliably Ired triplet bursts, and for higher values of f2 it
Ired irregularly, with clusters of spikes occurring at the frequency f1. The reliability
had a maximum at f2 = 20 Hz (Fig. 2B).

3.3. Experiment 3

Cells were injected with a constant (100 pA) depolarizing current superimposed on
the sum of two sinusoids of frequencies f1 = 5 Hz (�) and f2 = 35 Hz (	). The
relative amplitude of the two components was varied to keep the total stimulus constant,
I1=I cos(
) and I2=I sin(
), with I=100 pA. 
=ArcTan(I2=I1) took 20 evenly spaced
values from 0 to �=2. Fig. 1C shows 10 of the injected waveforms and the response
from one cell. The response to this stimulus varied from cell to cell. For the cell
shown here, a single spike occurred in each �-cycle. Once the 	 power I2 exceeded the
� power I1, the cell Ired in one of two alternative 	 cycles on each � cycle, decreasing
reliability.
Fig. 2C shows the reliability (on the 5 ms time scale) of the cell in Fig. 1C (black

line) as well as a second cell (gray line). For comparison, the cells were also injected
with � frequency alone at varying values of I1, with I2 = 0 (dotted lines). Both cells
steadily decreased in reliability as I1 decreased, for I2 = 0. The Irst cell (black line)
had peak reliability for mixtures of � and 	, with � predominating. The second cell
(gray line) decreased in reliability upon shift of power from � to 	, and then showed
a peak in reliability for a mixture of � and 	 with 	 predominating.

4. Discussion

Cortical activity often contains multiple distinct frequency bands, whose relative
phase [5] and power [3] change dynamically with behavioral state. To understand the
e3ects of varying phase- and power-relationships between di3erent frequency compo-
nents on neuronal response, we studied the behavior of in vitro neurons driven by pe-
riodic stimuli containing multiple superposed frequency components. Our results show
that when multiple input frequencies are present, the reliability and precision of the
neuronal response is sensitive not only to the frequencies (Fig. 2B) but also to their
relative phases (Fig. 2A) and power (Fig. 2C). In an earlier study, the addition of a
	-range frequency to a �-range rhythm increased spike time precision [6].
Reliability is important for understanding neural coding. The precision of a neural

response governs the amount of information about the stimulus that can be communi-
cated and in9uences the 9ow of information in the network containing the neuron. Just
as reliable timing is necessary for neural codes using the detailed temporal structure
of spike-trains, unreliable timing erases information about the stimulus. The ability
to modulate reliability by moving in and out of resonance with a given frequency
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component may be an important means of regulating correlation and gating informa-
tion 9ow in cortical networks [7].
Depending on the relative phase relationships of di3erent frequency components, a

pyramidal cell can support either a precise spike-time code or a rate code in which
spike-times show great variability but spike rate is conserved. This transition in be-
havior may be understood as a bifurcation between dynamical attractors that occur as
the phase-o3set varies. The precision and reliability of neural spike-timing depends on
the interplay of synaptic input and the internal dynamics of a given neuron. When
two dynamical attractors or spike patterns are close enough in phase space that intrin-
sic neuronal noise can induce transitions between them, then the timing of individual
spikes becomes unpredictable. Thus, bifurcations are a general mechanism for control-
ling neural reliability and information 9ow.
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