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Abstract

The influence of synaptic channel properties on the stability of delayed activity
maintained by recurrent neural networks is studied. The duration of excitatory
post-synaptic current (EPSC) is shown to be essential for the global stability
of the delayed response. The NMDA receptor channel is a much more reliable
mediator of the reverberating activity than the AMPA receptor, due to a longer
EPSC. This allows one to interpret the deterioration of the working memory
observed in NMDA channel blockade experiments. The key mechanism leading
to the decay of the delayed activity originates in the unreliability of synaptic
transmission. The optimum fluctuation of the synaptic currents leading to the
decay is identified. The decay time is calculated analytically and the result is
confirmed computationally.

1. Introduction

Long-term memory is thought to be stored in biochemical modulation of the interneuron
synaptic connections. As each neuron forms about 10* synapses, such a mechanism of
memory is potentially very effective, allowing the storage of >10* bits per neuron. However,
although synaptic modifications persist for a long time, it may take as long as several minutes
to form them. Since the external environment operates on much shorter timescales, synaptic
plasticity is virtually useless for short-term survival needs. Such needs are satisfied by working
memory (WM), which is stored in the state of neuronal activity, rather th‘an- in modification
of synaptic conductances (Miyashita 1988, Miyashita and Chang 1988, Sakai and Miyashita
1991, Funahashi et al 1989, Goldman-Rakic et al 1990, Fuster 1995). -

WM is believed to be stored in recurrent neural circuits (Wilson and Cowan 1972, Amit
and Tsodyks 1991a, b, Goldman-Rakic 1995). A recurrent neural network can have two
stable states (attractors), characterized by low and high firing frequencies. External-inputs
produce transitions between these states. After transition the network maintains high orlow
firing frequency during the delay period. Such a bistable ‘switch’ can therefore store one bit
of information. Similar solutions exist in associative memory networks (Gerstner and van
Hemmen 1992a, b).

Over the last few years evidence has been accumulating that the NMDA receptor
(NMDAR) plays an important role in the mechanism of WM. Studies in humans (Scherzer et al
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1998) and rats (Cotman et al 1987) show that this receptor is expressed at the highest density
in the prefrontal cortex, the area involved in WM storage. Notably, the density of NDMAR
expression in human prefrontal cortex is higher than in the hippocampus. The importance
of NMDAR for WM is also evident from the impairment of the capacity to perform the
delayed response task produced by the receptor blockade (Krystal et al 1994, Adler et al 1998,
Pontecorvo et al 1991, Cole et al 1993, Aura and Riekkinen 1999). Similarly the injection
of the NMDAR antagonists brings about weakening of the delayed activity demonstrated
in electrophysiological studies (Javitt et al 1996, Dudkin et al 1997a). At the same time
intracortical perfusion with the glutamate receptor agonists both improves the performance in
the delayed response task and increases the activity of cells during the delay period (Dudkin
et al 1997a, b). Such evidence is especially interesting since the administration of NMDAR
antagonists (PCP or ketamine) reproduces many of the symptoms of schizophrenia including
deficits in WM (Javitt and Zukin 1991, Krystal et al 1994, Goldman-Rakic 1994).

One of the distinguishing features of the NMDAR is the nonlinearity of its current—
voltage characteristics. This feature was recently implicated as being crucial for WM
(Lisman et al 1998). It was shown that by carefully balancing NMDA, AMPA, and GABA
synaptic currents one can produce an N-shaped synaptic current—voltage characteristic, which,
when complemented by the recurrent neural circuitry, results in the bistability. This paper
implies therefore that a single neuron can be bistable and maintain a stable membrane state
corresponding to high or low firing frequencies (Camperi and Wang 1998). Such bistability,
therefore, is extremely fragile and can be easily destroyed by disturbing the balance between
the NMDA, GABA or AMPA conductances. This may occur in the experiments with the
NMDA antagonist.

Another possibility for the critical involvement of NMDAR in WM originates from its
high affinity to glutamate, resulting in the long duration of the excitatory post-synaptic current
(EPSC) (~100 ms (Clements et al 1992, Lester et al 1990)). This possibility was recently
studied by Wang (1999)!. It was shown that WM cannot be mediated by the AMPA channel
alone and slow synaptic dynamics is required to achieve a stable persistent state. Such dynamics
can be provided by, for example, the NMDAR.

