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Abstract

We introduce the notion of Morton-style factorial coding and illustrate
how it may help understand information integration and perceptual cod-
ing in the brain. We show that by focusing on average responses one
may miss the existence of factorial coding mechanisms that become only
apparent when analyzing spike count histograms. We show evidence
suggesting that the classical/non-classical receptive field organization in
the cortex effectively enforces the development of Morton-style factorial
codes. This may provide some cues to help understand perceptual cod-
ing in the brain and to develop new unsupervised learning algorithms.
While methods like ICA (Bell & Sejnowski, 1997) develop independent
codes, in Morton-style coding the goal is to make two or more external
aspects of the world become independent when conditioning on internal
representations.

In this paper we introduce the notion of Morton-style factorial coding and illustrate how it
may help analyze information integration and perceptual organization in the brain. In the
neurosciences factorial codes are often studied in the context of mean tuning curves. A
tuning curve is called separable if it can be expressed as the product of terms selectively
influenced by different stimulus dimensions. Separable tuning curves are taken as evi-
dence of factorial coding mechanisms. In this paper we show that by focusing on average
responses one may miss the existence of factorial coding mechanisms that become only
apparent when analyzing spike count histograms.

Morton (1969) analyzed a wide variety of psychophysical experiments on word perception
and showed that they could be explained using a model in which stimulus and context
have separable effects on perception. More precisely, in Mortons’ model the joint effect of
stimulus and context on a perceptual representation can be obtained by multiplying terms
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selectively controlled by stimulus and by context, i.e.,
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is the empirical probability of perceiving the perceptual alternative
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response to stimulus
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in context
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 represents the support of stimulus

�
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 the support of the context for percept
�
. Massaro (1987b, 1987a, 1989a) has

shown that this form of factorization describes accurately a wide variety of psychophysical
studies in domains such as word recognition, phoneme recognition, audiovisual speech
recognition, and recognition of facial expressions.

Morton-style factorial codes used to be taken as evidence for a feedforward coding mech-
anism (Massaro, 1989b) but Movellan & McClelland (2001) showed that neural networks
with feedback connections can develop factorial codes when they follow an architectural
constraint named “channel separability”. Channel separability is defined as follows: First
we identify the neurons which have a direct influence on the observed responses (e.g., the
set of neurons that affect an electrode). For a given set of response units, the stimulus
chanel is defined as the set of units modulated by the stimulus provided the response spec-
ification units are excised from the rest of the network. The context channel is the set of
units modulated by the context provided the response units are excised from the rest of
the networks. Two channels are called separable if they have no units in common. Chan-
nel separability implies that the influences of an information source upon the channel of
another information source should be mediated via the response specification units (see
Figure 1). While the models used in Movellan and McClelland (2001) are a simplifica-
tion of actual neural circuits, the analysis suggests that the form of separability expressed
in the the Morton-Massaro model may be a useful paradigm for the study of information
integration in the brain. Indeed it is quite remarkable that the functional organization of
cortex into classical/non-classical receptive fields provides a separable architecture (See
Figure 1). Such organization may be nature’s way of enforcing Morton-style perceptual
coding. In this paper we present evidence in favor of this view by investigating how color
is encoded in primary visual cortex.

It is well known that stimuli of equal chromaticity can evoke different color percepts, de-
pending on the visual context (Wesner & Shevell, 1992; Brown & MacLeod, 1997). Con-
text dependent responses to color stimuli have been found in V4 (Zeki, 1983). More re-
cently the last three authors of this article investigated the chromatic tuning properties of
V1 cells in response to stimuli presented in different chromatic contexts (Wachtler, Se-
jnowski, & Albright, 2003). The experiment showed that the background color, outside
the cell’s classical receptive field, had a significant effect on the response to colors inside
the receptive field. No attempt was made to model the form of such influence. In this
paper we analyze quantitatively the results of that experiment and show that a large propor-
tion of these neurons, adhered to the Morton-Massaro law, i.e., stimulus and context had a
separable influence on the spike count histograms of these cells.

1 Methods

The animal preparation and methods of this experiment are described in Wachtler et al.
(in press) in great detail. Here we briefly describe the portion of the experiment relevant
to us. Two adult female rhesus monkeys were used in the study. Extracellular potentials
from single isolated neurons were recorded from two macaque monkeys. The monkeys
were awake and were required to fixate a small fixation target for the duration of each trial
(2500 ms.). Amplified electrical activity from the cortex was passed to a data acquisition
system for spike detection and sorting. Once a neuron was isolated, its receptive field was
determined using flashed and moving bars of different size, orientation, and color. All the
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Figure 1: Left: A network with separable context and stimulus processing channels. Right:
The arrows connecting the stimulus to the unit in the center represent the classical receptive
field of that unit. External inputs affecting the classical receptive field are called “stimuli”
and all the other inputs are called “background”. In this preparation the stimulus and back-
ground channels are separable.

