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Abstract

We present a model of optimal allocation of resources
to reproduction and growth in a simple multicellular or-
ganism with limited lifespan, using a gene network for-
malism to simulate gene interactions within cells. The
model is compatible with more conventional approaches
to allocation problems in life history and in addition
provides connections between processes at the gene and
cell levels on one hand and life history strategies on the
other. The model may offer an example of how a geno-
type orchestrating development imposes constraints on
the optimal solutions that evolution can reach.

Introduction

How an organism uses energy and other resources ex-
tracted from the environment to promote its survival
and growth, produce offspring or store for future needs
is crucial for the organism’s fitness. Life-history traits
of an organism, that determine when and in what pro-
portions the organism allocates resources during its life-
time, include age and size at first reproduction, number
and size of offspring and life-span; all these traits and
others have been studied both theoretically and exper-
imentally (Roff 1992; Stearns 1992). A particular line
of theoretical work in this area has explored optimal
allocation of resources to maintenance, storage, growth
and reproduction (Gadgil & Bossert 1970; Cohen 1971;
Vincent & Pulliam 1980; Kozlowski 1992). Analytical
models on this question have relied largely on methods
from optimal control theory (Perrin & Sibly 1993) to
locate the sought optima. In these models the state
variables are high level phenotypic traits like amount of
reserves, size of vegetative and reproductive parts and
other such subsystems of an organism, and what is op-
timized is the proportion of resources allocated to each
subsystem at each age. Stochastic optimization tech-
niques have also been used in optimal allocation models
(Blarer & Doebeli 1996).

Although such models have dealt with growth of or-
ganisms, they have not considered the effects of develop-
ment and the constraints it might impose on the evolu-
tion of life-history traits. In order to address questions
about how development determines what life-history
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strategies are reachable by optimization, and about what
influence cell-level events during development may have
on evolution towards optimal phenotypes, we have con-
structed a model of optimal allocation of resources in a
simple multicellular organism with limited lifespan. Our
model deals explicitly with life history questions as have
been formulated in the evolutionary biology literature
and uses a fitness measure from this literature to eval-
uate the organism’s strategy for growth and reproduc-
tion. The genetic and cellular interactions of the model
are based on the modeling framework which was intro-
duced in (Mjolsness, Sharp, & Reinitz 1991) to simulate
developmental processes through the use of regulatory
gene networks; this framework has been previously used
in a preliminary attempt to explore the effects of devel-
opmental gene interactions on the evolution of a multi-
cellular phenotype (Mjolsness et al. 1995).

Model

Our model examines growth and reproduction of a sim-
ple multicellular organism with limited lifespan; the or-
ganism starts as a single cell (equipped with a certain
amount of resource reserves) and grows by cell divisions;
cells may differentiate into propagule cells which are con-
sidered to be the progeny of the organism. No specific
geometry has been assumed for the organism: the cells
can be thought to form an aggregate of non-interacting
units.

Gene net framework. The modeling approach which
we have used to represent gene regulation, and which
we will be referring to as the gene net framework, uses
recurrent neural nets to represent state variable dynam-
ics, and a set of rules, a grammar, to represent inter-
actions within and between cells. Our model has five
rules: one for non-dividing vegetative cells (e.g. cells in
phase G1 of interphase), one for vegetative cells enter-
ing mitosis, two rules for cell division (symmetric and
asymmetric partitioning of gene products to daughter
cells) and one for differentiation from vegetative cell
to reproductive propagule. For a detailed description
of the gene net framework see (Mjolsness, Sharp, &



Reinitz 1991) and for shorter versions (Marnellos 1997;
Marnellos & Mjolsness 1998).

Resource production and allocation. Gene prod-
uct concentrations are state variables in our model and,
through the control of cell divisions, determine how or-
ganism size (S), another state variable, changes over
time. They thus determine events like resource extrac-
tion from the environment and also propagule formation,
and consequently control allocation of resources to veg-
etative growth and reproduction. Surplus energy (E),
i.e. energy and other resources not used for mainte-
nance, is an allometric function of size E = a.S7, where
a = 0.12 and v = 0.80; we refer to surplus energy also
as production. Surplus energy is added to the reserves
(R) of the organism, another state variable; every time
the organism increases by a certain number of cells, an
amount proportional to that number is subtracted from
the reserves; the same occurs when a propagule leaves
the organism equipped with an amount of resources, this
amount being a parameter of the model that may be
thought of as offspring size. The currency unit used to
measure reserve and production amounts in these trans-
actions is the amount of resources needed to make one
cell, so one cell “costs” one reserve unit.

