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Abstract

In most neural network models, synapses are treated as static
weighte that change only on the slow time scales of learning. In fact,
however, synapscs are highly dynamic, and show use-dependent
plasticity over 2 wide range of time scales. Moreover, synaptic
transmission ig an Inherently stochastic process: a spike arriving at
a presynaptic terminal triggers release of & vesicle of neurotrans-
mitter from a releasc site with a probability that can be much less
than oue. Changes in release probability represent onc of the main
mechaniems by which synaptic cfficacy is modulated in neural cir-
cuits,

We propose and investigate a simple model for stochastic dynamic
synapses that can easily be integrated into common models for
neural computation. We prove through dgorous theoretical anal-
ysis and computer simulations that a stochastic dynamic synapse
can respond with a large variety of different release patterns to
different spike trains, even if they represept the same fixing rate.
Furthcrmore we show that a spiking neuron gains additional com-
putational power through the use of dynamic synapses, and we
explore new lcarning issues that arise in this context.

1 Introduction

The dominant paradigm for modeling neural computation is static. The activity of
a computing element is typically represented us a scalar, nsnally interpreted ag the
“average firing rate”——the number of spikes in some relatively long time window.
Synaptic connections are likewise modeled as static “weights™ that change only on



the slow time scale of learning. Such modals effectively ignore the wide range of
time scales over which kiophysical mechiamisms act in real neural circuits.

Most resl neural circuits consist of spiking neurons. Experimental evidence is
accumulating from diverse systema—from flies [Bialek et al., 1891] to monkeys
[Buracas et al., 1996]—that the precise timing of spikes can be used to encode jnfor-
mation. Thera is growing recopnition that the mean rate approxiraation for the ac-
tivity of a spiking neuron may be inadequate, and that the “neural coade” may make
use of the fine temporal structure of spike trains. Computation with spiking neurons
is only beginning to be explored [Zador and Peadmutter, 1096, Maass, 1997].

Neurons commumicate via synapscs that are dynamic and stochastic. When a
spike arrives at a presynaptic terminsl, it sometimes triggers the relesse of a
neurotransmitter-filled packet or vesicle of neurotransmitter from a releass site,
but it also sometimes fafls to trigger a releass [Katz, 1986]. Only when a vesicle
is voleased does the signal from the presynaptic neuron propagate to the postsy-
naptic neuron. The probability that a presynaptic action potential fafls to elicit a
postsynaptic response §s different at different; synapses, and in the hippacampuse
can be 0.9 or higher [Allen and Stevens, 1994]. Moreover, release ity at
a synapse is strangly modulated by the recant history of activity at that synapee.
Thig modulation occurs through a variety of distinet biophysical mechanisms includ-
ing poired-pulyc faclitation and paired-pulsc depression [Zucker, 1989]. Abbott and
es have adopted a phenomenological approach based on previous models of
ghort-term plasticity at tha neuromuscular junction [Magleby, 1987]. However, their
model accounts only for the average probability across & population of synapses.

Tn what follows, we will be interested in the computational implications of release
probability that ia modulated at individual release sites. For this we must consider
the biophysical mechanisms underlying the modulation of probabhility at individual
releasa sites. We assume that relense probability ia determined by two distinct
processes: facilitation, and depression. Facilitation in our model depends on the
number of spikes that arrive at the presynaptic terminal. This is consistent with
2 mechanism in which the facilitation is determined by the amount of calcium
that has entered the presynaptic termninal [Zucker, 1989], which in turn depends
on the nuraber of spikes that invade the presynaptic terminal. Depression in our
raodel depends gn the number of vesicles actually released by the synapse; such a
dependence oould arise for example if depression was the result of depletion of the
pool of readily rcleasable vesides [Dobrunz and Stevens, 1997].