In this paper we accept the latter point of view, that is, that the duration of EPSC is critical
to WM. Therefore, following Wang (1999), we disregard the phenomena associated with the
nonlinearity of the synaptic current-voltage relation (as in Lisman et al (1998)). Instead of
concentrating on delayed activity maintenance we study how this activity fails. More exactly
we consider the processes of spontaneous decay of the delayed activity associated with the
failures of WM. Such failures are frequently observed experimentally (Funahashi e al 1989).
We evaluate the average WM storage time determined by such processes of spontaneous decay.
We conclude that the WM storage time is significantly larger for synapses with longer EPSC.
This finding is consistent with the apparent importance of NMDAR for WM and the conclusions
of Wang (1999). In addition we find that the WM storage time decreases if the neuronal firing
frequency is decreased. This allows us to interpret the deterioration of WM observed in the
NMDAR blockade experiments.

Our approach to the problem is based on finding the optimum fluctuation of the synaptic
currents. Such a fluctuation leads most effectively to a decay in the delayed activity. Since the
decay implies the termination of the recurrent current, such a fluctuation is internal with respect
to the recurrent circuitry sources of noise. To address this issue we assume that the internal
noise is provided by the probabilistic nature of neurotransmitter release in each synapse. This
separates our model from that of Wang (1999). The optimum fluctuation produced by unreliable

' An earlier version of this paper, Koulakov (1999), is available.
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synapses can be described by the formation of critical nucleus in the neuronal population. This
implies that about 100 ms before the entire network shuts down a small subpopulation of the
entire network ceases the persistent activity. Such a mechanism of decay of the delayed activity
is more effective than that provided by external noise. The two systems of noise are shown
below to be in an intricate relationship mediated by synchrony.

The decay time of the memory state evaluated below increases as the size of the network
increases (see section 3). This is a natural result since in a large network the relative strength of
noise is small according to the central limit theorem. Therefore, if one is given the minimum
time during which the information has to be stored, there is a minimum network size needed to
perform this task. We calculate therefore the minimum number of neurons necessary to store
one bit of information in a recurrent network. This number weakly depends on the storage
time and for the majority of cases is 5-15. This problem is similar to the calculation of storage
capacity of a Hopfield network (see Hertz et al (1991) for an overview).

The analytical calculations presented below are confirmed by computer simulations. For
individual neurons we use the modified leaky integrate-and-fire model due to Stevens and
Zador (1998a), which is shown to correctly reproduce the timing of spikes in vitro. Such
neurons have firing frequencies within the range 15-30 Hz for purely excitatory networks in
the absence of any inhibitory input (section 2). This solves the high firing frequency problem
(see e.g. Amit and Tsodyks (1991a)). The resolution of this problem is based on the unusual

" property of the Stevens—Zador (SZ) model, which, in contrast to a simple leaky integrator,
has two timescales. These are the membrane time constant and the characteristic time during
which the time constant changes. The latter, being much longer than the former, determines
the minimum firing frequency in the recurrent network, making it consistent with the observed
values (see section 2 for more detail). The SZ model is a special case of a spike response
model (Gerstner 1995, Kistler et al 1997, Gerstner 2000).

2. The model and its approximate solution

In this section we first examine the properties of a single neuron, define our network model,
and, finally solve the network approximately using the mean-field approximation.

The SZ model is an extension of the standard leaky integrator (see e.g. Tuckwell (1988)).
It has been shown to accurately predict the spike timings in layer 2/3 cells of the rat sensory
neocortex. The membrane potential V satisfies the leaky integrator equation with the time-
varying resting potential E and integration time 7

v E@) -V
(1)

Here ¢ is the time elapsed since the last spike generated, and the input current 7 (¢) is measured
in volts per second. When the membrane voltage reaches the threshold voltage 8 the neuron
emits a spike and the voltage is reset to Viese.

