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Abstract 

Neocortical circuits are dominated by massive excitatory feedback: more 
than eighty percent of the synapses made by excitatory cortical neurons 
are onto other excitatory cortical neurons. Why is there such massive re- 
current excitation in the neocortex and what is its role in cortical compu- 
tation? Recent neurophysiological experiments have shown that the plas- 
ticity of recurrent neocortical synapses is governed by a temporally asym- 
metric Hebbian learning rule. We describe how such a rule may allow 
the cortex to modify recurrent synapses for prediction of input sequences. 
The goal is to predict the next cortical input from the recent past based on 
previous experience of similar input sequences.. We show that a temporal 
difference learning rule for prediction used in conjunction with dendritic 
back-propagating action potentials reproduces the temporally asymmet- 
ric Hebbian plasticity observed physiologically. Biophysical simulations 
demonstrate that a network of cortical neurons can learn to predict mov- 
ing stimuli and develop direction selective responses as a consequence of 
learning. The space-time response properties of model neurons are shown 
to be similar to those of direction selective cells in alert monkey V1. 

1 INTRODUCTION 

The neocortex is characterized by an extensive system of recurrent excitatory connections 
between neurons in a given area. The precise computational function of this massive re- 
current excitation remains unknown. Previous modeling studies have suggested a role for 
excitatory feedback in amplifying feedforward inputs [ I ] .  Recently, however, it has been 
shown that recurrent excitatory connections beiween cortical neurons are modified accord- 
ing to a temporally asymmetric Hebbian learning rule: synapses that are activated slightly 
before the cell fires are strengthened whereas those that are activated slightly after are weak- 
ened [2, 31. Information regarding the postsynaptic activity of the cell is conveyed back to 
the dendritic locations of synapses by back-propagating action potentials from the soma. 

In this paper, we explore the hypothesis that recurrent excitation subserves the function of 
prediction and generation of temporal sequences in neocortical circuits [4, 5 ,  61. We show 
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that a temporal difference based learning rule for prediction applied to backpropagating ac- 
tion potentials reproduces the experimentally observed phenomenon of asymmetric Heb- 
bian plasticity. We then show that such a learning mechanism can be used to learn temporal 
sequences and the property of direction selectivity emerges as a consequence of learning to 
predict moving stimuli. Space-time response plots of model neurons are shown to be similar 
to those of direction selective cells in alert macaque V1. 

2 TEMPORALLY ASYMMETRIC HEBBIAN PLASTICITY AND 
TEMPORAL DIFFERENCE LEARNING 

To accurately predict input sequences, the recurrent excitatory connections in a network 
need to be adjusted such that the appropriate set of neurons are activated at each time step. 
This can be achieved by using a "temporal-difference'' (TD) learning rule [5, 71. In this 
paradigm of synaptic plasticity, an activated synapse is strengthened or weakened based on 
whether the difference between two temporally-separated predictions is positive or nega- 
tive. This minimizes the errors in prediction by ensuring that the prediction generated by 
the neuron after synaptic modification is closer to the desired value than before (see [7] for 
more details). 

In order to ascertain whether temporally-asymmetric Hebbian learning in cortical neurons 
can be interpreted as a form of temporal-difference learning, we used a two-compartment 
model of a cortical neuron consisting of adendrite and a soma-axon compartment. The com- 
partmental model was based on a previous study that demonstrated the ability of such a 
model to reproduce a range of cortical response properties [8]. The presence of voltage- 
activated sodium channels in the dendrite allowed back-propagation of action potentials 
from the soma into the dendrite. To study plasticity, excitatory postsynaptic potentials (EP- 
SPs) were elicited at different time delays with respect to postsynaptic spiking by presynap- 
tic activation of a single excitatory synapse located on the dendrite. Synaptic currents were 
calculated using a kinetic model of synaptic transmission with model parameters fitted to 
whole-cell recorded AMPA currents (see [9] for more details). Synaptic plasticity was sim- 
ulated by incrementing or decrementing the value for maximal synaptic conductance by an 
amount proportional to the temporal-difference in the postsynaptic membrane potential at 
time instants t + At and t - At for presynaptic activation at time t. The delay parameter 
At was set to 5 ms to yield results consistent with previous physiological experiments [2]. 
Presynaptic input to the model neuron was paired with postsynaptic spiking by injecting 
a depolarizing current pulse (10 ms, 200 PA) into the soma. Changes in synaptic efficacy 
were monitored by applying a test stimulus before and after pairing, and recording the EPSP 
evoked by the test stimulus. 