We assume that time is discretizad into small time intervals (with a length of, say, 1
millisecond). A synapse S earries out computations on spike trains, more preci
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train as a binary sequence 2) ...2 € {0,1}, where ; = 1 indicates that a spike
arrives at time ¢t . We will denote the interypike imterval between the jth and
(j + 1)at spike by I; . The output of the synapse is also represented as a binary
saquence 2 ... zr € {0,1}7 , where # = 1 indicales that the synapse has released a
vesicle at time ¢ . For simplicity we assurne in this abstract that z; = 1 occurs only
it @, =1, i.e. “epontaneous” synaptic rclease is not taken into account. We will
describe the action of synapse S on a spike train z by a sequence p € {R, F}¥ for

T

K = Y, z; , where py = R (or py = F) indicates Ut spike nunber &k in zy ... 2p
i=l

did (or did not) trigger release of a vedcle at this synapse.

We focus on a mode for synaptic computation that has in its simplest form two
internal variables C and V that govern its release probability. The values of C,V



at time step ¢t are denoted by C;,V;,t = 1, 2,... . These variables will only assume
nomnegative values. The variable C models in an abstract way internal ?napﬂc
processes that support presynaptic facilitation, such as concentration of Ca
presynaptic tarminal. The varlable V modals in an abstract way internal synapﬁc
processes that support presynaptic depression, such as depleﬁon of the pool of
readily releasable vesicles. The current values of these variables dopend on 4, ..., 24
and ou internal parameters O, By, c1,62,%,t,a, 7 . We assume that the valu
of Ocy1,Vigly o1 for £ =0,1,2,... evolve according to the following rules:

(1) Gy = az1+C-a

@ Vin = nneut+Vem
oz =0 then =0. K xyy = 1 then one eots 2341 = 1 with probahility
a(a- (c,,,,-ec))?& (ev-V.+1)),elsez¢+l = 0. The function ¢ : R —+ [0, 1] that
occurs in table squashing function, for example o(y) =

Inthahmlta ﬂ—roothisstoﬁnsﬁcruleﬁorrelmeappmadmthedebummsﬁc

rule
1 ,ifCen 2680, i <Oy and gy =1
1 = o, otherwise.
Allvmahlesandparameta'scanusumemlyvaluuzo Weset Cg =Vym g =0.

The parameters o;,v2 assume cnly values in (0 Henee they give rise to an
mmﬂddemofdmdl’aceordmgto(l)(ﬂ) The case Co = Vo = 0 is the
case where the Internal state of the synapse does not change before the first spike
arrives (. the initial state is a steady state for the variables C and V). For o
biological synapse this is approximately realized if no spike has arrived for a fairly
long time period. In this case ane can set ¢ = v; = 1 without loss of generality.
To see this one can formally replace C; by G /c1, Oc byec/cqub.TV:/vx,Gv
by Oy /vy . Since ¢ and ¥ have now been eliminated, we can write ¢, v instead of
¢z, 1 In the following. We can then characterize a stochastic dynamie synapse with
6 parameters ¢, O¢, v,0v, a, .

Tt is well established that synapses may have several different mechanisms for
paired-pulse facilitation and depression [Zucker, 1989). These can be taken into

account within our framework by introducing more variables Vi, Vf, V.’ - V(‘)

and C;, GGy, .. C’ot mthsepuamth:esholdsmdhmewm(i.o. decayfac-
torz). Thomlmepmbabllltyatneptkinthhe:tendedmoddglvmby

mazi=g, ..x (c(a® - (0F —6{y)- H o(8¥ - (0 - v .

Howmfmthesaheofnmpbdtywemﬂfocusinthﬂabsmct—mﬂesemhdﬂy
mtedot}nrwise—onthemewhemasympsehajusttwommalvaﬂabla
V;,C; . From the mathematieal polnt of view our madel for a stochastic dynamic
synapse is clogely related to the common model for a leaky Integrate-and-fire neuron.
The input-dependent variable C corresponds to the membrane potantial of a neuron
model, and the use-dependent variable V' corresponds to a function that models
refraamy effects in 8 mathematical neuron model. Furthermore both € and V are
subject to exponential decay, corresponding to the common decay of EPSP’s and
rofractoriness in mathamatical ncuron models. Hence from an abstract point of view
one may view & stochastic dynamic synapse as a dual “neuron” that recelves just a
single splke train as input but which may have substantially larger time constants.
Honca in contrast to a neuran, a dynamic synapse cannot integrate over “epace”.
But it can integrate ovar “time® at several scales.