This model is general enough to describe many types of neurons, differing only by the
functions E(¢), 7(t), and the parameters 8 and Vies. For pyramidal cells in the cortical layer
2/3 of rats the functions can be fitted by

E(t) = Eo — AE[1 — exp(—at /)] @

+1(1). 1)

and
T(t) = o[l — exp(—at/7o)]. 3)

The parameters of the model for these cells have the following numerical values: Eo =
-32mV, AE =28 mV, ¢ = 0.3, 7p = 10 ms, 6 = —22 mV, and Vet = —32 mV (Stevens
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Figure 1. The somatic membrane resting potential (a) and the integration time () as functions of
the time elapsed since the last spike.

and Zador 1998a). The resting potential and integration time with these parameters are shown
in figure 12.

In the next step we calculate the transduction function f = T(/), relating the average
external current to the average firing frequency. This function is evaluated in appendix A
and is shown in figure 2. The closed hand expression for this function cannot be obtained.
Some approximate asymptotic expressions can, however, be found. For large frequencies
(f > a/19 = 30 Hz) it is approximately given by the linear function (dashed line in figure 2)

) =gl - ), 4)
where
o 1
T Traify—or ®
and
AE |Ey—6| 1+«
IO=—;+ 29 1+2a ©)
For small frequencies (f <« a/7tp) we obtain
o 1
T() ~ — . @)
7o In{(|Eo — 61)/(|1Eo — 6 + AE — 701)]
The neuron therefore starts firing significantly when the current exceeds the critical value
I*ZIEO—GHAE‘ @)
To

2 Since the time constant is zero at t = 0 to resolve the singularity an implicit Runge-Kutta scheme should be used
in the numerical integration of (1).
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Figure 2. Neuronal transduction function relating the firing frequency and the input current for
one neuron (solid line [y A7* B). The straight line A B describes the network feedback. The dashed
line represents the asymptote of the transduction function for large frequencies. It is given by
equation (4). The expressions for [y and [* are provided by equations (6) and (8). The points A
and B are the low- and high-frequency attractors, respectively.

In the following, we ignore spontaneous activity by setting all firing frequencies below 5 Hz
to zero. We also disregard the effects of the refractory period since they are irrelevant at
frequencies of 10-50 Hz.

We consider a network consisting of N SZ neurons establishing all-to-all connections.
After each neuron emits a spike an EPSC is generated in the input currents of all cells with the
probability «. This is intended to simulate the finite probability of neurotransmitter release in
each synapse. The total input current of the nth neuron is therefore

N
L) =) bus jlt — ) + I, ©)

k=1 "ty

where k labels the neurons making synapses on the nth neuron (all neurons in the network),
t;, is the time of spike number s; emitted by cell k, and I:® is the external current. The
binary variable b is equal to 1 with probability « (in our computer simulations always equal
to 0.3 (Dobrunz and Stevens 1997)). It is the presence of this variable that distinguishes our
approach from Wang (1999). We choose the EPSC represented by j(¢) to be (see Amit and
Brunel (1997))

j = jo exp(_t/tgpsc)H(t)7 (10)

where H(t) = 1,if t > 0, and H(¢) = 0 otherwise. As evident from (10) . is the duration
of EPSC and is therefore the central variable in our consideration.

Equation (9) implies many approximations about the synaptic input current. First, we
assume that the synaptic channels are not saturated. For the NMDAR the decrease in the
amplitude of EPSC in pair-pulse stimulation is p ~ 0.8 (Mainen et al 1999). In the case
of a spike train bombarding the synapse the reduction in amplitude of a single EPSC can
be estimated as 8jo/jo ~ (1 — p)exp[—1/(kf1,.)]. For arealistic firing rate f A~ 20 Hz
8jo/jo ~ 6%. This slightly reduces the network feedback (see below), making the system
slightly more stable against noise. This does not change our results, however, since they do
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not depend on the amplitude of a single EPSC. Second, we ignore the nonlinear interactions in
the dendrite, in view of the existing controversy in the experimental literature (see discussion
in Kogo and Ariel (1999)). Third, the synaptic current given by equation (10) is not voltage
dependent. This approximation is good for an AMPA receptor and for a NMDAR it is
good as long as we consider the high-frequency attractor, in which the membrane voltage
oscillates in a relatively narrow range. Finally, we disregard the inhibitory interneurons in our
model. The role of the interneurons in the decay of delayed activity warrants further study but
some experimental studies have suggested that the inhibitory current is small compared to the
excitatory current (Stevens and Zador 1998b). Our model is quite approximate but we do feel
that it captures the main features of the phenomenon. The other features can be accounted for
using a rescaling of the parameters involved.