Mortality and fecundity. The maximum lifespan of
an organism is a number  of time steps over which
we examine its growth and reproduction (and integrate
the differential equations describing the changes in state
variables); in our simulations this is @ = 100. There
are two sources of mortality in the model: extrinsic and
intrinsic. Extrinsic mortality p. at age (time) ¢ is the
probability that the organism will die at that age due to
external factors and in our simulations is constant with
age; intrinsic mortality is a decreasing sigmoid function
of reserve levels (the lower the reserves, the higher the
mortality) and is given by

e*bRs(t)
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where R, (t) is the quantity of reserves per cell at time
t and b is a positive constant. With these mortalities
the survival function I(t), i.e. the probability that an
organism will survive to a certain age ¢, is given by the
decreasing function
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for constant extrinsic mortality .

Fecundity m(t) is given by the number of propagules
that are produced at age t. Propagules survive and give
rise to a new organism with probability Pr that is an in-
creasing function of propagule size Sp, i.e. the amount of
reserves that a propagule is equipped with when it leaves

the parent organism (S, is the same for all propagules
and constant in time),
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where C; and Cs are positive constants — we have used
C7; = 1.8 and C5 = 0.8, but any values that result in a
concave increasing function with range between 0 and 1
would do. Thus effective fecundity m at age t is taken
to be the product of number of propagules produced at
that age times propagule survival probability

m(t) = m(t)Pr(S,). (4)

The amount of propagule reserves becomes the initial
amount of reserves of the organism that the propagule
gives rise to. We allow negative reserve levels up to 30%
of an organism’s size; this would correspond to an or-
ganism under severe resource shortage that has started
using up components of its cells as nutrients. When re-
serves fall below —30% of size, mortality becomes 1 and
the organism is not considered further.

Fitness and objective functions. The fitness mea-
sure we maximize by optimization is the lifetime off-
spring production of the organism Ry = 2?21 1(t)ym(t),
where Q is maximum lifespan, I(¢) survival to time ¢ (Eq.
2) and m(t) effective fecundity at time ¢ (Eq. 4). The ob-
jective function of this problem also contains a quadratic
penalty term which is minimized and tends to make all
propagules of the organism have gene product concentra-
tions identical to those of all the other propagules and
of the founder spore cell that gave rise to the organism;
this term we refer to as identical propagule cost, I:

propagules genes

I= 3 > -y (5)
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where v;'- is concentration of gene product j in propagule
1 and Uf is concentration of the same gene product in the
founder cell of the organism. Finally there is a quadratic
penalty term P (a sum of the squares of all the parame-
ters we optimize on) that prevents the parameters from
getting excessively large (in our runs they rarely grow
beyond order of magnitude 10'). All terms of the ob-
jective function are weighted, and in our runs we have
tuned these weights so as to achieve the best results with
the optimization methods used. The objective function
we maximize is therefore

maxJ = wgr,Ro — wyI —wpP (6)

where the weights wg,, wr, wp are positive numbers.
The parameters we optimize on are: propagule size, S,

(i.e. the amount of reserves invested in each propagule);

initial concentrations of gene products in the founder



cell (spore) of the organism (which, if identical propag-
ule cost I is very small, should be almost identical to
those of the propagules that the organism produces);
and parameters of the gene network, like gene inter-
action strengths, thresholds for gene activation, decay
rates of gene products, parameters that govern the trig-
gering of grammar rules, and so on. In the case of runs
with two (2) genes there are 27 parameters that are op-
timized on. We have used stochastic optimization tech-
niques to maximize Eq. 6, namely simulated annealing
with an efficient temperature schedule and a genetic al-
gorithm implemented in parallel — for a description of
these algorithms, as well as a more detailed description
of the parameters optimized on, see (Marnellos 1997;
Marnellos & Mjolsness 1998).