2 The Range of Possible Synaptic Responses

Theorem 2.1 For auy syike truin oy ...2r € {0,1}T with 3 spikes and for any
given patiern p € {R,F}* one can set the parameters c,80, v,0v of a stochastic
dynamic synapse so that its relecse patiern for input £, .. .o i p (with arbitrarily
high probability for o, — o).

The praaf of Thoorem 2.1 is illustrated in Figure 1. By changing ¢, O¢, v, Ov one
can move the boundarieg of the 8§ release patterns in such a way that the given point
(11, I2) with the two interspike intervals I, I, of the spike train 2y ...2 belongs
to an area with the given release pattern p . u
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Figure 1: Brpected response of a stochestic dynaemic symapse with fized paramecicrs
¢, 0¢,v, 0y to a spike train consisting of 8 spikes with interspike intervals I, Is .
(a) shows a typical distribution of release patierns in the case where the first spike
triggered release. This ocoure if Oc < 1. The parameter ;y is defined through the

tion vP1~! = Oy and the function f assigns to each I1 > py the unigue I3y with
3:‘*?""1 +952 = Gy . (b) shows a typical distribution of release patterns if the
first epike did not trigger release. The parameters p2 and p3 are defined through the
eguations ¢ +1 = 0¢ , v~ = Oy , and the function g assigns to each It the
unique Iy withh+h 424 1= Q¢ .

The diagonals I + I; = D (dathed lines) in Figure 1 demonstrate that for a fairly
wide range of values for D a synapsa with fixed parameters can have three different
likely release pattems (with different numbcers of releases) even for spike traing
of 3 spikes with the same distance D between the first and third spike.
Hence the “cflicocy” of a synapse in our model can neither be viewed as a fixed nor
as a purely rate-dependent percentags of releases. Instead it dépends on the specific
patten of interspike dntervels in the presynaptic spike train
The following result shows that our aynapse model can also exhibit a wide variety
of responges for spike trains of Jength 4. However it also exhibits a constraint on
the structure of hikely release patterns in our model. Surprisingly this constraing
holds even for the extended model of a synapse with additional intearnal variables
with different time courses,

Theorcm 2.2 For any spike brain z; ...27 € {0, 1}T with { spikes and any given
pattern p € (R, F}! except RFRR one can set the paremeters ¢, 6, v.Ov of a



stochastic dynamic synapse so that its release pattern for input xy ...zp € {0,1)T
ia p (with erbitrarily high probability for o, f = o).

The release potiern RFRR cannot be realized by a stochastic dynamic synapse with
high probability for any setting of its internal parameters provided that the relo-
tion I > I3 holds for the first and third interspike interval in the spike train
%1...%7 . TIhis holds even for synapses with any finite number of interna! vari-

ables C;, Gy, CF and v, V,,....VH with indinidnal decay factors
€y Cyerenc®, v, 0B, thresholds ©,O%k,...,08),0v,04,...,6{" , end
constants a,o,y...,al? 5, 4,...,08) . L]

Remrark 2.8 The release pattern RFRR can be realized with the help of multiple

synapses between twa nenroms: If 8 different synapses receive the same spike train
" £ with 4 spikes, ane can always set their parameters so that exactly one of thess
synapees is likely to release for the first, third and fourth spike, but none of them
is likely to release for the scoond spike.

3 Symaptic Pattefn Discrimination

We have demonstrated that according to gur model a synapse can have many dif-
ferent likely release patterns for spike trains with different interspike intervals, even
with one fixed parameter setting. The following result shows there exdsts in fact
a relatively simple on-line algorithm for adjusting the parameters of a synapse in
such n wny that the synapse acquires some given release-patierns p € {R, F}® foc
different spike trains with 3 spikes. We assume that an arbitrary finite set S of
palrs (2, p) Is given with spike trains z with 3 spikes, and arbitrary p € {R,F)? .
Wemmathatmaxhﬁraryﬁxﬂterangeofaﬂowedmlueshasbeengxedﬁaread
of the 4 parameters ¢, 8¢,v,6v .