neurons recorded had receptive fields at eccentricities between 7 8 and 9
8 .
Once the receptive fields were located, the color tuning of the neurons was mapped by
flashing 8 stimuli of different chromaticity. The stimuli were homogenous color squares,
centered on and at least twice as large as the receptive field of the neuron under study. They
were flashed for 500 ms. Chromaticity was defined in a color space similar to the one used
in Derrington, Krauskopf, and Lennie (1984). Cone excitations were calculated on the basis
of the human cone fundamentals proposed by Stockman (Stockman, MaCleod, & Johnson,
1993). The origin of the color space corresponded to a homogeneous gray background to
which the animal had been adapted (luminance 48 cd/m : ). The three coordinate axis of the
color space corresponded to L versus M-cone contrast, S-cone contrast, and achromatic lu-
minance. The 8 color stimuli were isoluminant with the gray background, had a fixed color
contrast (distance from origin of color space) and had chromatic directions corresponding
to polar angles ; 9
8 .
After several presentations of the stimuli, the chromatic directions for which the neurons
showed a clear response were determined, and one of them was selected as the second
background condition. In the second condition, the color of the background changed during
stimulus presentation (i.e., for 500 ms) to a different color. This color was isoluminant with
the gray background, was in the direction of a stimulus color to which the cell showed clear
response, but was of lower chromatic contrast than the stimulus colors. In subsequent trials
combinations of the 8 stimulus and 2 background conditions were presented in random
order.

For each trial we recored the number of spikes in a 100 ms window starting 50 ms after
stimulus onset. This time window was chosen because color tuning was usually more
pronounced in the first response phase as compared to later periods of the response and
because it maximized the effects of context. Data were recorded for a total of 94 units. Of
these, 20 neurons were selected for having the strongest background effect and a minimum
of 16 trials per condition. No other criteria were used for the selection of these neurons.



2 Results

Figure 2 shows example tuning curves of 4 different neurons. The thick lines represent
the average response for a particular color stimulus in the plane defined by the first two
chromatic axis. The dark curve represents responses for the gray background condition.
The light curve represents responses for the color background condition. The boxes around
the tuning curves represent average response rates as a function of stimulus onset for the
two background conditions.

Testing whether a code is factorial is like testing for the absence of interaction terms in
Analysis of Variance (ANOVA). The complexity (i.e., degrees of freedom) of an ANOVA
model without interaction terms is identical to the complexity of the Morton-Massaro
model. When testing for interaction effects we analyze whether the addition of interac-
tion terms provides significant improvement on data fit over a simple additive model. In
our case we investigate whether the addition of non-factorial terms provides a significant
improvement on data fit over the factorial Morton-Massaro model. For each neuron there
were 8 stimulus conditions, 2 background conditions, and 10 response alternatives, one per
bin in the spike count histogram. The probabilities of the spike count histogram add up to
one thus, there is a total of <�=?>@=BADCFE�G
G independent probability estimates per neuron.
In this case the Morton-Massaro model requires H�EJILKMEONP=QH�<SRM>�KMEONTCU<�E parameters
(Movellan & McClelland, 2001), thus there is a total of 63 nonfactorial terms.

For each neuron we fitted Morton-Massaro’s model and performed a standard likelihood
test to see whether the additional nonfactorial terms improved data fit significantly (i.e.,
whether the deviations from the Morton-Massaro factorial model where significant). We
found that of the 20 neurons only 5 showed significant deviations from the Morton-Massaro
model (chi-square test, 63 degrees of freedom, VXWYI�Z I
[ ). While the Morton-Massaro
model had 81 parameters many of them were highly redundant. We also evaluated a 30 pa-
rameter version of the model by performing PCA independently on the stimulus and on the
context parameters of the full model and deleting coefficients with small eigenvalues. The
30 parameter model provided fits almost indistinguishable from the 81 parameter model. In
this case only 4 neurons showed significant deviations from the model (chi-square, 124 df,V?WMI�Z I
[ ). On a pool of 20 neurons compliant with the Morton-Massaro model one would
expect the test to mistakenly reject 1 neuron by chance. Rejection of 4 or more neurons out
of 20 is not inconsistent with the idea that all the neurons were in fact compliant with the
Morton-Massaro model (V?\]I^Z >�I , binomial test).

Figure 2 shows the obtained and predicted spike count histograms for a typical neuron. The
top row represents the 8 stimulus conditions with gray background. The bottom row shows
the 8 conditions with color background. Lines represent spike count histograms predicted
by the Morton-Massaro model, dots represent obtained spike count histograms.