Results

We have carried out optimization runs with two-gene
networks for various strengths of extrinsic mortality pe.
Tllustrations of model simulations using parameter val-
ues derived by optimization appear in Figs. 1 and 2. The
best solutions (in terms of fitness) obtained in these runs
are presented in Table 1. The life history features, apart
from fitness, of the solutions listed in this Table are: age
at maturity, i.e. age at first reproduction; life expectancy
at birth (LE) which is given by LE = Z?Zl I(t), where
Q is maximum lifespan and [(t) is probability of survival
to age t as determined by Eq. 2; intrinsic life expectancy
which is due to intrinsic factors only, i.e. is calculated as
LE but with y. assumed to be zero; propagule reserves
(or propagule size) Sp; total number of propagules pro-
duced during the organism’s lifetime; and finally, total
reproductive effort, which is the total number of propag-
ules multiplied by the reserves S, of each propagule.

Solutions of higher fitness tend to produce more
propagules but make a smaller reproductive effort. It
appears that, because of intrinsic mortality (which in-
creases when reserves fall), the strategy adopted in these
solutions is to maintain high reserves throughout and re-
lease them in reproductive events towards the end of the
maximum lifespan; as a consequence, growth rates are
kept low, but intrinsic life expectancies are high for all
solutions (in all cases higher than 93, out of a maxi-
mum of 100, see Table 1) . However, these solutions
are not well adapted to the different levels of extrinsic
mortality: reproduction does not shift to earlier times
with increasing extrinsic mortality — as has been for
instance observed in an analytical model quite close to
ours in high level structure (Kozltowski & Wiegert 1987)
— or, at least, there is no clear relation between age at
maturity and level of extrinsic mortality. In fact, in all
but one of the solutions, age at maturity is greater than
life expectancy (see Table 1).

In connection with age at maturity, it is interesting
to observe that solutions fall into two phenotypes: one

Figure 1: Simulation based on parameters derived by an
optimization run, with frames (columns of cells) showing an
organism at successive points in time (here are shown time
points 51 to 60 out of a maximum lifespan of Q& = 100 time
points). The organism has two genes; sizes of the two disks
within each cell represent levels of gene products. The larger
cell in the 5th column represents a propagule with its reserves.
The arrows at the bottom of the 3rd and 4th columns point
to an asymmetric cell division: on the left the mother cell
and on the right the two daughter cells; the daughter at the
bottom receives most of both gene products of the mother
(there are other instances of asymmetric division in this Fig-
ure which we have not indicated by arrows). The arrows at
the top of the 9th and 10th columns point to a symmetric cell
division: the daughter cells on the right each receive equal
amounts of the two gene products from the mother cell. Note
that levels and proportions of gene products are distinct for
the cell differentiating into a propagule, for the cell dividing
asymmetrically and for the cell dividing symmetrically; gene
product levels determine which of these rules is triggered in
each instance. In this figure the organism is represented as
a column of cells for illustration purposes only (to better il-
lustrate changes in organism size, cell divisions, etc.); in the
simulations no specific organism geometry has been assumed
and organism cells can be thought to form an aggregate of
non-interacting units.

with older age at maturity and smaller propagule size,
as is in the solutions in the first column of Table 1 and
the top of the second column, and another with earlier
age at maturity and larger propagule size, as in the rest
of the solutions (see also Fig. 2). This trade-off between
propagule size and development time to maturity is a
consequence of the fact that, on one hand, a larger size
propagule costs more reserves to produce and so tends
to reduce future growth and reproduction of the parent
and thus fitness, but, on the other, leads to higher growth
rates, higher production and so earlier reproduction and
higher fitness; conversely, smaller propagule size costs
less but leads to slower growth, later reproduction and
decrease in fitness. Related to this trade-off is another
trade-off between propagule size and propagule number
(the smaller the size, the larger the number, and vice
versa) which is clearly evident in the solutions of Table
1. These trade-offs are affected by the propagule sur-



e 1 2 3
0.010 | Fitness (Ro) 13.7 | 12.4 | 11.7
Age at Maturity 88 86 48

Life Expectancy (LE) | 62.3 | 614 | 59.3
Intrinsic LE 99.3 | 973 | 93.8
Propagule Reserves 1.36 1.21 3.80
Propagules 58 64 33
Reproductive Effort 789 | 774 | 1254

0.013 | Fitness (Ro) 10.0 9.4 8.7
Age at Maturity 75 61 64

Life Expectancy (LE) | 54.0 | 53.7 | 53.3
Intrinsic LE 974 | 96.2 | 954
Propagule Reserves 1.96 | 279 | 3.99
Propagules 46 34 30
Reproductive Effort 90.1 95.0 | 119.8