If the number of neurons in the network is large its dynamics is well described by the
mean-field approximation. Although called an approximation it correctly reproduces collective
behaviour of the network. The deviations from the mean-field picture are discussed in the next
section. In the mean-field approximation the average firing frequency f and the average input
current / describe the network completely. Thus the network dynamics can be approximated by
one ‘effective’ neuron receiving the average input current and firing at the average frequency.
The behaviour of system in this approximation, reduced to the behaviour of one effective
neuron, can be understood from figure 2. The stationary points of the system are given by
the points of intersection between the neuronal transduction curve and the line describing the
feedback. There are three such points in figure 2. Two of them are denoted by letters A and B.
The third stationary point is between A and B. Indeed, if the system is put exactly at one of
these points the recurrent feedback and the neuronal transduction curve will reproduce the state
of the system indefinitely, whereby the system will remain at the initial point forever. However,
only two of these three stationary points are stable; these are points A and B, which represent
the low- and high-frequency attractors, respectively. The stability of state B is demonstrated
in figure 2 graphically; assuming that the system received a brief external perturbation, which
increased its input current to the value corresponding to point 1 in figure 2, the numbers 123
then demonstrate the trajectory of the system after such a perturbation. The value of the input
current corresponding to point 1 produces the firing rate in the hypothetical neuron associated
with a mean-field approximation, which is described by the transduction function. This firing
rate induces a new feedback value, described by the line AB and given by point 2. This
feedback current induces a new value of the firing rate given by point 3. When moving from
point 1 to 3 the system approaches point B, which is therefore an attractor. The stability of
point A can be shown in a similar way. The point between A and B is unstable due to similar
considerations and represents the edge of the two attraction basins of points A and B.

We now, address the dynamics of the system in the mean-field approximation on a more
quantitative level. Assume that the hypothetical neuron associated with the approximation
emits spikes at a frequency of f(#) (point 1 in figure 2). Due to the network feedback this
results in the input current equal to the average of equation (9), displaced in time by the average
duration of an EPSC, i.e.

T(t+ Tppee) X 1 = NKjoTypee f (1) + I (11)
This corresponds to the transition between points 1 and 2 in figure 2. Finally the transition
between the input current and the firing frequency is accomplished by the transduction function
T(I) (points 2 and 3). The delay due to this transition is of the order of a somatic membrane
time constant (~10 ms) and is negligible compared to t,,,. ~ 100 ms. We, therefore, obtain
the equation for the firing frequency f (t + Tpee) = T(I( f (1)) (Wilson and Cowan 1972),
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which has the following Taylor expansion:

Tase f = TA) — £ (12)
To obtain the steady state solutions we set the time derivatives in (12) to zero
(1) = I7X(D). | (13)

Here /7'(I) is the function which is inverse to (11). It is shown in figure 2 by a straight solid
line. This equation has three solutions, two of which are stable and are shown by points A and
B in the figure.

Point B represents the high-frequency attractor. The frequencies obtained in the SZ model
neurons are not too high. They are of the order a/79 (=0.3/10 ms in our case), i.e. in the
range 15-30 Hz (see e.g. figure 3(b)). This coincides with the range of frequencies observed
in the delayed activity experiments (Miyashita 1988, Miyashita and Chang 1988, Sakai and
Miyashita 1991, Funahashi et al 1989, Goldman-Rakic et al 1990, Fuster 1995). The reason for
the relatively low firing frequency is as follows. For the leaky integrator model the characteristic
firing rates in the recurrent network are of the order 1/t (1/10 ms), i.e. they are in the range
of 50-100 Hz. For the SZ neuron t is even smaller (see figure 1(b)), and therefore it seems
that the firing rates should be larger than for a leaky integrator. This, however, is not true,
since for the SZ neuron, in contrast to the leaky integrator, there is a second timescale. It is the
characteristic time of variation of the time constant 7o/« ~ 30-50 ms (see figure 1(d)). Since
the time constant itself is very short it becomes irrelevant for spike generation purposes at low
firing rates and the second timescale determines the characteristic frequency. It is, therefore,
in the range 15-30 Hz.

