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Abstract

We have formulated a computational model of
Drosophilaearly neurogenesis, the process by which neu-
roblasts and sensory organ precursor (SOP) cells dif-
ferentiate from within proneural clusters of cells. The
model includes intracellular gene regulatory interactions
as well as lateral cell-cell signalling. It makes predictions
about how the interplay of factors like proneural cluster
shape and size, gene expression levels, and strength of
cell-cell signalling determines the timing and position of
appearance of neuroblasts and SOP cells; and about the
robustness of this process and the effects of gene product
level perturbations on cell differentiation.

Introduction

One of the very early steps in neural development is
the generation of neuronal precursor cells in appropri-
ate numbers and their precise positioning, which to a
large extent determines the identity of their progeny.
In Drosophila, neuroblasts and sensory organ precursor
(SOP) cells differentiate from epithelia to give rise to
the central nervous system in the fly embryo and to epi-
dermal sensory organs in the peripheral nervous system
of the adult fly, respectively. Neuroblasts are precursor
cells that divide to form neurons and glia; they segre-
gate from the ventral neuroectoderm of the embryo in a
regular segmental pattern (Bate 1976). SOPs appear at
stereotypical positions on imaginal discs (which are pri-
mordia giving rise to appendages like wings, legs, eyes
and antennae) during late larval and early pupal stages
and divide to produce a neuron and three other cells that
form Drosophila’s sensory organs, like the bristles on its
thorax (Hartenstein & Posakony 1989).

The activities of two main sets of genes working in op-
posite directions are thought to underlie this differenti-
ation process: one promoting neural development and
the other preventing it and favoring epidermal devel-
opment. Cell-cell signalling is believed to be an es-
sential part of this specification of cell fate and thus
Drosophila neurogenesis is an example of many such re-
lated processes of cell differentiation in epithelia both in
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invertebrate and vertebrate organisms — see recent re-
views (Campuzano & Modollel 1992; Muskavitch 1994;
Artavanis-Tsakonas, Matsuno, & Fortini 1995).

More specifically, neuroblasts and SOPs differentiate
from clusters of apparently equivalent cells which at
some stage all have the potential to adopt the neu-
ral fate (Stern 1954), as ablation studies have shown
(Doe & Goodman 1985a; 1985b). These cell clusters
express genes of the achaete-scute complex, so called
proneural genes, which all encode transcription activa-
tors and confer to cluster cells the potential to adopt
the neural fate (Romani et al. 1989; Cubas et al. 1991;
Skeath & Carroll 1991; 1992); the clusters are therefore

called proneural clusters (see Fig. 1).

The other set of genes involved in neurogenesis includes
a number of genes also encoding nuclear proteins, for
instance genes of the Enhancer-of-split (E(spl)) complex
and hairy, as well as other genes for membrane and cyto-
plasmic proteins; all these tend to suppress neurogenesis
and promote epidermal development. In this paper we
refer to this set of genes as epithelial genes — in the
literature they are called “neurogenic” genes, because
loss-of-function mutations of these genes lead to overpro-
duction of neurons (Poulson 1940; Lehmann et al. 1983;
Skeath & Carroll 1992), but we have avoided this term
as it might create confusion with proneural genes.

Expression of proneural genes in embryonic neuroecto-
derm and imaginal disc clusters eventually gets restricted
to a single cell per cluster, in the case of the neuroec-
toderm, or very few cells per cluster, in the case of
imaginal discs (clusters in the discs are typically larger
than those in the neuroectoderm); in these cells, the
future neuroblasts or SOPs, proneural expression in-
creases, whereas in the remaining cluster cells it ceases
and those cells become epidermal (Cubas et al. 1991;
Martin-Bermudo et al. 1991; Skeath & Carroll 1991;
1992); the whole process is referred to as “cluster reso-
lution”. Cluster resolution and the singling out of neu-
ral precursors from within proneural clusters is brought



A

8.4

Figure 1: (A) Proneural gene expression in clusters in a Drosophila wing disc (the appendage of the fly larva that gives
rise to the wing and the back of the adult). The lacZ reporter indicates achaete expression (achaete is one of the proneural
genes). (B) Detail of (A), note cluster on lower left that has not yet resolved; other clusters appear to be at a more advanced
stage of resolution. We have used the enhancer-trap line Al-1, which expresses the reporter lacZ gene under the influence
of cis-elements in the promoter of achaete (van Doren et al. 1992); we have stained with anti §-gal antibody and secondary
fluorescent antibody; images were obtained with a Bio-Rad MRC1000UV confocal microscope and processed with the NTH-

