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Abstract. We present a computational model that simulates how neu-
roblasts and SOP cells differentiate from proneural clusters of cells. Pa-
rameters of the model are optimized in order to fit the dynamical ex-
pression patterns of genes that are involved in this process of cell fate
specification. We report on simulations in which we fit qualitative ex-
pression pattern datasets and draw conclusions about what mechanisms
may be sufficient or necessary for neuroblast and SOP differentiation.

1 Introduction

In Drosophila, neuroblasts and sensory organ precursor (SOP) cells differentiate
from epithelia to give rise to the central nervous system in the fly embryo and
to epidermal sensory organs in the peripheral nervous system of the adult fly,
respectively. Neuroblasts are neural precursor cells that divide to form neurons
and glia; they segregate from the ventral neuroectoderm of the embryo in a reg-
ular segmental pattern. SOPs appear at stereotypical positions on imaginal discs
of fly third instar larvae and divide to produce a neuron and three other cells
that form Drosophila’s sensory organs, like the bristles on its thorax (see [2} and

[3D)-

Neuroblasts and SOPs differentiate from apparently equivalent clusters of cells
that express genes of the achaete-scute locus, so called proneural genes. Eventu-
ally only one cell from each proneural cluster in the neuroectoderm and only one
or a few cells from each proneural cluster in imaginal discs (clusters in the discs
are typically larger than those in the embryo) retain proneural gene expression
and become neuroblasts and SOPs (we will be referring to this process as cluster
resolution).

Several other genes that are involved in this specification of cell-fate are also
expressed in characteristic spatial and temporal patterns during the process. Ge-
netic, molecular, ablation and other studies have pointed to a lateral signalling



interaction between adjacent cells, through which the neural fate is promoted in

the future neuroblasts and SOPs and suppressed in other cells (for reviews see
[2] and [3]).

Despite the number of empirical observations that have been gathered, several
features of this system remain unexplained: a precise characterization of lateral
signalling is still lacking; we do not understand dynamical aspects of the system,
for example, whether and how the shape and size of proneural clusters deter-
mine how cluster resolution proceeds; it is not clear what the role, if any, of cell
delamination, which accompanies neuroblast differentiation in the fly embryo, is.

To address questions like these and guide further experiments, we have con-
structed a computational model to simulate neuroblast and SOP differentiation,
based on the modelling framework described in [15]; the same framework has
been used to simulate gene expression patterns in the Drosophila blastoderm
(see [17] and [18]).

2 Model

In our model, cells are represented as cylinders in a 2-dimensional hexagonal
lattice; the diameters of the cylinders may vary and the extent of their surface
overlap determines the strength of interaction between neighbouring cells; cells
in the model express a small number of genes corresponding to the genes that
are involved in neuroblast and SOP differentiation (see Fig. 1). Following the
regulatory gene circuit framework developed in [15], we model genes as nodes
in fully connected neural nets, with connection weights depending on the kind
of interaction: we allow two kinds of interaction, an intracellular and a lateral
signalling one.

The concentration v,(t) of the product of gene a in a particular cell at time
t changes as follows: gene a sums inputs from other genes in the same cell or in
neighbouring cells according to

ua(t) = Y Tt + Y A Tuy(2) (1)
b

iEN b

where T is the matrix of gene interactions and v(t) the vector of gene product
concentrations within the cell, 7" is the matrix of gene interactions with neigh-
bouring cells, ¥(t) the vector of gene product concentrations in neighbouring
cell 7, N the set of neighbouring cells cells (the neighbourhood of a cell consists
of the six surrounding cells) and A® a factor depending on the surface overlap of
the cell with neighbouring cell 1.

Concentration v,4(2) then changes by an amount

Avg(t) = Rag(ua(t) + ha) — Aava(t) (2)



where u,(t) is the linear sum of eq. 1, g is a bounded, monotonic, non-linear
function, e.g. a sigmoid, R, is the rate of production of gene a’s product, h,
is the threshold for activation of gene @ and A, is the rate of decay of gene a
product.

We want to find the values of gene interaction strengths (and other parame-
ters in the equations above) so as to optimally fit gene expression patterns; we
use simulated annealing and genetic algorithms for this optimization, see [14].

3 Simulation Results

3.1 Design of optimization and simulation runs

In the runs presented here, we use circuits of two genes to fit two types of
expression patterns, one representative of the proneural genes (which all have
very similar expression patterns and promote the neuronal fate) and another
corresponding to genes, like the Enhancer of split genes, that act to sustain the
undifferentiated, epithelial state of a cell and which we refer to as epithelial genes.