Finally we would like to discuss the stability of the attractor B. It can be locally stable,
i.e. small perturbations cannot produce a transition from state B to state A. The condition for
this follows from the linearizing equation (12) near the equilibrium

dr dI
V= ——— <
dr df

Very rarely, however, a large noise fluctuation can occur that kicks the system out of the basin
of attraction of state B. It is, therefore, never globally stable, which is the topic of the next
section.

It should be noted that the dynamics of spiking neural networks is described by
equation (12) only approximately. One can justify the firing rate approach implied by (12) if the
averaging time 7, includes a few spikes, i.e. 7. f > 1. Since 1. f = 2 in our numerical
experiments this equation applies only marginally. The other case when equation (12) is valid
is for the case of an asynchronous state. The stability of this state is analysed in detail in Abbot
and van Vreeswijk (1993), Gerstner and van Hemmen (1993) and Gerstner (1995, 2000). In
the following we first assume that the asynchronous state is stable, and then consider the effects
of synchronization on the global stability of the high-frequency state.

(14)

3. Spontaneous decay of persistent activity

Computer simulations show that our network can successfully generate delayed activity
responses. An example is shown in figure 3(a) where a short pulse of an external current
(dashed line) produces a transition to the high-frequency state. This state is well described by
the mean-field treatment given in the previous section.

* This is true, however, only for networks containing a large number of neurons N. If the size
of the network is smaller than some critical number N*, the following phenomenon is observed




54 A A Koulakov

>
N —

Current [V/sec]

Time [sec]
(b)
40t
g
i 20¢
B
]
-
%
Time [sec]
(c)
20+ RUI[IIIIIIiIIIIlII!IIIIIIIIIIIIIIIlIIIliIIIIIlIIIIIIIlIIIlIIIIIIIIIII'IIIIlIIIIIIIIIlIIIlllIIIIIIHII'INIIHIIIIIIII|II|I!III||IIIII

MBI IPIRENAMIIE DT E T OO A
1O OO OGS0 AT AR S
[ A A RO AT SRRSO AT OO
| O O A SRS AR R
15¢ | SRR MAE D LT AR A
L e
[N TGRSO ORAOGREO RGO T € OO AR
(00O SRR AR
[ R D0 O O OO R A
10} 3RO 1000000 O 0 S A
0 0 O RO R AR R O
O 0 RO R
R T ERAERO R 1 0O RT3 OO T A
1M GO0 0 O O
S5t O 0O O A A AR R ERAAI 1
O 1 SR R RIS
{10 0SSR A 0 SOOI A A O
(O OO SR DM A SO R
|I-l\IIIIlIIIIIIIIIIIIIIIIIIIIllIIIIIIIIIIIlIIlIIIIlIIIIHIIIIIIIIII‘IIIIIIIIIIIII|IIIIIIIIIIHI!II|!IIIIIHIIIIIIIIIIIHIIIIIIIIIIII

0 2 4 6 8 10
Time [sec]

Neuronal number

Figure 3. In a large networks (N = 20) the delayed activity can persist virtually forever. (a) Total
input current averaged over all the neurons in the network (solid curve). A short pulse of the
external current (dashed line) brings about the transition to the high-frequency state, in which the
total current is larger than the external current by the value of feedback. The edge of the attraction
basin is displayed by the dotted line. The inset shows the traces of neuronal synchronization: the
average current experiences oscillations at the average firing frequency. (b) The firing rate averaged
over the network as a function of time. (¢) The spiking rastergram for each neuron in the network.
All plots are shown for the same run of the simulation program.

(see figure 4(a)). The fluctuations of current reach the edge of the attraction basin (dotted line)
and the network spontaneously shuts down, jumping from the high-frequency state to the
low-frequency state. The quantitative treatment of these events is the subject of this section.

Similar decay processes have been observed by Funahashi et al (1989) in the prefrontal
cortex. One example of such an error trial is shown in figure 5.
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Figure 4. Same as in figure 3 but for the network containing N = 14 neurons. In the small network
the high-frequency state can decay and the delayed activity terminates. This results in the average
current crossing the edge of the attraction basin (the edge is shown by the dotted line in (a)) or in
a sudden decrease of the firing rate, as in (b). (d) Also shown is the membrane voltage of neuron
no 1 (very bottom of (c)) as a function of time for the moment of decay of the persistent activity.