Image program.

about by inhibitory lateral signalling between adjacent
cells, through which the neural fate is promoted in the fu-
ture neuroblasts and SOPs and suppressed in other cells
(Wigglesworth 1940; Stern 1954; Doe & Goodman 1985a;
1985b). The lateral signal is transmitted by the prod-
uct of Delta which is a ligand of the receptor encoded
by Notch (Fehon et al. 1990; Heitzler & Simpson 1991;
Struhl, Fitzgerald, & Greenwald 1993). The signal is re-
layed from Notch to epithelial genes through a protein
that has been shown to directly activate E(spl) transcrip-
tion (Fortini & Artavanis-Tsakonas 1994; Jarriault et al.
1995; Bailey & Posakony 1995)

Despite the amount of experimental data that have been
gathered, several features of the neural fate determina-
tion process remain unexplained. A precise characteri-
zation of the function of lateral signalling is still lack-
ing. Some researchers have described the singling out
of neural precursors from equivalence groups as a pro-
cess in which one of the cells in the group receives an
initial push to become a neural precursor, in an un-
specified, perhaps stochastic, manner, and this cell then
extinguishes the neural potential in the other cells of

the proneural cluster through “lateral inhibition” (Wig-
glesworth 1940; Stern 1954), possibly amplifying its
own inhibitory power and weakening that of its neigh-
bors through a feedback mechanism (Heitzler & Simp-
son 1991). Other researchers have favored a scheme
of “mutual inhibition”, in which all cells in a proneu-
ral cluster, including the future neural precursor, are
subject to inhibition by other cells in the cluster, but
the future precursor has additional means to shield itself
from inhibition (Goriely et al. 1991; Muskavitch 1994;
Bang, Bailey, & Posakony 1995). There are also ques-
tions about how important interactions of range longer
than that of lateral signalling are: it is not clear, for
instance, how crucial diffusible factors are for the reso-
lution of proneural clusters.

Dynamical aspects of cluster resolution are poorly un-
derstood. It is not known, for example, whether and
how the shape and size of proneural clusters can deter-
mine how cluster resolution proceeds: although there
have been some observations regarding shapes of clus-
ters, and descriptions of subsets of cells (often centrally
located) in the clusters from which future neural pre-



cursors are more likely to emerge (Goriely et al. 1991;
Cubas ef al. 1991) as well as some work on the tem-
poral sequence of neural precursor emergence (Huang,
Dambly-Chaudiére, & Ghysen 1991), there has been no
systematic study of how shape or size of clusters might
affect the position and timing of neural precursor emer-
gence.

In order to address questions like these and investigate
the interplay between proneural and epithelial genes and
the genes that mediate cell-cell signalling, we have con-
structed a model which is presented below; it is an ex-
tension of a model that was first described in Marnellos

(1997).
Model

In our model, cells are represented as overlapping cir-
cles in a 2-dimensional hexagonal lattice; the extent of
overlap determines the strength of interaction between
neighboring cells (see Fig. 2). Cells in the model ex-
press a small number of genes corresponding to genes
that are involved in neuroblast and SOP differentia-
tion. In the work presented here we have used net-
works with four genes (one corresponding to the proneu-
ral group, another for the epithelial group and two for
the ligand and receptor, respectively, mediating cell-cell
signalling). The model has been based on a frame-
work introduced in Mjolsness et al.  (1991) to simu-
late developmental processes through the use of regu-
latory gene networks; a framework very similar to this
in scope and structure, but with some differences in how
state changes in cells are represented, has also been pro-
posed by Fleischer and Barr (Fleischer & Barr 1994;
Fleischer 1995).

Genes interact as nodes in recurrent neural nets: A gene
a sums nputs from genes in the same cell or in neigh-
boring cells at time ¢ according to the following equation

walt) = 3 T (1) (1)

where T is the matrix of gene interactions and v;(t) gene
product concentrations within the cell; the T matrix has
the structure depicted in the table below; columns in
this table are for input genes and rows for genes affected
(empty boxes signify zero interaction strength. i.e. no
interaction):

| Intracellular Interactions |

Proneural | Epithelial | Receptor | Ligand
Proneural ¢ ¢
Epithelial ¢ ¢
Receptor ¢ ¢
Ligand ¢ ¢

This table shows that we have allowed only proneural

and epithelial gene products to directly regulate the ex-
pression of other genes (themselves included), since these
two genes correspond to transcription factors in the real
biological system.

