Learning Lie Groups for Invariant Visual Perception*

Rajesh P. N. Rao and Daniel L. Ruderman
Sloan Center for Theoretical Neurobiology
The Salk Institute
La Jolla, CA 92037
{rao, ruderman}@salk.edu

Abstract

One of the most important problems in visual perception is that of visual in-
variance: how are objects perceived to be the same despite undergoing transfor-
mations such as translations, rotations or scaling? In this paper, we describe a
Bayesian method for learning invariances based on Lie group theory. We show
that previous approaches based on first-order Taylor series expansions of inputs
can be regarded as special cases of the Lie group approach, the latter being ca-
pable of handling in principle arbitrarily large transformations. Using a matrix-
exponential based generative model of images, we derive an unsupervised al-
gorithm for learning Lie group operators from input data containing infinites-
imal transformations. The on-line unsupervised learning algorithm maximizes
the posterior probability of generating the training data. We provide experimen-
tal results suggesting that the proposed method can learn Lie group operators for
handling reasonably large 1-D translations and 2-D rotations.

1 INTRODUCTION

A fundamental problem faced by both biological and machine vision systems is the recognition
of familiar objects and patterns in the presence of transformations such as translations, rotations
and scaling. The importance of this problem was recognized early by visual scientists such as J. J.
Gibson who hypothesized that “‘constant perception depends on the ability of the individual to de-
tect the invariants” [6]. Among computational neuroscientists, Pitts and McCulloch were perhaps
the first to propose a method for perceptual invariance (‘“knowing universals”) [12]. A number of
other approaches have since been proposed [35, 7, 10], some relying on temporal sequences of input
patterns undergoing transformations (e.g. [4]) and others relying on modifications to the distance
metric for comparing input images to stored templates (e.g. [15]).

In this paper, we describe a Bayesian method for learning invariances based on the notion of contin-
uous transformations and Lie group theory. We show that previous approaches based on first-order
Taylor series expansions of images [1, 14] can be regarded as special cases of the Lie group ap-
proach. Approaches based on first-order models can account only for small transformations due
to their assumption of a linear generative model for the transformed images. The Lie approach on
the other hand utilizes a matrix-exponential based generative model which can in principle handle
arbitrarily large transformations once the correct transformation operators have been learned. Us-
ing Bayesian principles, we derive an on-line unsupervised algorithm for learning Lie group opera-
tors from input data containing infinitesimal transformations. Although Lie groups have previously
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been used in visual perception [2], computer vision [16] and image processing [9], the question of
whether it is possible to learn these groups directly from input data has remained open. Our pre-
liminary experimental results suggest that in the two examined cases of 1-D translations and 2-D
rotations, the proposed method can learn the corresponding Lie group operators with a reasonably
high degree of accuracy, allowing the use of these learned operators in transformation-invariant
vision.

2 CONTINUOUS TRANSFORMATIONS AND LIE GROUPS

Suppose we have a point (in general, a vector) Iy whichis an element in a space F'. Let T'Iy denote a
transformation of the point Iy to another point, say I; . The transformation operator T is completely
specified by its actions on all points in the space F'. Suppose T belongs to a family of operators
T. We will be interested in the cases where 7 is a group i.e. there exists amapping f : 7 X T —
T from pairs of transformations to another transformation such that (a) f is associative, (b) there
exists a unique identity transformation, and (c) for every T € T, there exists a unique inverse
transformation of T'. These properties seem reasonable to expect in general for transformations on
images.

Continuous transformations are those which can be made infinitesimally small. Due to their favor-
able properties as described below, we will be especially concerned with continuous transforma-
tion groups or Lie groups. Continuity is associated with both the transformation operators T" and
the group 7. Each T € T is assumed to implement a continuous mapping from F' — F. To be
concrete, suppose T' is parameterized by a single real number x. Then, the group 7 is continu-
ous if the function T'(z) : ® — T is continuous i.e. any T' € T is the image of somez € R
and any continuous variation of z results in a continuous variation of T'. Let T'(0) be equivalent
to the identity transformation. Then, as z — 0, the transformation T'(z) gets arbitrarily close to
identity. Its effect on I can be written as (to first order in z): T'(z)Ip =~ (1 + =G)I, for some
matrix G which is known as the generator of the transformation group. A macroscopic transfor-
mation I; = I(z) = T(z)Ip can be produced by chaining together a number of these infinitesimal
transformations. For example, by dividing the parameter  into IV equal parts and performing each
transformation in turn, we obtain:

