Optimization in biological models that use recurrent
neural nets

George Marnellos and Eric Mjolsness
Technical Report Number CS97-524

January 1997

Computer Science and Engineering
University of California, San Diego

Optimization in biological models that use recurrent
neural nets

George Marnellos and Eric Mjolsness
Technical Report Number CS97-524

January 1997

Optimization in Biological Models that Use
Recurrent Neural Nets

George Marnellos! and Eric Mjolsness?
! Section of Neurobiology, Yale University, New Haven CT 06510, USA, and
Sloan Center for Theoretical Neurobiology, The Salk Institute,
La Jolla CA 92037, USA
% Department of Computer Science and Engineering and
Institute for Neural Computation, UCSD,
La Jolla CA 92093, USA

Abstract. We have applied genetic algorithms and simulated annealing
to optimize energy functions in three biological models. These models use
recurrent neural nets to produce desired dynamical patterns; their cost
functions are functions of the neural net activation patterns over time.
We have compared the performance of the two optimization methods
on these problems and and found that, despite the apparent problem
similarity, the method that performed better varied from problem to
problem. We consider possible explanations for this result.

1 Introduction

In recent decades there has been intense study at the molecular level of funda-
mental biological processes in development, physiology and evolution. In order
to integrate the experimental data that have been gathered and understand the
structure and dynamics of complex biological systems and their evolution, com-
putational models and simulations are needed.

We have used recurrent neural nets to simulate how genes and their interac-
tions in cells determine the phenotypes of animal organs or simple organisms and
their development, as well as how such gene interactions evolve under particular
(simulated) environmental conditions or constraints: nodes in these neural nets
correspond to genes and node activation levels to gene expression levels (see [1]
and [2]). We have optimized the parameters in these models (node interaction
strengths, activation and decay rates, thresholds and so on) in order to either
fit experimental data (gene expression patterns) or to impart desired features to
the simulated system and make it conform to constraints.

We have examined stochastic techniques to optimize the analytically in-
tractable energy (or scoring) functions of our models; specifically, we have used
the techniques of simulated annealing (SA) and genetic algorithms (GA) on
the following problems: (a) simulating the development of a simple multicellu-
lar organism capable of reproducing and its evolution under various selective

environments, (b) fitting gene-expression patterns observed during early neuro-
genesis in Drosophila, and (c¢) fitting multi-dimensional Lissajous curves with
the use of a recurrent neural net.

In this paper we will be describing the SA and GA algorithms we have used,
as well as the problems we have applied them on, and will be comparing their
performance. Our results indicate that the performance of both algorithms varies
across problems.

2 Optimization Algorithms

The energy functions in our models have a large number of variables and are
highly nonlinear and cannot be solved analytically or readily optimized with
deterministic methods. We have therefore used numerical, stochastic techniques
to optimize them. Both optimization methods we have employed have a number
of parameters that can greatly affect their performance and so need to be tuned
for each individual problem.

2.1 Simulated Annealing

Our simulated annealing algorithm incorporates standard annealing features (see
[3]) and uses Lam’s temperature decreasing schedule and move generation strat-
egy ([4], [5]): a move thus consists of increasing or decreasing the value of one
state variable x; at a time by an amount selected randomly from an exponential
distribution with mean 6;

Y = z; £ 6;Iné€, (1)

where the sign is chosen randomly and € is a random number uniformly dis-
tributed in [0,1). Moves are generated for each state variable in turn and are
either accepted or rejected. The temperature T is lowered after every move by

T
Tn+1 - 1+ k(Tn)Tn) (2)
where T, is the temperature at move n and k(T,) is a function of the esti-
mated variance in the energy at that temperature and of the ratio of accepted
to proposed moves.
Lam has shown that the state space is sampled most effectively when the
acceptance ratios for moves in each of the variables are maintained close to 0.44.
This is done by updating the 8’s at regular intervals, using

07" = 6; exp(p; — 0.44), (3)

where p; 1s the acceptance ratio for variable z;. The mean move size is thus
individually controlled for each variable: when p; is smaller than 0.44, mean
move size §; is decreased and, when p; is greater than 0.44, 6; is increased.

2.2 Genetic Algorithms

The genetic algorithm we have developed uses continuous variable encoding and
has all the features that are normally found in such algorithms, like mutation,
recombination and selection (see [6] and [7]). It consists of 5 to 9 populations
(running in parallel on different processors) each of 200 chromosomes (300 or 400
in some runs); there is a low migration rate of chromosomes from population to
population, each population usually receiving less than one chromosome per
generation from the rest of the populations.