Concentration vg(t) of the product of gene a then
changes according to

dvy
dt

= Rag(ta(t) + ha) — Aava(t) (2)

where ug(t) is the linear sum of Eq. 1, g a sigmoid func-
tion, R, the rate of production of gene a’s product, h,
the threshold of activation of gene a and A, the rate of
decay of gene a product. We integrate these differential
equations using Fuler’s method (we use 150 time steps).

We have modeled lateral interactions between cells by
the binding of ligand to the receptor in the neighboring
cell and subsequent regulation of the epithelial gene by
the active ligand-receptor complex — this corresponds
to the signal relayed from activated Notch receptor to
epithelial gene E(spl), as was mentioned in the Intro-
duction. In more detail, the ligand-receptor reaction is
taken to be of the following form:

L+RSLoR (3)

where L is ligand (on one cell), R receptor (on a neigh-
boring cell) and Lo R the active receptor-ligand complex;
the rate of the reaction to the right is k; and to the left
ko. If vy is ligand concentration, vy receptor concen-
tration and [L o R] concentration of the receptor-ligand
active complex, we have that

d[LoR
ALoR] _ opon— koL o R] (4)
dit
dv dv
—dtL = —dtR :—klevR+k2[LOR]. (5)

This reaction is assumed to take place at a much faster
timescale than gene expression and to have reached a

steady state before influencing gene expression. From

Egs. 4 and 5, at this steady state we have
[LoR]=kvrvr (6)

where k£ = ]]:—; Thus the epithelial gene in a cell receives

input from receptor-ligand complexes activated by ligand
in the six surrounding cells (the lattice is hexagonal); this
can be represented as an extra term ug that 1s added to
ug (which is the sum of inputs u for the epithelial gene,
see Eq. 1) before Eq. 2 is calculated

ip =Y ATp[LoR) (7)
IEN



where N is the set of six surrounding cells, A’ a factor
depending on the overlap of the cell with neighboring
cell ¢ (as measured for instance by the common chord
of the two circles), 1§ the strength of the action of the
receptor-ligand complex on the epithelial gene (k of Eq.
6 has been included in Tg), and finally [L o R}’ is the
concentration of receptor-ligand complex due to ligand
on cell 7. Because of Eq. 6, we can write this as

ip =Y ATgvpvr (8)
IEN

where v% is ligand concentration in neighboring cell i.

We optimize on gene interaction strengths; i.e. Ty of
Eq. 7 and the eight 77s of Eq. 1 (the other parameters
in the equations above are kept constant) in order to fit
gene expression patterns described in the literature; the
cost function optimized is

p= %

cells,genes times

(UZMODEL(t) - vszATA(t))z’ (9)

which 1s the squared difference between gene product
concentrations in the model and those in the dataset,
summed over all cells and over all gene products and
times for which data is available. We have used a
stochastic algorithm, simulated annealing, for this op-
timization. For more details on the model and the opti-
mization method used see Marnellos (1997).

Simulation Results

Design of optimization and test runs. The
gene expression datasets we optimize on, the {rain-
g datasets, are adapted from schematic results de-
scribed in the experimental literature (Cubas et al. 1991;
Skeath & Carroll 1992; Jennings et al. 1994); they spec-
ify the initial pattern of concentrations of gene products
(i.e. the proneural clusters), the desired intermediate
pattern, and the desired final pattern when the proneu-
ral clusters have resolved to single cells expressing the
proneural gene at high levels (see Fig. 2); it is left to
the optimization to find the right model parameters so
that the system develops from the initial state through
the intermediate one to the desired final one. The ini-
tial concentrations of receptor and ligand are uniform
for all cells and their subsequent concentrations are not
constrained by the dataset (in this respect, they are com-
parable to hidden units in neural nets).

All cells in a proneural cluster have initially the same
gene expression levels. The size and cluster arrange-
ment of the training datasets do not have any particular
biological significance; the datasets have been designed
in such a way as to keep the number of cells low while
including as many clusters as possible, since optimiza-
tion is very expensive computationally and so optimiza-
tion runs on datasets with more cells than we have used

would be impractical. We have used torus topology in
our runs, although this does not appear to be a crucial
factor in the results described here.