The training datasets we use are based on experimentally described expression
patterns from the literature ([19], [6], [10]); they specify the initial concentrations
of the gene products (the proneural clusters) and the desired final pattern when
the proneural clusters have resolved to single cells (neuroblasts or SOPs); it is
left to the optimization to find the right model parameters so that the system
develop from the initial state to the desired final one (see Fig. 1). All cells in a
proneural cluster are initially equivalent in terms of gene expression levels. The
size and cluster arrangement of the training datasets do not have any particular
biological significance; the datasets have been designed in such a way as to keep
the number of cells low while including as many 7-cell symmetrical clusters as
possible, since the optimization is very expensive computationally and a large
number of cells in the training dataset would take several days on an IBM Pow-
erPC or an SGI Indigo.

Apart from the training dataset illustrated in Fig. 1, in runs with cell delam-
ination we have used another identical dateset (not shown) which additionally
contains information about the delamination of the cells at the desired final
state (when the prospective neuroblasts have fully delaminated, while all the
other cells not).

The test datasets specify only initial concentrations of gene products, are larger
(since we do not optimize on them but simply run the optimization solutions ob-
tained with the training set to see how these solutions perform on novel proneural
clusters), and contain more clusters of various shapes and in various spatial ar-
rangements (see top left panels in Figures 3 and 4).

We mainly focus on optimizing gene interaction strengths, i.e. the T and T



Initial Final

Fig. 1. Cells are modelled as cylinders in a hexagonal lattice (viewed here from above
as circles). Gene expression is represented by coloured disks, proneural expression in
brown and epithelial in green; disk radius is proportional to level of expression. This
figure shows the training dataset: on the left, the initial concentrations of the gene
products - there is only proneural gene expression in three symmetrical clusters; on
the right, the desired final pattern of gene expression - proneural expression is retained
only in the central cell of each cluster, corresponding to the future neuroblast or SOP,
whereas all other cells express the epithelial gene.

matrices of eq. 2, and not so much other parameters of the model. An illustra-
tion of the designs we have used appears below; the gene interaction strengths
optimized on are indicated with an ”X”, the empty boxes signify zero interaction
strength (i.e. no interaction). Columns in these matrices are for input genes and
rows for genes affected:

Intracellular Interactions

li ”ProneuralIEpithelial‘
Proneural X X
Epithelial X X

Lateral Signalling Interactions

li “Proneural]Epithelial]
Proneural X
Epithelial

An example of the result of such an optimization run is presented below; there
are five optimized parameters, four of them for gene interactions within a cell
and one for a gene interaction across cells. A solution that the optimization has



come up with is the following:

Intracellular Interactions

| [[Proneural[Epithelial|

Proneural|| 0.283 —-0.015
Epithelial|| —0.555 9.74

Lateral Signalling Interactions

||Proneural|Epithelial|

Proneural —10.1
Epithelial

The simulation corresponding to the solution above appears in Fig. 2.

We have tried to limit the number of parameters we optimize on, so as not to
overfit the data. Optimization on just five parameters as above, using the train-
ing dataset of Fig. 1, yields solutions that also work for larger test datasets with
a greater number of 7-cell symmetrical clusters in various spatial arrangements
(not shown). This indicates that the optimization does not just find parameter
values that only work for the specific size and cluster arrangement of the training
dataset, but rather extracts rules for resolving clusters.

3.2 Lateral interactions

Which lateral signalling interactions are allowed plays a crucial role in whether
optimization can fit the training dataset in a satisfactory way or not. For ex-
ample, if no Epithelial-to-Proneural or Epithelial-to-Epithelial lateral signalling
interactions are allowed (i.e. if both entries in the right column of the of the lat-
eral signalling matrix shown above are zero), then our optimization runs on the
remaining interaction strengths have not produced values that lead to cluster
resolution - and of course the same is true when no lateral interactions at all are
allowed; whereas, if only the Epithelial-to-Proneural interaction of the lateral
matrix is allowed, then optimization can readily yield values leading to cluster
resolution (as mentioned above and shown in Fig. 2). This could be considered a
prediction of the model, since it suggests that some lateral gene interactions are
more important than others in producing cluster resolution. It also suggests that
lateral signalling is sufficient and may also be necessary for cluster resolution.