0.015 | Fitness (Ro) 9.1 9.1 8.0
Age at Maturity 86 64 o8

Life Expectancy (LE) 48.9 | 48.6 49.2
Intrinsic LE 94.7 | 93.6 | 95.1
Propagule Reserves 2.26 3.89 3.41
Propagules 49 39 34
Reproductive Effort 110.7 | 151.7 | 115.9

0.017 | Fitness (Ro) 8.0 6.7 6.5
Age at Maturity 89 61 71

Life Expectancy (LE) 46.4 | 45.2 45.2
Intrinsic LE 97.5 94.5 93.4
Propagule Reserves 1.28 3.84 3.96
Propagules 72 32 34
Reproductive Effort 92.2 | 1229 | 134.6

Table 1: Life-history features of the 3 best optimization so-
lutions obtained for various strengths of extrinsic mortality

He-

vival function (Eq. 3), which determines how much an
increase in propagule size will increase the propagule’s
chances of survival and thus fitness.

Another salient feature is that life histories in the solu-
tions presented here often include what is called a bang-
bang switch: after an initial period of exclusive alloca-
tion of resources to growth, the organism ceases to grow
in size and completely switches to investment in repro-
duction. This is true for the majority of solutions ob-
tained apart from a few where the switch is more gradual.
Both modes of switching have been reported in previous
theoretical work (Cohen 1971; Vincent & Pulliam 1980;
King & Roughgarden 1982).

All solutions presented in Table 1 differ in the signs
and magnitudes of their optimized parameters, which
is true even for solutions that are similar in their life-
history features (like solutions 1 and 2 for u. = 0.010, or
solution 3 for p, = 0.010 and 2 for g, = 0.015). This may
indicate that the objective function of this problem (Eq.
6) has many similar optima. The similar life histories
that result from different optimization solutions can be

considered instances of “phenotypic convergence”.

Finally, identical propagule cost, which is not consid-
ered in previous resource allocation work, has turned out
to be an important component of our model: growth and
fecundity in our simulations can be very sensitive to ini-
tial concentrations of gene products in the founder cell of
the organism. Identical propagule cost may correspond,
to a certain extent, to maternal effects described in work
on state-dependent life histories (McNamara & Houston
1996).

Discussion

In this paper we have tried to make a connection be-
tween the gene network approach and previous optimal
resource allocation models and have probed the role of
cell-level events during development in shaping the life
histories of organisms.

Solutions found by our optimization runs have fea-
tures in common with previous work in resource alloca-
tion and life history: such features are the bang-bang
switch from growth to reproduction and the trade-offs
between propagule size and time of development to ma-
turity and between propagule size and number. An ad-
vantage of our approach in comparison with previous
work is that, through the use of lower level state vari-
ables, our model encompasses many life history charac-
ters in a natural way; for instance, in our model the
form of fecundity as a function of age, organism size or
reserves, falls out naturally from the underlying physi-
ology of cell differentiation. In previous work relations
between fecundity, survival, size, surplus energy and so
on have been based upon reasonable assumptions but
differ substantially across models; it is not always clear
what these differences imply or how they map to real
physiological processes in an organism. Our model goes
some way towards addressing this problem.

Our approach has additionally provided a reductionist
window into the lower level workings of the solutions: it
has, for instance, revealed the phenotypic convergence
of solutions that differ in their low level parameters, the
importance of regulating tightly gene product concen-
trations in propagules, and the correlation of propagule
size, a cell-level feature, to the two kinds of phenotypes
observed in our solutions.

Finally, as was mentioned in the Results, our life his-
tory solutions can respond to certain features of the se-
lective environment, like the presence of intrinsic mortal-
ity, but cannot adapt to others, like increases in the level
of extrinsic mortality. This may be due to constraints
imposed by the number of genes and other parameters,
as well as the genotypic structure of the model, and
can be viewed as an illustration of the phylogenetic con-
straints within which selection has to move in order to
optimize life histories; with the fixation of traits within
lineages and other such lineage specific effects some the-
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Figure 2: Solutions obtained by optimization fall into two life-history phenotypes: (A) older age at maturity and smaller
propagule size, and (B) earlier age at maturity and larger propagule size. Illustrations (A) and (B) in this figure correspond

to solution 1 for pe = 0.010 and solution 2 for p. = 0.017 of Table 1, respectively.

Organism size, amount of reserves

and reproductive effort (i.e. number of propagules produced times propagule size) are plotted against time (age); all three
quantities are measured in the same currency used in the model, namely number of cells (see text for more details).

oretical optima may not be reachable.
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