Figure 1A shows the results of pairings in which the postsynaptic spike was triggered 5 ms 
after and 5 ms before the onset of the EPSP respectively. While the peak EPSP amplitude 
was increased 58.5% in the former case, it was decreased 49.4% in the latter case, qualita- 
tively similar to experimental observations [2]. The critical window for synaptic modifica- 
tions in the model depends on the parameter At as well as the shape of the back-propagating 
action potential. This window of plasticity was examined by varying the time interval be- 
tween presynaptic stimulation and postsynaptic spiking (with At = 5 ms). As shown in 
Figure IB, changes in synaptic efficacy exhibited a highly asymmetric dependence on spike 
timing similar to physiological data [2]. Potentiation was observed for EPSPs that occurred 
between 1 and 12 ms before the postsynaptic spike, with maximal potentiation at 6 ms. Max- 
imal depression was observed for EPSPs occurring 6 ms after the peak of the postsynaptic 
spike and this depression gradually decreased, approaching zero for delays greater than 10 
ms. As in rat neocortical neurons, Xenopus tectal neurons, and cultured hippocampal neu- 
rons (see [2]), a narrow transition zone (roughly 3 ms in the model) separated the potentia- 
tion and depression windows. 
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Figure 1 : Synaptic Plasticity in a Model Neocortical Neuron. (A) (Left Panel) EPSP in the model 
neuron evoked by a presynaptic spike (Sl) at an excitatory synapse ("before"). Pairing this presynap- 
tic spike with postsynaptic spiking after a 5 ms delay ("pairing") induces long-term potentiation ("af- 
ter"). (Right Panel) If presynaptic stimulation (S2) occurs 5 ms after postsynaptic firing, the synapse 
is weakened resulting in a corresponding decrease in peak EPSP amplitude. (B) Critical window for 
synaptic plasticity obtained by varying the delay between pre- and postsynaptic spiking (negative de- 
lays refer to presynaptic before postsynaptic spiking). 

3 RESULTS 

3.1 Learning Sequences using Temporally Asymmetric Hebbian Plasticity 

To see how a network of model neurons can learn sequences using the learning mechanism 
described above, consider the simplest case of two excitatory neurons N1 and N2 connected 
to each other, receiving inputs from two separate input neurons I1 and I2 (Figure 2A). Sup- 
pose input neuron I1 fires before input neuron 12, causing neuron N l  to fire (Figure 2B). 
The spike from N l  results in a sub-threshold EPSP in N2 due to the synapse S2. If input 
arrives from I2 any time between 1 and 12 ms after this EPSP and the temporal summation 
of these two EPSPs causes N2 to fire, the synapse S2 will be strengthened. The synapse S 1, 
on the other hand, will be weakened because the EPSP due to N2 arrives a few milliseconds 
after NI has fired. Thus, on a subsequent trial, when input I1 causes neuron N1 to fire, N1 
in turn causes N2 to fire several milliseconds before input I2 occurs due to the potentiation 
of the recurrent synapse S2 in previous trial(s) (Figure 2C). Input neuron I2 can thus be in- 
hibited by the predictive feedback from N2 just before the occurrence of imminent input 
activity (marked by an asterisk in Figure 2C). This inhibition prevents input I2 from further 
exciting N2. Similarly, a positive feedback loop between neurons NI and N2 is avoided 
because the synapse S l  was weakened in previous trial(s) (see arrows in Figures 2B and 
2C). Figure 2D depicts the process of potentiation and depression of the two synapses as a 
function of the number of exposures to the 11-12 input sequence. The decrease in latency 
of the predictive spike elicited in N2 with respect to the timing of input I2 is shown in Fig- 
ure 2E. Notice that before learning, the spike occurs 3.2 ms after the occurrence of the input 
whereas after learning, i t  occurs 7.7 ms before the input. 

3.2 Emergence of Direction Selectivity 

In a second set of simulations, we used a network of recurrently connected excitatory neu- 
rons as shown in Figure 3A receiving retinotopic sensory input consisting of moving pulses 
of excitation (8 ms pulse of excitation at each neuron) in the rightward and leftward direc- 
tions. The task of the network was to predict the sensory input by learning appropriaterecur- 
rent connections such that a given neuron in the network starts firing several milliseconds 
before the arrival of its input pulse of excitation. The network was comprised of two paral- 
lel chains of neurons with mutual inhibition (dark arrows) between corresponding pairs of 
neurons along the two chains. The network was initialized such that within a chain, a given 
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Figure 2: Learning to Predict using Temporally Asymmetric Hebbian Learning. (A) Network 
of two model neurons N1 and N2 recurrently connected via excitatory synapses S 1 and S2, with input 
neurons I1 and 12. N1 and N2 inhibit the input neurons via inhibitory interneurons (darkened circles). 
(B) Network activity elicited by the sequence I1 followed by 12. (C) Network activity for the same 
sequence after 40 trials of learning. Due to strengthening of recurrent synapse S2, recurrent excita- 
tion from N1 now causes N2 to fire several ms before the expected arrival of input I2 (dashed line), 
allowing it to inhibit I2 (asterisk). Synapse S1 has been weakened, preventing re-excitation of N1 
(downward arrows show decrease in EPSP). (D) Potentiation and depression of synapses S1 and S2 
respectively during the course of learning. Synaptic strength was defined as maximal synaptic conduc- 
tance in the kinetic model of synaptic transmission [9]. (E) Latency of predictive spike in N2  during 
the course of learning measured with respect to the time of input spike in I2 (dotted line). 