If all four lateral signalling interactions are allowed, then, apart from fitting the
training data and the 7-cell symmetrical cluster test sets, optimization solutions
can successfully resolve bigger or smaller asymmetrical clusters as is illustrated
in Fig. 3. This suggests that, although Proneural-to-Proneural and Proneural-to-
Epithelial lateral interactions may not be sufficient on their own to bring about
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Fig. 2. Sequence of frames at different times of a neurogenesis model run: neuroblasts segregate from the middle of 3 proneural clusters.

Proneural expression is depicted in brown, epithelial in green and their overlap in light green (other conventions as in Fig. 1). The

parameters used in this simulation and their derivations are described in section 3.1.



cluster resolution, they may still enable lateral signalling to resolve a larger range
of cluster shapes. It is interesting to note in Fig. 3 that 4-cell clusters do not
produce a neuroblast but all cells in the cluster adopt the epithelial fate; this
is the the case with all simulations we have run, irrespective of the number of
optimized interaction strengths. Note also in Fig. 3 that the large cluster in the
upper right corner does not resolve.

When sets of gene interaction strengths that include lateral interactions are ob-
tained by optimization on the training data but these solutions are subsequently
applied to the test data with the lateral interactions abolished, then the clus-
ters do not resolve but all cells in them retain proneural gene expression. This
parallels the effect of the so called neurogenic mutations in the real biological
system; these mutations disrupt lateral communication between cells and lead
to overproduction of neurons.

3.3 Cell delamination

Cell delamination has also been implemented in the model: it is directly con-
trolled by genes within a cell and only indirectly by neighbouring cells; there
are two parameters associated with the intracellular control of delamination, as
well as another two that determine when delamination is initiated and how fast
it proceeds. Delamination affects the surface overlap of neighbouring cells, i.e.
changes the A’ factors in eq. 1. If the delamination parameters are optimized on
together with four lateral signalling and four intracellular gene interaction pa-
rameters, then optimization solutions can resolve an even larger variety of shapes

and sizes of clusters, that cannot be resolved readily without delamination (see
Fig. 4).

With larger clusters it is easier to notice differences in the timing of cluster
resolution: smaller clusters generally resolve faster than larger ones. It also be-
comes apparent that proneural and epithelial expression changes at different
rates depending on cell position in the cluster, even for cells that adopt the
same fate. Furthermore, from simulations both with and without cell delamina-
tion, it becomes apparent that lateral effects propagate further than one cell,
as is indicated by the fact that gene expression in a group, for instance, of five
cells changes in a particular way when this group of cells is a separate cluster
(in this case one cell from the group becomes a neuroblast) and a different way
when such a group is part of a bigger cluster (when all cells in the group revert
to the epithelial fate); see figures 3 and 4. These observations are predictions of
the model, since they have not been built into the model in any way.

3.4 Dynamics of cluster resolution

In order to study the dynamics of cluster resolution in our simulations we have
also sketched the phase portraits, at successive points in time, of solutions ob-
tained through optimization. For each point in time, we have plotted the di-
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Fig. 3. Simulation with optimized parameters for all four lateral signalling interactions. Same conventions as in Fig. 2. Asymmetrical 5-

and 6-cell clusters resolve, while all cells in the 4-cell clusters adopt the epithelial fate. Note that the large cluster in the top right corner

is not resolved.
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Fig. 4. Simulation with cell delamination and full lateral interactions. Same conventions as in Fig. 2, with the addition that cell

delamination is represented by the thicker inner circle in the middle of the cells; the greater the radius of this circle, the further a cell

has delaminated. Note that the large cluster on the right corner has resolved.



rection and magnitude of the change in gene product levels in a particular cell,
given any value for the current product levels (see Fig. 5). This essentially shows
how a cell would respond (in terms of modulation of its gene expression) if we
altered (increased or decreased) the levels of its gene products.

If there are no lateral interactions the phase portrait of proneural versus ep-
ithelial gene expression levels does not change, of course, over time and is the
same for all cells. By contrast, when there are lateral interactions, each cell has
a different phase portrait that changes in time, depending on the cell’s position
(as in the example of Fig. 5). The phase portrait can be thought to represent the
epigenetic landscape that each cell finds itself in; this is a dynamic landscape
that changes depending on the strength of lateral interactions (as well as on the
geometry of the tissue and the intracellular interactions).

4 Discussion

4.1 Implications of the model

Despite the simplicity of our model, the simulations described in this paper have
allowed us to look closer at questions like the role of lateral signalling and cell
delamination in neuroblast and SOP differentiation and have provided a tool to
study the dynamics of gene expression during proneural cluster resolution.