Recombination works as follows: pairs of chromosomes are chosen from a
population and a crossover operator is applied to them to produce one offspring
chromosome; the fitter a chromosome, the more likely it will be chosen for re-
combination, this being one of the sources of selection pressure in the algorithm.
The crossover operators used are one-point, two-point and many-point crossover,
each chosen with equal probablity, 1/3, at each recombination event. The off-
spring replace culled chromosomes and the population size is kept constant from
generation to generation; about 10 percent of a population is replaced at each
generation; less fit chromosomes are culled with greater probability, another
source of selective pressure.

Each chromosome has a number of real-valued loci equal to the number of
state variables of the function that is optimized. The values of the variables in
the loci are mutated as in equation (1) of the SA algorithm, except that in the
GA the 6’s are the same for all variables at any time; this means that in the GA
mean move size is not individually controlled for each variable. Mutation rates
are uniform across loci: chromosomes are mutated at not more than one locus
per generation. The fittest chromosome of each population survives unmutated
to the next generation, which is also a source of selective pressure.

The fitness of only a fraction (about 1/3) of mutated chromosomes is evalu-
ated at each generation; which means that at any time a number of chromosomes
in a population have inaccurate fitness. Half of the populations in a run have
high selective pressure for recombination and random outward migration, while
the rest have low recombination selection and outward migration of fitter chro-
mosomes. Finally, in our GA each population is replaced in its entirety at regular
intervals by new random chromosomes and mutations of the best chromosome
encountered in the population up till that stage; a similar feature has been de-
scribed in [8]. All these features help the algorithm converge faster to better
solutions.

3 Biological Problems

In our simulations of biological development and evolution we have used recur-
rent neural nets to model gene interactions within and between cells; gene prod-
uct concentrations correspond to neural net node activation levels. Thus within
a cell, the concentration v,(t) of gene a product at time ¢ changes, because of
interactions with other genes, by an amount

Ava(t) = Rag(ua(t) + ha) — Aaval(t), (4)

where u4(¢) is a linear sum of the inputs from genes in the cell itself and from
genes in other cells, g is a monotonic, non-linear function, e.g. a sigmoid, R,
is the rate of production of gene a’s product, A, is the threshold for activation
of gene a and A, is the rate of decay of gene a product. For a comprehensive
description of the formal structure of this modeling framework see [1].

The energy functions in these problems are functions S of gene expression
over time:

E = 5(v(1)), (5)

where v(2) is the vector of concentrations of genes products.

3.1 Life History

In this model we look at the development of a reproducing multicellular organism
and at how evolution might adapt its life-history traits (e.g. size, frequency of
reproduction, number of offspring) to particular selective environments. The
model has been described in [2].

In the simulated environments of the model, opportunities for new organisms
to establish themselves and grow (termed slots) appear periodically and last for
limited amounts of time. An organism starts as a single cell in a slot and grows by
cell divisions; cells may be of different types, may die or may become reproductive
cells that disperse to occupy other available slots in the environment; organisms
die off within a prespecified amount of time from the appearance of their slot (see
Fig. 1). Each cell in an organism has a gene network as those described in eqn.
4 (see also eqn. 7) and rules for cell division, cell death, cell dispersal and so on
are triggered by gene expression levels in the cell, according to a grammar that
the model incorporates; cell type is also determined by gene expression levels
(see [1]).

In an evaluation of the energy function, organisms in slots that have appeared
over a certain period of time are scored for cell number, proportions of cell types
and growth expenditure. The scoring function is of the form

E~ Z Z {(n _ 1)2+Z(% _f;arget)2+ %} , (6)

n .
slots time target

where n is the number of cells (size) of an organism in a slot at a given time and
Ntarget the desired number of cells, %= is the fraction of cells of type a at that
time and f1*79¢' the desired fraction, and 42 the resources spent for producing
An new cells at this time step, expressed as a fraction of the total resources
available to the organism, n”, a function of its size with v < 1.0.

Since organisms in all slots are descendants of the organism in the first slot
and since they are all scored according to the same criteria, the optimization
gives solutions in which all organisms in the slots are similar (as can be seen
in Fig. 1), in effect the solutions are self-reproducing organisms, which is the
desired outcome.

40 T T T T T T T
1 "slot0” —

Size (number of cells)

200 300 400 500 600 70 800
Time

Fig. 1. A self-reproducing organism in the life-history model: the progeny of the organ-
ism in the first slot has populated all 12 slots that appeared in the environment. The
size of each organism is plotted as a function of time; in this respect and in others, like
proportion of cell types and pattern of cell lineages (data not shown), the organisms
are similar to each other.

