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Natural Scene Statistics at the Center of Gaze

Pamela Reinagelt and Anthony M. Zador?

Sloan Center for Theoretical Neuroscience
alifornia Institute of Technology
Pasadena, CA 91125

and

Sloan Center for Theoretical Neuroscience
alk Institute for Biological Sciences
La Jolla, CA 92037

%To whom correspondence should be addressed
el: (619) 453-4100 x1404

Fax: (619) 450-2172

Email: zador@salk.edu



Humans tend to look at regions of a scene that are interesting or surprising at a
cognitive level. While the importance of such top-down factors in guiding the gaze has
long been recognized, the role of low-level image properties has not been established.
We recorded eye positions of human subjects as they viewed a wide variety of natural
images. We report that subjects selectively directed their gaze at regions of the image
that have unusual spatial frequency composition, and at regions that are “surprising”
according to a local low-level measure. These results suggest that when subjects are
free to move their eyes, the distribution of neural responses even at early stages of

visual processing could guide eye movements.



The visual world in which humans evolved was highly structured, unlike for ex-
ample the random static observed on an untuned television monitor. This structure
can be characterized at many levels. At a high-level, an image can be decomposed
into a collection of objects such as rocks and trees. Alternatively, at a low level, an
image could be decomposed into spatial frequency components [1, 2, 3, 4] or wavelets
[5]. In contrast to high-level descriptions, these low-level descriptions could plausibly
be computed locally at early stages of visual processing.

Low-level analyses reveal robust statistical invariances across natural images, such
as a strong correlation between nearby points. The neural encoding of any stimulus
ensemble is most efficient if the dynamic range of the response is allocated preferen-
tially to those aspects of the stimuli that vary most. Thus the early visual system
can exploit the characteristic structure of images to encode natural visual stimuli
efficiently [6, 7, 8, 9]. For example, motion detectors in insects are matched to the
speed of flight and thus to the temporal frequencies typically experienced [10].

We hypothesized that the early visual system of humans may be adapted to the
statistics of its inputs. To test this idea it is important to know the statistics of
natural images; but to stop there would entail a tacit assumption that visual world is
sampled uniformly. Humans move their eyes several times a second when looking at
a scene, thereby actively selecting visual stimuli for further processing. The portions
of a scene that fall on the fovea are sampled at high spatial resolution, and are
subject to a disproportionate fraction of subsequent cortical processing. Thus, we
set out to determine how voluntary eye movements affect the low-level statistics of
images falling on the fovea, and conversely, how low-level image statistics affect where
subjects direct or maintain their gaze.

We recorded eye positions [11] from subjects as they viewed black-and-white im-

ages [12] presented on a computer monitor. An image from our ensemble, with the
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Fig. 1 A representative image from our ensemble with eye positions of one subject super-
imposed. Circles indicate the position of the center of gaze recorded at 20 msec intervals.

Fig. 2. (a) The orientation-averaged power spectrum of a single 64 x 64 pixel image patch
extracted from this image. The exponent a, where P(f) o« 1/f%, was obtained by fitting
a line to the data plotted on a log-log scale; a corresponds to minus the slope of this line.
For this image patch, o = 2.36. Spatial frequency f is in units of cycles/degree. (b) The
distribution of « for the subject-selected ensemble S (solid) and randomly-selected ensemble
U (dashed) for the image and eye positions in a. For the ensemble S the mean ag = 2.36;
for the ensemble U/ the mean ay = 2.96. (c) The difference as — ay between the mean
subject-selected (@&s) and randomly-selected (ay) image patches is shown for each image.
For this subject &g > ay in ¢ = 75% of images. In 5/5 subjects, the fraction ¢ was signifi-
cantly greater than 0.5 (p < 0.01).

Fig. 3. (a) The distribution of scaled coefficient values for a 5-level Haar wavelet transform
of the image I(z,y) in Fig. 1a. When scaled by 2=™ as shown, the 5 distributions are nearly
identical, reflecting the scale-invariance of natural images. (b) The distribution of entropy
H of level 3 wavelet coefficients in 32 x 32 pixel image patches for the subject-selected
ensemble S (solid) and the randomly-selected ensemble U (dashed) for the image and eye
positions in Fig. la. For the ensemble S the mean Hg = 4.22 bits/coefficient; for the
ensemble U the mean Hy = 3.52 bits/coefficient. (c) The difference Hs — Hy between the
mean cross-entropy of level 3 wavelet coefficients between subject-selected and randomly-
selected image patches. For this subject, Hs > Hy in ¢ = 81% of the natural images. In
5/5 subjects, the fraction ¢ was significantly greater than 0.5 (p < 0.001).
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