I(z) = (1+ (z/N)G)" o 0]
In the limit N — o0, this expression reduces to the matrix exponential equation:
I(z) = €*CI, ?

where I is the initial or “reference” input. Thus, each of the elements of our one-parameter Lie
group can be written as: T'(z) = e, The generator G of the Lie group is related to the derivative
of T'(z) with respect to z: %T = QGT. This suggests an alternate way of deriving Equation 2.
Consider the Taylor series expansion of a transformed input I (z) in terms of a previous input I (0):

dI(0) d@21(0) z?
iz T+ a2 2 +... 3)
where z denotes the relative transformation between I(z) and I(0). Defining a";I = G1I for some

operator matrix G, we can rewrite Equation 3 as: I(z) = e*¢I, which is the same as equation 2
with Iy = I(0). Thus, some previous approaches based on first-order Taylor series expansions
[1, 14] can be viewed as special cases of the Lie group model.

3 LEARNING LIE TRANSFORMATION GROUPS

Our goal is to learn the generators G of particular Lie transformation groups directly from input data
containing examples of infinitesimal transformations. Note that learning the generator of a trans-
formation effectively allows us to remain invariant to that transformation (see below). We assume
that during natural temporal sequences of images containing transformations, there are “small” im-
age changes corresponding to deterministic sets of pixel changes that are independent of what the

I(z) = I(0) +
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Figure 1: Network Architecture and Interpolation Function. (a) An implementation of the proposed ap-
proach to invariant vision involving two cooperating recurrent networks, one estimating transformations and
the other estimating object features. The latter supplies the reference image I(0) to the transformation net-
work. (b) A locally recurrent elaboration of the transformation network for implementing Equation 9. The
network computes e*¢I(0) = I(0) + 3, (z*G* /k!)I(0). (c) The interpolation function Q used to generate
training data (assuming periodic, band-limited signals).

actual pixels are. The rearrangements themselves are universal as in for example image transla-
tions. The question we address is: can we learn the Lie group operator G given simply a series of
“before” and “after” images?

Let the n x 1 vector I(0) be the “before” image and I(z) the “after” image containing the infinites-
imal transformation. Then, using results from the previous section, we can write the following
stochastic generative model for images:

I(z) = e*“1(0) + n @
where n is assumed to be a zero-mean Gaussian white noise process with variance 0. Since learn-
ing using this full exponential generative model is difficult due to multiple local minima, we restrict

ourselves to transformations that are infinitesimal. The higher order terms then become negligible
and we can rewrite the above equation in a more tractable form:

AI = zG1(0) + n (5)
where AI = I(z) —I(0) is the difference image. Note that although this model is linear, the gener-
ator G learned using infinitesimal transformations is the same matrix that is used in the exponential

model. Thus, once learned, this matrix can be used to handle larger transformations as well (see
experimental results).

Suppose we are given M image pairs as data. We wish to find the n X n matrix G and the trans-
formations = which generated the data set. To do so, we take a Bayesian maximum a posteriori
approach using Gaussian priors on = and G. The negative log of the posterior probability of gen-
erating the data is given by:

E = —log P[G, 2|1(z), 1(0)] = 2}7(A1—xc:1(o))T(A1—mGI(O)) + -2—‘173:52 + %gTC'—Ig ©)

where o2 is the variance of the zero-mean Gaussian prior on z, g is the n? x 1 vector form of G
and C is the covariance matrix associated with the Gaussian prior on G. Extending this equation
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to multiple image data is accomplished straightforwardly by summing the data-driven term over
the image pairs (we assume G is fixed for all images although the transformation = may vary). For
the experiments, o, 0, and C were chosen to be fixed scalar values but it may be possible to speed
up learning and improve accuracy by choosing C based on some knowledge of what we expect for
infinitesimal image transformations (for example, we may define each entry in C to be a function
only of the distance between pixels associated with the entry and exploit the fact that C' needs to
be symmetric; the efficacy of this choice is currently under investigation).