3.2 Neurogenesis

In this problem we try to fit gene expression patterns that are observed in early
neurogenesis in Drosophila, when neuroblasts and sensory organ precursor (SOP)
cells differentiate from epithelial sheets of cells to generate the central nervous
system of the Drosophila embryo and peripheral sensory organs of the adult fly,
respectively (for reviews see [9], [10] and [11]). Several of the genes involved in
this specification of cell-fate are expressed in characteristic spatial and temporal
patterns during the process. We have constructed a computer model to optimally
fit these expression patterns and deduce the gene interactions that could produce
them. A similar approach has been used to study gene expression patterns in
the Drosophile blastoderm, an earlier stage of Drosophila development (see [12]
and [13]).

Neuroblasts and SOP cells segregate from proneural clusters of cells; clusters
consist initially of equivalent cells that all express proneural genes of the achaete-
scute locus, but eventually only neuroblasts and SOP cells retain achaete-scute
expression (see Fig. 2). This is the transition our model simulates; cells in the
model ”express” a small number of genes (corresponding to the genes whose
expression patterns we want to fit), which interact as fully connected neural nets,
with connection weights depending on the type of interaction. The concentration
of gene a product in a particular cell at time ¢ changes according to eqn. (4)

with

ug(t) =Y Twpws(t) + Y A Y Tupi(t), (7)
b

iEN b

where T is the matrix of gene interactions and v(¢) the vector of gene product
concentrations within the cell, T' is the matrix of gene interactions with neigh-
bouring cells, ¥(¢) the vector of gene product conecntrations in neighbouring cell
i, N the set of neighbouring cells (in our model we use a hexagonal array for the
cell sheet and the neighbourhood of a cell consists of the six surrounding cells)
and A? a factor depending on the surface overlap of the cell with neighbouring
cell i.

Fig. 2. Frame from a run of the neurogenesis model: neuroblasts segregate from the
middle of 3 achaete-scuteclusters. Cells are represented by circles and gene expression
by colored disks, with disk radius proportional to level of expression; achaete-scute gene
expression is depicted in brown and its overlap with expression of another gene in the
simulation is in yellow. The amount of overlap between neighbouring cells determines
the strength of interaction of their genes.

We use this model to fit qualitative gene expression pattern datasets (taken
from the literature), by finding what matrix values for 7' and T' of egn. (7)
minimize the following energy function:

E = Z (Vimoper(t) — vipara(t))® (8)

cells,genes,times

which is the squared difference between gene product concentrations in the model
and those in the dataset summed over all cells and over all gene products and
times for which data is available.

3.3 Lissajous Curves

In this problem we try to fit a multi-dimensional curve with a recurrent neural
net. We need to find the connection weights that produce an activation pattern
of the neural net nodes matching the curve (each node corresponding to one
dimension of the curve). The curve is a six-dimensional Lissajous curve; com-
ponents are sinusoids with the same amplitude and different frequencies. The
curve we use for this work is in fact a fit (produced by a recurrent neural net)
to an original Lissajous curve (see Fig. 3), i.e. we do a ”fit to a fit” (this ensures
that the energy function we are optimizing has a global minimum with energy
close to zero).

Fig. 3. Projection onto 3 dimensions of a (fit to a) 6-dimensional Lissajous curve, which
we try to fit with the node activation pattern of a recurrent neural net.

Although this problem is not strictly biological but more general and ab-
stract, the curve is biologically plausible if one considers that gene product con-
centrations in a cell may trace such trajectories. In this respect this problem is
very similar to the neurogenesis problem described above (Sect. 3.2) restricted
to a single cell; in fact, the energy function of the curve problem is the same as
that of the neurogenesis problem, eqn. 8 (with the number of cells being one).
The proximity of the test curve to the target one is scored many times along the
curve which makes this problem more constrained than the other two, despite
the fact that it is simpler in its formulation.

4 Results and Discussion

We compared the performance of simulated annealing and the genetic algorithm,
in terms of the number of total energy function evaluations, on the three prob-
lems described above; the major finding was that, despite the apparent similarity

between the three problems, the performance of the two algorithms varied across
problems.

In terms of total energy function evaluations, the GA was about 3 times
faster than SA on the life-history problem (Fig. 4), or about 20 times faster in
clock time, since the GA was implemented in parallel; the advantage of the GA
over SA in this problem was maintained for various parameter values of the two
algorithms. SA was many times faster than the GA on the neurogenesis problem

Life History Problem

400 T T T T T
350 —‘1 SAruns - - ~---~- .
\
f GAruns —————
3 ¥
00§, 4

i
o] 1 2 3 4 5 6
Energy Function Evaluations x 10°

Fig.4. Life-history optimization runs - Energy plotted against the number of total
energy function evaluations. GA runs reach low energy levels about three times faster
than SA runs. The dotted line indicates energy levels below which solutions are con-
sidered successful for the purposes of the biological model.