excitatory neuron received both excitation and inhibition from its predecessors and succes- 
sors (Figure 3B). Excitatory and inhibitory synaptic currents were calculated using kinetic 
models of synaptic transmission based on properties of AMPA and GABAA receptors as 
determined from whole-cell recordings [9]. Maximum conductances for all synapses were 
initialized to small positive values (dotted lines in Figure 3C) with a slight asymmetry in 
the recurrent excitatory connections for breaking symmetry between the two chains. 

The  network was exposed alternately to leftward and rightward moving stimuli for a total of 
100 trials. The excitatory connections (labeled 'EXC' in Figure 3B) were modified accord- 
ing to the asymmetric Hebbian learning rule in Figure 1B while the excitatory connections 
onto the inhibitory interneuron (labeled 'INH') were modified according to an asymmetric 
anti-Hebbian learning rule that reversed the polarity of the rule in Figure 1B. T h e  synaptic 
conductances learned by two neurons (marked NI  and N2  in Figure 3A) located at corre- 
sponding positions in the two chains after 100 trials of exposure to the moving stimuli are 
shown in Figure 3 C  (solid line). Initially, for rightward motion, the slight asymmetry in 
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Figure 3: Direction Selectivity in the Model. (A) A model network consisting of two chains of 
recurrently connected neurons receiving retinotopic inputs. A given neuron receives recurrent excita- 
tion and recurrent inhibition (white-headed arrows) as well as inhibition (dark-headed arrows) from its 
counterpart in the other chain. (13) Recurrent connections to a given neuron (labeled '0') arise from 
4 preceding and 4 succeeding neurons in its chain. Inhibition at a given neuron is mediated via a 
GABAergic interneuron (darkened circle). (C) Synaptic strength of recurrent excitatory (EXC) and in- 
hibitory (INH) connections to neurons N1 and N2 before (dotted lines) and after learning (solid lines). 
Synapses were adapted during 100 trials of exposure to alternating leftward and rightward moving 
stimuli. (D) Responses of neurons NI and N2 to rightward and leftward moving stimuli. As a result 
of learning, neuron N1 has become selective for rightward motion (as have other neurons in the same 
chain) while neuron N2 has become selective for leftward motion. In the preferred direction, each 
neuron starts firing several milliseconds before the actual input arrives at its soma (marked by an as- 
terisk) due to recurrent excitation from preceding neurons. The dark triangle represents the start of 
input stimulation in the network. 

the initial excitatory connections o f  neuron N l  allows it to  fire slightly earlier than neuron 
N 2  thereby inhibiting neuron N2,  Additionally, s ince the EPSPs  f rom neurons lying o n  the  
left o f  N 1  occur  before N 1  fires, the  excitatory synapses from these neurons a r e  strength- 
ened  while  the  excitatory synapses from these s a m e  neurons to  the  inhibitory interneuron a r e  
weakened according t o  the two learning rules mentioned above. O n  the  other  hand,  t h e  ex-  
citatory synapses from neurons lying o n  the  right s ide  o f  N 1  a r e  weakened while  inhibitory 
connect ions a re  strengthened s ince the  EPSPs  d u e  to these connect ions occur  aftcr N 1  has 
fired. T h e  synapses o n  neuron N 2  and  its associated interneuron remain unaltered s ince 
therc is n o  postsynaptic firing (due to inhibition by N 1 )  and  hence  n o  back-propagating ac- 
tion potentials in the  dendrite. A s  shown in Figure 3C, after 100 trials, the excitatory and  
inhibitory connect ions to  neuron N1 exhibit a marked asymmetry, with excitation originat- 
ing from neurons o n  the  left and inhibition from neurons o n  the  right. Neuron N 2  exhibi ts  
the  opposi te  pattern o f  connectivity. As expected, neuron N 1  was  found to b e  select ive for  
rightward motion while  neuron N 2  was  selective for  leftward motion (Figure 3D). Morc-  
over, when  s t imulus motion is in the preferred direction, each  neuron starts firing several 
rnilliscconds before the t ime o f  arrival o f  the input stimulus a t  its s o m a  (marked by  a n  as- 
terisk) d u e  to  recurrent excitation from preceding neurons. Conversely, motion in the  non- 
preferred direction triggers recurrent inhibition from preceding neurons a s  well a s  inhibition 
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Figure 4: Comparison of Monkey and Model Space-Time Response Plots. (Left) Sequence of 
PSTHs obtained by flashing optimally oriented bars at 20 positions across the 5"-wide receptive field 
(RF) of a complex cell in alert monkey V1 (from [ll]). The cell's preferred direction is from the part 
of the RF represented at the bottom towards the top. Flash duration = 56 ms; inter-stimulus delay = 
100 ms; 75 stimulus presentations. (Right) PSTHs obtained from a model neuron after stimulating the 
chain of neurons at 20 positions to the left and right side of the given neuron. Lower PSTHs represent 
stimulations on the preferred side while upper PSTHs represent stimulations on the null side. 