The n x n generator matrix G' can be learned in an unsupervised manner by performing gradient
descent on E, thereby maximizing the posterior probability of generating the data:

G = —a% = a(AI - zGI(0))(z1(0))T — ac(G) @
where « is a positive constant that governs the learning rate and ¢(Q) is the n x n matrix form of
the n? x 1 vector C~1g. The learning rule for G above requires the value of z for the current image
pair to be known. We can estimate = by performing gradient descent on E with respect to  (using
a fixed previously learned value for G):

_ OE T B

¢ = —f5-=HGL0))" (AI-2GL0)) sz° ®)
The learning process thus involves alternating between the fast estimation of z for the given image
pair and the slower adaptation of the generator matrix G using this z. Figure 1 (a) depicts a pos-
sible network implementation of the proposed approach to invariant vision. The implementation,
which is reminiscent of the division of labor between the dorsal and ventral streams in primate vi-
sual cortex [3], uses two parallel but cooperating networks, one estimating object identity and the
other estimating object transformations. The object network is based on a standard linear gener-
ative model of the form: I(0) = Ur + ny where U is a matrix of learned object “features” and
r is the feature vector for the object in I(0) (see, for example, [11, 13]). Perceptual constancy is
achieved due to the fact that the estimate of object identity remains stable in the first network as the
second network attempts to account for any transformations being induced in the image, appropri-
ately conveying the type of transformation being induced in its estimate for z (see [14] for more
details).

The estimation rule for z given above is based on a first-order model (Equation 5) and is therefore
useful only for estimating small (infinitesimal) transformations. A more general rule for estimating
larger transformations is obtaining by performing gradient descent on the optimization function
given by the matrix-exponential generative model (Equation 4):

& = (e*9C10)T(I(z) - eCL0) - = ©)

Figure 1 (b) shows a locally recurrent network implementation of the matrix exponential compu-
tation required by the above equation.

4 EXPERIMENTAL RESULTS

Training Data and Interpolation Function. For the purpose of evaluating the algorithm, we gen-
erated synthetic training data by subjecting a randomly generated image (containing uniformly ran-
dom pixel intensities) to a known transformation. Consider a given 1-D image I(0) with image
pixels given by I(j), j = 1,..., N. To be able to continuously transform I(0) sampled at discrete
pixel locations by infinitesimal (sub-pixel) amounts, we need to employ an interpolation function.
‘We make use of the Shannon-Whittaker theorem [8] stating that any band-limited signal I(7), with
J being any real number, is uniquely specified by its sufficiently close equally spaced discrete sam-
ples. Assuming that our signal is periodic i.e. I(j + N) = I(j) for all j, the Shannon-Whittaker
theorem in one dimension can be written as: I(j) = Zﬁ;}) I(m) Y2 _ sincfr(j —m — Nr)]
where sinc[z] = sin(z)/z. After some algebraic manipulation and simplification, this can be

reduced to: I(j) = Zz;é I(m)Q(j — m) where the interpolation function @ is given by:
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Figure 2: Learned Lie Operators for 1-D Translations. (a) Analytically-derived 20 x 20 Lie operator
matrix G, operator for the 10th pixel (10th row of (), and plot of real and imaginary parts of the eigenvalues
of G. (b) Learned G matrix, 10th operator, and plot of eigenvalues of the learned matrix.

Q(z) = (1/N)[1 +2 Z;Vﬁ_l cos(2rpx/N)]. Figure 1 (c) shows this interpolation function. To

translate I(0) by an infinitesimal amount € R, we use: I(j + z) = Zﬁ;(l) Im)Q(j + =z — m).
Similarly, to rotate or translate 2-D images, we use the 2-D analog of the above. In addition to
being able to generate images with known transformations, the interpolation function also allows
one to derive an analytical expression for the Lie operator matrix directly from the derivative of
Q. This allows us to evaluate the results of learning. Figure 2 (a) shows the analytically-derived G
matrix for 1-D infinitesimal translations of 20-pixel images (bright pixels = positive values, dark
= negative). Also shown alongside is one of the rows of G' (row 10) representing the Lie operator
centered on pixel 10.