In order to test the statistical power of the likelihood-ratio test, we generated 20 neurons
with random histograms. The histograms were unimodal, with peak response randomly
selected between 0 and 9, with fall-offs similar to those found in the actual neurons and
with the same number of observations per condition as in the actual neurons. We then fitted
the 81-parameter Morton-Massaro model to each of these neurons and tested it using a
likelihood ratio test. All the simulated neurons exhibited statistically significant deviations
from the model (chi-square, 63 df, V?W_I^Z I![ ) suggesting that the test was quite sensitive.

Finally, for comparison purposes we tested a model of information integration that uses the
same number of parameters as the Morton-Massaro model but in which the stimulus and
context terms are are combined additively instead of multiplicatively, i.e.,

` HbaLc�d
e�f�NgC h
i H�d�e�a�NjR h�k H�f�e�a�Nl�m
h i H�d�e�a�NnR h k H�f�e�a�N

(2)



Figure 2: Effect of the stimulus and background on the chromatic mean tuning curves of
4 neurons. The thick dark and light lines show mean responses in the isoluminant plane
(x axis: L-M cone variation; y axis: S cone variation) for the two background conditions.
Black: gray background; Light: colored background. The 8 boxes around each tuning
curve shows the average response rate as a function of the time from stimulus onset for the
two background conditions.



Figure 3: Predicted (lines) and obtained (dots) spike count histograms for a typical neuron.
The horizontal axis represents spike counts in a 100 ms. window. The vertical axis rep-
resents probabilities. Each row represents a different background condition. Each column
represents a different stimulus condition.

After fitting the new model, we performed a likelihood-ratio test. 80 % of the neurons
showed significant deviations from this model (chi-square, 63 df, oqp_r^s r!t ).

3 Relation to Tuning Curve Separability

In neuroscience separability is commonly studied in the context of mean tuning curves. For
example, a tuning curve is called (multiplicatively) separable if the conditional expected
value of a neuron’s response can be decomposed as the product of two different factors each
selectively influenced by a single stimulus dimension. An important aspect of the Morton-
Massaro model is that it applies to entire response histograms, not to expected values. If the
Morton-Massaro model holds, then separability appears in the following sense: If we are
allowed to see the response histograms for all the stimuli in background condition A and
the response histogram for a reference stimulus in background condition B, then it should
be possible to predict the response histograms for any stimulus in background condition B.
For example, by looking at the top row of Figure 1 and one of the cells of the bottom row
of Figure 1, it should be possible to reproduce all the other cells in the bottom row.



Obviously if we can predict response histograms then we can also predict tuning curves,
since they are based on averages of response histograms. Most importantly, there are forms
of separability of the tuning curve that become only apparent when studying the entire
response histogram. Figure 4 illustrates this fact with an example. The curve shows the
tuning curves of a particular neuron from an experiment fitted using the Morton-Massaro
model. These curves were obtained by fitting the entire spike count histograms for each
stimulus and background condition, and then obtaining the mean response for the predicted
histograms. The large open circles represent the obtained average responses. The dots
represent 95 % confidence intervals around those responses. Note that the two tuning
curves do not appear separable in a discernable way (it is not possible to predict curve B by
looking at curve A and a single point of curve B). Separability becomes only apparent when
the entire histogram is analyzed, not just the tuning curves based on response averages.

Figure 4: Tuning curves for a typical neuron as predicted by the Morton-Massaro model.
The two curves represent the average response of the neuron to isoluminant stimulus, for
two different background conditions. The elongated curve corresponds to the homogenous
gray background and the circular curve to the colored background. The open dots are the
obtained mean responses. The dots represent 95 % confidence interval of those responses.
Note that the predicted curves do not appear separable in a classic sense. However since
they are generated by Morton’s model the underlying code is factorial. This becomes ap-
parent only when one looks at spike count histograms, not just mean tuning curves.



4 Discussion

We introduced the notion of Morton-style factorial coding and illustrated how it may help
analyze information integration and perceptual organization in the brain. We showed that
by focusing on average responses one may miss the existence of factorial coding mecha-
nisms that become only apparent when analyzing spike count histograms. The results of
our study suggest that V1 represents color using a Morton-style factorial code. This may
provide some cues to help understand perceptual coding in the brain and to develop new
unsupervised learning algorithms. While methods like ICA (Bell & Sejnowski, 1997) de-
velop independent codes, in Morton-style coding the goal is to make two or more external
aspects of the world become independent when conditioning on internal representations.

Morton-style coding is optimal when the statistics of stimulus and background exhibit a
particular property: when conditioning on each possible response category (i.e., spike
counts) the empirical likelihood ratios of stimulus and background factorize. Our study
suggests that Morton coding of color in natural scenes should be optimal or approximately
optimal, a prediction that can be tested via statistical analysis of color in natural scenes.
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