Robustness of solutions. We have tried to limit the
number of parameters we optimize on (as was mentioned
above, we optimize only on gene interaction strengths),
in order to avoid overfitting our rather small datasets.
The optimization procedure used (simulated annealing)
has produced very good and consistent fits to the train-
ing datasets. For instance, out of the eight (8) good
solutions obtained for the dataset in Fig. 2, six were
very similar in their parameter values (same signs, sim-
ilar orders of magnitude); so all these solutions proba-
bly come from the same optimum of the cost function,
which may be one of very few large optima, or even the
global optimum. Also, successful optimization runs have
vielded solutions that not only perform well on the train-
ing dataset shown in Fig. 2 (see top row of Fig. 3) but
also work for other datasets with clusters like those in the
training dataset but with greater numbers of such clus-
ters in various spatial arrangements (data not shown).
This indicates that optimization does not just find pa-
rameter values that only work for the specific size and
cluster arrangement of the training dataset, but rather
produces solutions incorporating “rules” for cluster res-
olution.

In order to further evaluate these solutions and deter-
mine how robust they are and what they can tell us
about the biological system under consideration, we have
also run these solutions with different initial conditions,
changes of solution parameter values, perturbations of
gene expression during a run, as well as on test datasets
containing novel, bigger or smaller, proneural clusters.

In Fig. 3, for instance, we have the same optimization
solution parameters in both rows, but in the run of the
top row initial concentrations of proneural and epithelial
gene products are identical for all cells in a cluster, while
in the bottom row initial proneural concentrations vary
and differ between cells by about 10-15%. Despite this
and despite the fact that, in this particular example, the
future neural precursors start out with lower proneural
concentrations than other cluster cells (even the lowest
in the cluster), the pattern of cluster resolution remains
identical as the end result shows (compare right panels
of top and bottom rows of Fig. 3). So the optimiza-
tion solutions are robust to small changes in initial con-
ditions. Such robustness is a feature that a biological
system would need during development.

Test datasets specify only initial concentrations and con-
tain many more cells than training ones (since we do not
optimize on them). An example appears in Fig. 4: it
contains several clusters of various shapes and sizes, both



Initial (¢t =1)

Final (¢t = 150)

Figure 2: Cells are modeled as circles on a hexagonal lattice. Gene expression is represented by disks, proneural expression
in brown, epithelial in green, and where the two overlap in yellow-green (dark, medium and light gray, respectively, in black-
and-white); disk radius is proportional to level of expression. This figure shows the training dataset: on the left, the initial
concentrations of the gene products — there is only proneural gene expression in three symmetrical clusters; in the middle, the
desired intermediate pattern of expression; on the right, the desired final pattern of gene expression — proneural expression
is retained only in the central cell of each cluster, the future neuroblast or SOP, whereas all other cells express the epithelial
gene. Times (t) indicate the points in the run when the desired expression pattern is compared with the actual one (see Eq.
9); at t = 1 there is of course only initialization and no comparison. Initial concentrations of ligand and receptor are not

shown.

smaller (4-cell clusters) and bigger (cluster in top right
corner of panels in Fig. 4) than in the training dataset
of Fig. 2. The test datasets could in principle have been
used as training datasets, if it were not for the practical
considerations mentioned above.

The optimization solution presented in Fig. 3 works
well on the dataset of Fig. 4 too and resolves almost
all clusters apart from the small, 4-cell ones; this 1is
something we have observed in previous work with a
model of similar structure to the one presented here
and similar optimization procedures (Marnellos 1997;
Marnellos & Mjolsness 1998): it is probably due to the
fact that 4-cell clusters do not have a cell that is much
more encircled than the others (as 5,6 and 7-cell of Fig.
4 do), but all cells are almost equally exposed. The op-
timization solution also resolves the big cluster in Fig.
4, for which 1t was not optimized; this is another aspect
of the robustness of the solution.

Changes in initial proneural concentrations, as in the
bottom row of Fig. 3, can be also studied in the dataset
of Fig. 4 and usually do not alter the final outcome in
the resolution of the big cluster, but in rare cases the
big cluster does not resolve to a single cell but to two or
three cells. This is consistent with experimental observa-
tions (Huang, Dambly-Chaudiére, & Ghysen 1991) and
provides an illustration of the interplay between position
in cluster and level of proneural expression in determin-
ing whether a cell becomes a neural precursor or not.