Although the decay is abrupt, the moment at which it occurs is not reproducible from
experiment to experiment. It is of interest, therefore, to study the distribution of the time
intervals between the initiation of the delayed activity and the moment of its decay. Our
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Figure 5. Sudden decay of the delayed activity in a neuron in the prefrontal cortex during an error
trial (bottom figure) observed by Funahashi er a/ (1989). Compare to the rastergram for neuron no
6 in figure 4(c).
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Figure 6. The probability density of decay at time ¢ obtained numerically (bars) and the exponential
distribution with 7 = 28 s (solid curve). The latter is given by equation (B.8). The numerical results
include 100 trials with f =~ 16 Hz, N = 14, 1,5 = 80 ms.

simulations and the arguments given in appendix B show that the decay can be considered
to be a Poisson process. The decay times have, therefore, an exponential distribution (see
figure 6). The reason why the decay is a Poisson process originates in the large difference
between the EPSC duration (~100 ms) and the average delayed activity decay time (~10 s).
Since the fluctuations in the network last no longer than the EPSC time, the attempts of the
system to decay during the long delayed activity time (~10 s), become independent of each
other. This implies that the probability of decay during each of the Tgpgc periods is independent
of time, which leads to the Poissonian statistics for the decay times.

Since failure to maintain the persistent activity entails the loss of the memory and incorrect
performance in the delayed response task, at least in the monkey prefrontal cortex (Funahashi
etal 1989), one can use the Poisson distribution to interpret some psychophysical data. In some
experiments on rats performing the binary delayed matching to position tasks the deterioration
of WM is observed as a function of delay time (Cole ef al 1993). The deterioration was
characterized by a ‘forgetting’ curve, with matching accuracy decreasing from about 100% at
zero delay to approximately 70% at 30 s delay. Performance approaches the regime of random
guessing with 50% of correct responses in this binary task (figure 7). Our prediction for the
shape of the ‘forgetting’ curve follows from the Poisson distribution of delayed activity decay
times:

Correct = (1 + y exp(—t/1)) x 50%. (15)
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Figure 7. The performance of rats in a delayed matching to position task (from Cole er a/ (1993)).
Different markers show various degrees of sedation with the competitive NMDA antagonist CPP:
circles O mg kg~ !; triangles 1 mg kg~!; hexagons 3 mg kg~!; pentagons 10 mg kg~!. The solid
curves represent the fits by equation (15). The upper and lower curves correspond to the average
decay times of 40 and 15 s, respectively.

Here 0 < y < 1 is the probability that the delayed activity is initiated after presentation of a
stimulus. This prediction is used to fit the experimental data in figure 7.

This figure also shows the effect of the competitive NMDA antagonist CPP. Application
of the antagonist reduces the average memory retention time 7 from about 40 to 15 s. The
presence of non-competitive antagonists impairs performance even at zero delay (Cole et al
1993, Pontecorvo et al 1991). Non-competitive antagonists have, therefore, an effect on non-
WM components of animal behaviour (parameter y in (15) is less than one). When the delayed
component of the ‘forgetting’ curve is extracted it can be well fitted by an expression (15).
This also shows that the average WM storage time ¢ decreases with application of an NMDA
antagonist.

Our calculation in appendix B shows that the average memory storage time is given by

T~ T explif T NH(AT/T)]. (16)

Here AT is the distance to the edge of the attraction basin from the stable state and 7 is the
average feedback current. This result holds if f1,. > 1. Because 7 is of the order of tens of
seconds and 7, is approximately 100 ms the exponential in (16) is realistically of the order
102-103.

There are, therefore, two ways in which a synaptic receptor blockade can affect 7. First,
the attenuation of the EPSC decreases the average firing frequency f. Second, it moves the
system closer to the edge of the attraction basin, reducing A /. Both factors increase the effect
of noise on the system and decrease the average memory storage time. This is manifested by
equation (16).