Several conclusions can be drawn from these simulations which can be thought
of as predictions of the model: lateral signalling, involving communication with
just the immediate neighborhood of a cell, is sufficient for neuroblast and SOP
segregation and may also be necessary. Abolishing lateral interactions prevents
the resolution of proneural clusters. Not all lateral signalling interactions have
the same effects, but some may be more important in bringing about cluster
resolution, while the rest may enable the system to resolve clusters of a large
variety of shapes and sizes. Lateral effects can propagate further than the cell’s
immediate neighborhood through a cell-to-cell relay.

Cell delamination produces sharper resolution for clusters of all sizes and fa-
cilitates the resolution of larger clusters; since in Drosophila neurogenesis de-
lamination occurs only in the embryo CNS and not in imaginal discs, this raises
the question of why this is the case: are there other mechanisms in discs, iso-
morphic to delamination, that facilitate the resolution of larger clusters, e.g. a
specific pattern of subcellular localization of receptors and ligands on the cell
membrane that modulates cell-cell communication the same way as delamina-
tion does? or is there a totally different mechanism with equivalent outcomes?
In connection with this, it is interesting to note that Notch strongly localizes
apically in imaginal disc cells (see [7]). More experimental and modelling work
is needed to address questions like these.

The model makes further predictions about how cluster resolution proceeds:
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smaller clusters generally resolve faster than larger ones; gene expression changes
at different rates depending on cell position in the proneural cluster, even for
cells that will eventually adopt the same fate; the degree of encirclement of a
cell in a proneural cluster by other cells in the cluster can specify which cell
becomes the neuroblast or SOP (namely the most encircled cell), especially in
smaller clusters.

The analysis of gene interaction dynamics is also a source of very specific and
quantitative predictions about how cells would respond to externally imposed
changes in their gene product levels; for example, such analysis predicts that a
cell in the proneural cluster periphery may be destined to the epithelial fate,
even when its levels of epithelial gene expression are almost zero; such predic-
tions are now testable in Drosophila since techniques have been developed that
allow manipulations of gene expression in individual cells (see [9]).

4.2 Extensions

An obvious way to extend this model and make it even more biologically real-
istic is to include more genes in the regulatory circuit; this will perhaps make
the analysis of the results more complicated, but such difficulties may be kept
at a minimum if we use more extended and detailed datasets of gene expression
derived directly from biological data, that will constrain and guide the optimiza-
tion search for parameter values.

A specific extension of the model that would focus on how lateral signalling
is mediated (and would therefore bear on most predictions of this model) is the
following: as described in this paper, genes in the model can directly interact
with genes in neighbouring cells; although this is a reasonable abstraction, intro-
ducing gene products on the cell membrane that gate gene interactions across
cells is more biologically realistic and can produce more detailed predictions (in
the real system lateral communication is mediated by the products of Notch,
which is a receptor molecule, and Delta, its ligand, see [1]). We have already
included Notch and Delta in our gene circuits and started running simulations
with this additional feature. Questions surrounding the Notch-Delta interaction
at the cell membrane are intimately related with cell delamination and subcel-
lular localization of gene products, as alluded above, since delamination alters
cell-cell communication through Notch and Delta in a way that depends upon
how Notch and Delta are each localized on the cell membrane.

4.3 Further considerations

The kinds of questions that can be posed with the model described in this pa-
per are not only of relevance to neurogenesis in Drosophila but are common to
many developing organisms, especially in view of the fact that homologues to
genes involved in Drosophila neurogenesis have been isolated in many species
from worms to mammals participating in a variety of developmental processes.



In vertebrate neurogenesis such homologues act in ways similar to those of the
Drosophila genes to regulate the number of neurons generated (see [5], [11],
[12]); one would therefore expect that a theoretical and empirical understanding
of Drosophila neurogenesis would provide insights into neurogenesis in higher
vertebrates, for instance, into questions surrounding neuronal proliferation in
the developing mammalian cortex (see [4], [16]).

Furthermore, the model of Drosophila neurogenesis described in this paper can
be used to study quantitatively questions on genotype-phenotype mappings: the
number of Drosophila bristles has long been a favourite quantitative phenotype
of geneticists and evolutionary biologists (see [13]) and it will be useful to exam-
ine how such phenotypes are generated during development. This directly relates
to the evolutionary questions of what variation such mappings can generate for
selection to act upon and how evolvable they are (see [8], [20]).
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