from the active neuron in the corresponding position in the other chain. Thus, the learned 
pattern of connectivity allows the direction selective neurons comprising the two chains in 
the network to conjointly code for and predict the moving input stimulus in each direction. 
The  average firing rate of neurons in the network for the preferred direction was 75.7 Hz, 
which is in the range of  cortical firing rates for moving bar stimuli. Assuming a 200 p m  
separation between excitatory model neurons in each chain and utilizing known values for 
the cortical magnification factor in monkey striate cortex, one  can estimate the preferred 
stimulus velocity o f  model neurons to be 3.1°/s in the fovea and 27.9"/s in the periphery (at 
an eccentricity of 8"). Both of these values fall within the range of monkey striate cortical 
velocity preferences [ l  11. 

The model predicts that the neuroanatomical connections for a direction selective neuron 
should exhibit a pattern of asymn~etrical excitation and inhibition similar to Figure 3C. A 
recent study of direction selective cells in awake monkey V I  found excitation on the pre- 
ferred side of the receptive field and inhibition on the null side consistent with the pattern of 
connections learned by the model [ I  11. For comparison with this experimental data, sponta- 
neous background activity in the model was generated by incorporating Poisson-distributed 
random excitatory and inhibitory alpha synapses on the dendrite of each model neuron. Post 
stimulus time histograms (PSTHs) and space-time response plots were obtained by flashing 
optimally oriented bar stimuli at random positions in the cell's activating region. As shown 
in Figure4, there is good qualitative agreement between the response plot for a complex cell 
and that for the model. Both space-time plots show a progressive shortening of responsc 
onset time and an increase in response transiency going in the preferred direction: in the 
model, this is due  to recurrent excitation from progressively closer cells on the preferred 
side. Firing is reduced to below background rates 40-60 ms after stimulus onset in the up- 
per part of the plots: in the model, this is due to recurrent inhibition from cells on the null 
side. The response transiency and shortening of response time course appears as a slant in 
the space-time maps, which can be related to die neuron's velocity sensitivity [ l  I ] .  
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4 CONCLUSIONS 
Our results show that a network of recurrently connected neurons endowed with a temporal- 
difference based asymmetric Hebbian learning mechanism can learn a predictive model of 
its spatiotemporal inputs. When exposed to moving stimuli, neurons in a simulated net- 
work learned to fire several milliseconds before the expected arrival of an input stimulus 
and developed direction selectivity as a consequence of learning. The model predicts that a 
direction seIective neuron should start responding several milliseconds before the preferred 
stimulus enters its retinal input dendritic field (such predictive neural activity has recently 
been reported in retinal ganglion cells [lo]). Temporally asymmetric Hebbian learning has 
previously been suggested as a possible mechanism for sequence learning in the hippocam- 
pus [4] and as an explanation for the asymmetric expansion of hippocampal place fields 
during route learning [12]. Some of these theories require relatively long temporal win- 
dows of synaptic plasticity (on the order of several hundreds of milliseconds) [4] while oth- 
ers have utilized temporal windows in the millisecond range for coincidence detection [ 3 ] .  
Sequence learning in our model is based on a window of plasticity in the 10 to 15 ms range 
which is roughly consistent with recent physiological observations [2] (see also [13]). The 
idea that prediction and sequence learning may constitute an important goal of the neocortex 
has previously been suggested in the context of statistical and information theoretic models 
of cortical processing [4,5,6]. Our biophysical simulations suggest a possible implementa- 
tion of such models in cortical circuitry. Given the universality of the problem of encoding 
and generating temporal sequences in both sensory and motor domains, the hypothesis of 
predictive sequence learning in recurrent neocortical circuits may help provide a unifying 
principle for studying cortical structure and function. 
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