Learning 1-D Translations. Figure 2 (b) shows the results of using Equation 7 and 50, 000 training
image pairs for learning the generator matrix for 1-D translations in 20-pixel images. The randomly
generated first image of a training pair was translated left or right by 0.5 pixels (C~! = 0.0001 and
learning rate a = 0.4 was decreased by 1.0001 after each training pair). Note that as expected for
translations, the rows of the learned G' matrix are identical except for a shift: the same differential
operator (shown in Figure 2 (b)) is applied at each image location. A comparison of the eigenval-
ues of the learned matrix with those of the analytical matrix (Figure 2) suggests that the learning
algorithm was able to learn a reasonably good approximation of the true generator matrix (to within
an arbitrary multiplicative scaling factor). To further evaluate the learned matrix G, we ascertained
whether G could be used to generate arbitrary translations of a given reference image using Equa-
tion 2. The results are encouraging as shown in Figure 3 (a), although we have noticed a tendency
for the appearance of some artifacts in translated images if there is significant high-frequency con-
tent in the reference image.

Estimating Large Transformations. The learned generator matrix can be used to estimate large
translations in images using Equation 9. Unfortunately, the optimization function can contain local
minima (Figure 3 (b)). The local minima however tend to be shallow and of approximately the same
value, with a unique well-defined global minimum. We therefore searched for the global minimum
by performing gradient descent with several equally spaced starting values and picked the minimum
of the estimated values after convergence. Figure 3 (c) shows results of this estimation process.

Learning 2-D Rotations. We have also tested the learning algorithm in 2-D images using image
plane rotations. Training image pairs were generated by infinitesimally rotating images with ran-
dom pixel intensities 0.2 radians clockwise or counterclockwise. The learned operator matrix (for
three different spatial scales) is shown in Figure 4 (a). The accuracy of these matrices was tested




Learning Lie Groups 815

1(0)

I . .

x 1(x) I(x) X

s [ A N .
« I ' N .

s [H [ ! \ ’

105 1 B

B T .
(a) ®)
o o g __§ 8 N 4 |
x =8.9787 (9) x=199780(20)  x=-1.9780(-2)
[ ] x = -7.9805 (-8) x =2.9805 (3) x =-18.9805 (-19)

I <-159775(16)  x=269776(27)  x=4.9774(5)
©

Figure 3: Generating and Estimating Large Transformations. (a) An original reference image I(0) was
translated to varying degrees by using the learned generator matrix G and varying z in Equation 2. (b) The
negative log likelihood optimization function for the matrix-exponential generative model (Equation 4) which
was used for estimating large translations. The globally minimum value for z was found by using gradient
descent with multiple starting points. (c) Comparison of estimated translation values with actual values (in
parenthesis) for different pairs of reference (I(0)) and translated images (I(z)) shown in the form of a table.

by using them in Equation 2 for various rotations z. As shown in Figure 4 (b) for the 5 x 5 case,
the learned matrix appears to be able to rotate a given reference image between —180° and +180°
about an initial position (for the larger rotations, some minor artifacts appear near the edges).

5 CONCLUSIONS

Our results suggest that it is possible for an unsupervised network to learn visual invariances by
learning operators (or generators) for the corresponding Lie transformation groups. An important
issue is how local minima can be avoided during the estimation of large transformations. Apart
from performing multiple searches, one possibility is to use coarse-to-fine techniques, where trans-
formation estimates obtained at a coarse scale are used as starting points for estimating transforma-
tions at finer scales (see, for example, [1]). A second possibility is to use stochastic techniques that
exploit the specialized stucture of the optimization function (Figure 1 (c)). Besides these direc-
tions of research, we are also investigating the use of structured priors on the generator matrix G to
improve learning accuracy and speed. A concurrent effort involves testing the approach on more
realistic natural image sequences containing a richer variety of transformations.
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