(Fig. 5) for wide ranges of parameter values of the algorithms. SA was faster
even in terms of clock time on this problem. On the curve-fitting problem SA
was again faster than the GA in reaching low energy levels that corresponded
to the best solutions (Fig. 6), although the GA had an advantage early in the
runs at higher energy levels.

It is not clear why the performance of the two optimization algorithms varied
so much across models that are so similar in structure. It is conceivable that,
because both algorithms have a large number of parameters that can significantly
affect their performance, we may have not found algorithm parameters that
result in optimal performance on each problem, despite our efforts. Also, the
neurogenesis and curve-fitting problems had considerably fewer variables than

Neurogenesis Problem
150 T T T T T T T T T

140

130

Energy

100

90

80

Fid N

60 1 1 1 1 1 1 1 1 1
0.5 1 1.5 2 2.5 3 35 4 45 5

Energy Function Evaluations

Fig.5. Neurogenesis optimization runs - SA has a large advantage over GA in this
problem. Same conventions as in Figure 4.

Curve-fitting Problem

700

600 SAruns - ---- B
GA runs

500

400

Energy

300

200

100

1 1
0 2 4 6 8 10 12 14 16 18
Energy Function Evaluations

Fig. 6. Curve-fitting optimization runs - SA performs better than GA, although GA
has a slight advantage early in the runs. Same conventions as in Figure 4.

the life-history one in most of the runs we did; but, again, it is unlikely that
this is the main reason for differences in performance: increasing or decreasing
the number of variables in each problem did not seem to affect the relative
performance of the algorithms.

The energy functions of the neurogenesis and curve-fitting problems differed
from the life-history one; the former were smooth functions of neural net node
activations (squared sums of differences between actual and desired activation
levels), whereas the latter had discontinuities, since it scored non-continuous
features, like cell number and discrete cell types. It is possible that SA is better
for optimizing smooth functions while GAs have an advantage with discontinuous
functions.

5 Acknowledgements

This work was partially supported by the Yale Institute for Biospheric Studies
(Center for Computational Ecology), the Neuroengineering and Neuroscience
Center at Yale and the Yale Center for Parallel Supercomputing.

References

1. Mjolsness, E., Sharp, D.H. and Reinitz, J.: A connectionist model of development.
J. Theor.Biol. 152 (1991) 429-453
2. Mjolsness, E., Garrett, C.D., Reinitz, J. and Sharp, D.H.: Modeling the connec-
tion between Development and evolution: Preliminary report. In Ewolution and
biocomputation, Computational models of evolution, Banzhaf, W. and Eeckman,
F.H. (eds.), Springer, Berlin, 1995, 103-122
3. Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P.: Optimization by simulated anneal-
ing. Science 220 (1983) 671-680
4. Lam, J. and Delosme, J.-M.: An efficient simulated annealing schedule: Derivation.
Technical Report 8816, Yale Electrical Engineering Department, New Haven, CT.
5. Lam, J. and Delosme, J.-M.: An efficient simulated annealing schedule: Implemen-
tation and evaluation. Technical Report 8817, Yale Electrical Engineering Depart-
ment, New Haven, CT.
6. Holland, J.H., Adaptation in natural and artificial systems. University of Michigan
Press, Ann Arbor, 1975
7. Goldberg, D.E., Genetic algorithms in search, optimization and machine learning.
Addison-Wesley, Reading, 1989
8. Mathias, K.E. and Whitley, L.D.: Changing representations during search: a com-
parative study of delta coding. Evolutionary Computation 2 (1994) 249-278
9. Artavanis-Tsakonas, S. and Simpson, P.: Choosing a cell fate: a view from the
Notchlocus. Trends Genet. 7 (1991) 403-408
10. Campuzano, S. and Modollel, J.: Patterning of the Drosophila nervous system -
the achaete-scute gene complex. Trends Genet. 8 (1992) 202-208
11. Campos-Ortega, J.A.: Early neurogenesis in Drosophila melanogaster. In The de-
velopment of Drosophila melanogaster, Bate, M. and Martinez-Arias, A. (eds.),
Cold Spring Laboratory Press, 1993, 1091-1129

12.

13.

Reinitz, J., Mjolsness, E. and Sharp, D.H.: Model for cooperative control of posi-
tional information in Drosophila by Bicoid and maternal Hunchback. J.Exp.Zool.
271 (1995) 47-56

Reinitz, J. and Sharp, D.H.: Mechanism of eve stripe formation. Mech.Dev. 49
(1995) 133-158