A feature of our simulations that becomes apparent in
Fig. 4 1s that proneural expression in differentiated neu-

ral precursors decreases with time after they have been
selected (see last panel, t = 256, in Fig. 4). This does
not mean that the model diverges from biological obser-
vations at this point, but is simply a result of the fact
that our model was not meant to deal with what happens
after clusters resolve; in any case, in the actual biological
system, neural precursors do not stay around expressing
high levels of proneural proteins either, but, soon after
they differentiate, they divide to give rise to neurons
and glia and other cell types (Doe & Goodman 1985a;
Hartenstein & Posakony 1989).

Dynamics of cluster resolution The parameters of
the simulation in Fig. 4 are identical to those of the runs
in Fig. 3, apart from one: the strength of lateral inter-
actions through the receptor-ligand complex, i.e. Ty of
Egs. 7 and 8. Since lateral interactions are crucial for
cluster resolution, we have varied their strength to see
the effects on the dynamics of the whole process. In
Fig. 4 the value of Ty is 25% higher than in Fig. 3;
the stronger lateral interaction makes cluster resolution
faster, as can be observed, for instance, when compar-
ing the stage of resolution at ¢ = 76 of the symmetrical,
T-cell clusters in Figs. 3 and 4: resolution has clearly
progressed more in clusters of Fig. 4. The effect is much
more pronounced for the big cluster of Fig. 4, which
takes about 200 timesteps longer to resolve when lateral
interaction strengths are 20-30% lower (not shown). At
even higher values of 15, clusters start to fail to resolve
and proneural expression is extinguished (not shown).
When T = 0, i.e. when lateral interactions are abol-
ished, clusters do not resolve but all cells in them retain
proneural gene expression. This parallels the effect of the



Figure 3: Computer simulation of neural precursor differentiation with parameter values in the model derived by optimization
on the dataset of Fig. 2. From left to right, different time frames of the evolution of gene product concentrations. Top row:
run with identical initial gene product concentrations for all cells in each proneural cluster. Bottom row: initial proneural
concentrations vary by about 10-15% between cells in each cluster. In both runs the clusters resolve in the same way, as the
comparison of the two panels at ¢ = 121 shows (the only difference being that in the bottom run the clusters take slightly
longer to resolve). This illustrates the robustness of cluster resolution to small changes in initial gene expression levels in

proneural clusters. Conventions as in Fig. 2.

neurogenic mutations in the real biological system; these
mutations disrupt lateral communication between cells
and lead to overproduction of neurons (Poulson 1940;
Lehmann et al. 1983; Skeath & Carroll 1992). Thus
variation in the value of a single parameter, T, can pro-
duce this “heterochronic” change in the process of cluster
resolution or even prevent neural precursor differentia-
tion. This is an interesting and testable prediction of the
model.

The timing of cluster resolution also depends on the
size of the cluster; bigger clusters take longer to re-
solve, which is something we have observed in previous
work (Marnellos 1997; Marnellos & Mjolsness 1998), but
which is much more evident in the example of Fig. 4.

To further probe the dynamics of cluster resolution, we
have perturbed the levels of expression of proneural and
epithelial genes in specific cells during a run, as illus-
trated in Fig. 5. In this simulation (which has the
same initial concentrations as the one in Fig. 4 and uses

the same parameter values, including TE) we instanta-
neously increased at ¢ = 60 the level of epithelial expres-
sion in the central cell of a symmetrical, 7-cell cluster
and also the level of proneural expression in a peripheral
cell of a different symmetrical cluster. Whereas the first
perturbation prevents normal resolution of the cluster
involved, (as can be observed at ¢t = 121 for instance),
the second one has no effect on resolution and the clus-
ter involved resolves normally (see Fig. 5). The effects
of such perturbations will vary depending on the time
and cell in which they are carried out, and on whether
they occur singly, as in the two examples of Fig. 5, or in
various combinations. Such manipulations are therefore
a rich source of predictions of the model.