The statament of thé following result ig reminiscent of the well-known Perceptron
Convergence Theorem, although the context is very different. The following result
guarantees the convergence of an on-line algorithm SL to a solutian just on the hasis
of the assumption that there exists a golution.

Theorem 3.1 (Synapse Convergence Theorem for Spike Trains with 8 Spikes).
Assume that S is an arbitrary finite set of pairs (z,p) € {0,1}* x {R,F}?,

each spike troin z contains 8 spikes. We assume that there erist values & 8¢, ¥, Oy
with the property that for eny (2,p) € S a synapse with thase parameter values re-
sponds with the release pafiern p to the spike train z with arbitrarily high probability
fora,f—00. .
With the online learning algorithm SL any synapse (with arbitrary initial parameter
values) can learn to reapond to epike train g with release pattern p, simultaneously
for all {:,p) € S . SL adjusts the paramelers of u stochuslic dynamic synapec after
each time when the synapse produccs a release pattern ¢ # p for o spike troin g
with (z,p}) € S§ . This algarithm SL converges in the sense that ol most o fived
number of parameter adjustments are needed for any finite end infinite sequence of
presentations of examples from S (with arbitrary repetitions).

The learning algorithm SL consists of a faw sitnple rules each involving at moat 3 of
the 4 parameters. Detalls cannot be given in this abstract due to space constraints.
|



4 Distinguishing Paisgson Spike Trains

We demonstrate in Figure 2 that a stochastic dynamic synapsa is able to distinguish
evm:;mong relatively lang Polsson spike trains z,y € {0,1}'® with the same

#T 9 ® ® o %

(a) Synapse A

Figure 2: Two Polsson spike trains £ and y € {0,11'%® with the same density can
yield different percentages of relcases in dwo synapses A aend B. that have stightly dif-
Jeront parameter values. Releases are éndicated by long bars, failures by short bars.
Both z and y consist of 12 spikes. Synapse A (with ¢ = 09,00 = 1.52,v =
0.04,8y = L7) releascs for z 10.67% more spikes than for y; scc panel (a).
Syrepse B (with ¢ = 0.87,8¢ = 1.46,v = 0.94,0, = 1.78) releases for ¢ 25%
fewer spikes than for y, see panel (b).

5 On the Computational Power of a Neuron with Dynamic
Synapses

We ehow that the computational power of a spiking neuron with stochastic dynamic
gynapses ig strictly larger than that of a spiking neuron with-traditional *static®
synapacs. Lot T be a some given time window, and conslider the computational task
of detecting whether at least one of n presynaptic neurons ai,---,a, fire at least
twice during T (“burst detection®). ’

Theorem 5.1 4 gpiking neuron v vith siochastic dynamic synapscs can solvc this
burst detection task (with arbitrarily high reliability). On the other kand no spiking
newron with static synapses can solve this task (for any assignment of “weights” to
its synepses; we assuma that transmission delays are < O(T)).

To prose the positive part of this result one sets tha parameters of n excitatory
synapses from ay,...,a4 in such a way that they respond with high probability to
sy spike train of length < T with a release pattern that starts with FR. Set the
firing threshold of neuron v so low that it fires upon receiving at least one EPSP

from any of these synapses.
The negative part of Thoorem 5.1 is proven Indirectly via contradiction.. |




Remurk 5.2 This burst detection task is closely related to computing the Boolean
function Fo(x1.41,50, 42, .,Zg, ¥n) from {0,1}3® into {O.IE which gives output 1
if and only if z; + y; > 2 for yome § € {1,...,n} . We have that any feedfor-
ward sigraoidal neural net needs to have f1(n!/?) “neurons” to compute thig function
Fy - Henco one may argue that *burst detection™ is a non-trivial coraputational
task for a neural nctwork.

6 Conclusions

We have lutraduced a simple model for stochastic dynamic synapses which makes
it possible to ¢xplore the role of synaptic dymamics in the context of neural compu-
tation and learning. Our results about, the diversity of possible synaptic responses,
gynaptic pattern discrimination, and adaptation of synaptic parameters throw new
gonunmbaofﬁxndmwhamr@dmne\nﬂmpumﬁm,hombg
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