Discussion

In this paper we have extended and slightly modified
a Drosophila neurogenesis model introduced in Marnel-
los (1997), in order to make it more biologically real-
istic. The previous model had only proneural and ep-
ithelial genes that could interact with each other across
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Figure 5: Simulation with perturbations of gene expression in individual cells of two symmetrical, 7-cell clusters. The clusters
are the two ones in the lower left corner of the dataset. At ¢ = 60 the level of epithelial expression in the central cell of the
upper one of these two clusters was instantaneously increased, while in the lower cluster proneural expression was increased
in a peripheral cell. Both perturbations can be detected in the left panel (¢ = 76). The first perturbation abolishes cluster
resolution, while the second has no effect on resolution, as can be seen in the right panel (and also in comparison with the

corresponding panel of Fig. 4).

cells; this afforded much greater flexibility in cell-cell sig-
nalling than has been experimentally observed in this
system. In the work presented here we have included
genes for a receptor and a ligand that gate communica-
tion across cells; such communication can now occur only
through the interaction of an activated receptor-ligand
complex with the epithelial gene; as has been described
in the literature (Fortini & Artavanis-Tsakonas 1994;
Jarriault et al. 1995; Bailey & Posakony 1995). The
increase in the number of genes has been accomplished
without an accompanying increase in the number of opti-
mized parameters. The size of the training datasets has
also increased with the addition of desired intermediate
concentrations: performance 1s now scored in the mid-
dle and at the end of a run, instead of only at the end.
This more constrained optimization has yielded many
good and consistent solutions. The training datasets
now have one 7-cell, one 6-cell and one 5-cell cluster,
instead of only symmetrical 7-cell clusters, and this may
have made the optimization solutions better at resolving
novel types of clusters.

In the present model the strength of lateral signalling
during a run is modulated by changes in receptor and lig-
and concentrations, whereas in the original model similar
but less flexible modulation was afforded by the inclu-
sion of cell delamination (absent here) which changed the

area of contact between adjacent cells and contributed
to the resolution of larger clusters. Although neurob-
last delamination accompanies cluster resolution in the
central nervous system of the Drosophila embryo, de-
lamination does not occur during cluster resolution in
imaginal discs and may not be necessary for resolution;
the present model is therefore more consistent with ex-
perimental evidence.

Our results here have reconfirmed findings of the pre-
vious model (Marnellos 1997; Marnellos & Mjolsness
1998): for instance, that smaller clusters generally re-
solve faster than larger ones (Fig. 4); that lateral sig-
nalling is crucial for cluster resolution and when it is
abolished clusters do not resolve (which parallels the
neurogenic mutant phenotype in the biological system);
or that cell-cell interactions involving just the immediate
neighborhood of any given cell can bring about cluster
resolution, without the need of other longer range pro-
cesses like diffusion (even though the existence of such
processes cannot be ruled out). This last conclusion is
even stronger in the context of the present model, as
lateral interactions now depend on a single optimized
parameter; this indicates that even rather limited cell-
cell signalling is sufficient for cluster resolution.

Investigation of our present model has also revealed that



variations in the strength of lateral signalling have a het-
erochronic effect on cluster resolution (Fig. 4). This may
have some bearing upon issues such as the differences in
bristle number between different fly species. Researchers
have considered these differences as the result of altered
patterns of expression of genes that set up proneural
clusters (Simpson 1996). Our work suggests that vari-
ation in the strength of lateral signalling may also con-
tribute to bristle number phenotypes.

Our optimization solutions have also been shown to be
robust to small changes in initial conditions (Fig. 3). Of
course one might argue that, since through our training
dataset we look for solutions that result in the most cen-
tral and most encircled cell of each cluster becoming the
neural precursor, it is not surprising that with slightly
different initial conditions the same cell is still selected.
This is true, but the point is that, if in the biological
system the same selection rule occurs, then our results
show that this is a robust process. This point relates to
questions raised in the literature about “lateral inhibi-
tion” versus “mutual inhibition” explanations of cluster
resolution (see Introduction above). Our results would
favor mutual inhibition as the most likely explanation,
with position in cluster and degree of encirclement being
the properties that shield the prospective neural precur-
sor from inhibition from other cells.

Finally, perturbations of gene expression in individual
cells in the model (Fig. 5) are a rich source of quan-
titative predictions about how cells would respond to
externally imposed changes. Such predictions are now
testable in Drosophila (Halfon et al. 1997).

In conclusion, the model described in this paper, suffi-
ciently simple and faithful to experimental observations,
can produce biologically intepretable results. With more
quantitative data to optimize its parameters on and with
experimental testing of its various predictions, i1t could
become a good tool to probe the dynamics of develop-
mental processes like neurogenesis.
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