Another consequence of the formula is the importance of the NMDAR for WM storage.
It is based on the large affinity of the receptor to glutamate leading to long EPSCs (7,
100 ms), compared for example to the AMPA receptor (z,,,,, & 15 ms). Equation (16) implies
that if the AMPA receptor is used in the bistable neural net and all other parameters (x, f, N,
and AI/I) are kept the same, the memory storage time is equal to Tapmpa &~ 15 ms. Thus it is
not surprising that the NMDAR is chosen by evolution as a mediator of WM and the highest

~
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Figure 8. The network used in the text to illustrate the optimum fluctuation
leading to a delayed activity decay. The synapses are shown by circles.
The synapses releasing the neurotransmitter are shown by full circles. The
failing synapse is shown by the open circle. The dendrites and axons are
represented by thick and thin lines, respectively.

A
F 3

density of the receptor is observed in places involved in WM storage, i.e. in the prefrontal cortex
(for example in frontal and anterior cingulate cortices (a rostral part of the medial prefrontal
cortex) in rats: Cotman et al (1987); in human prefrontal cortex: Scherzer et al (1998)).

We now would like to illustrate what processes lead to the decay time given by (16).
Consider a simple network consisting of three neurons (figure 8). Assume that the ratio AI/I
for this network is equal to 1/3. This implies that the neurons have to lose only 1/3 of their
recurrent input current due to a fluctuation to stop firing. This can be accomplished by various
means. Our investigation shows that the most effective fluctuation is as follows. Due to the
probabilistic nature of synaptic transmission some of the synapses release glutamate when the
spike arrives onto the presynaptic terminal (full circles in figure 8) whereas some fail to do so
(open circle). It is easy to see that if the same synapse fails to release a neurotransmitter in
response to any spike arriving during the time interval 7, the reverberations of the current
terminate. Indeed, the failing synapse (open circle) deprives the neuron of 1/3 of its current.
This is just enough to put the input current into the neuron below the threshold and the neuron,
therefore, stops firing. This deprives the entire network, consisting of three neurons, of 1/3 of
its feedback current and, therefore, the delayed activity in this network is terminated.

Since in this example only one out of nine synapses fail, the network current I (the mean-
field current) experiences a fluctuation equal to 7/9. In the the most reasonable alternative
decay mechanism the mean-field current would reach the edge of the attraction basin, i.e. would
be reduced by I /3. Thus the mechanism proposed above involves a much smaller fluctuation
in the current than the mean-field one. Such a fluctuation, therefore, can be realized more
frequently and the corresponding decay is faster. Quantitatively the difference between the
above (non-mean-field) and the mean-field decay rates is manifested in reducing the exponent
of the factor containing Al/I < 1 in equation (16) from 3 to 2 (see appendix C for the mean-
field estimate). This brings about an increase in the average storage time. The mean-field
mechanism is therefore less destructive than the proposed one and is disregarded in this paper.

The single neuron which initiates the decay in the persistent activity (the rightmost in
figure 8) constitutes the critical nucleus mentioned in the introduction. In general the critical
nucleus involves n = N AI/I neurons.

Since an increase in the number of neurons in the network N dramatically influences the
memory storage time according to equation (16), another characteristic of the reliability of the
WM circuit is the minimum number of neurons N* necessary to store one bit of information
for at. We determine this quantity as follows. We run the network simulation many times with
the same values of N and t,,,.. We then determine the average decay time 7. Having done this
we decrease or increase N depending on whether 7 is larger or smaller than a given value (20 s
in all our simulations). This process converges to the number of neurons necessary to sustain
the delayed activity N* for the given value of 7. The process is then repeated for different
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Figure 9. The minimum number of neurons N* needed to maintain delayed activity with an average
decay time of 20 s for f = 16 Hz, AI/I = 2/3. The dots show computational results for the case
of no noise in the external inputs. The triangles correspond to the case of 10% white noise added to
the external current. The solid curves represent the result of the analytical calculations described
in the text. The dashed line is the vertical asymptote of N* in the case of no external noise. No
delayed activity can exist to the left of this line, i.e. for the synaptic receptor time constant < 37 ms.

values of the synaptic time-constant. However, the network feedback is always renormalized
so that the firing frequency stays the same, close to the reasonable value f = 16 Hz. This
corresponds to the attractor state shown in figure 2. The resulting dependence of N* versus
Topec 18 Shown in figure 9.

There are two sets of computational results in figure 9. The higher values of N* are
obtained for the network with no noise in the external inputs (dots in figure 9). The only
source of noise in such a network is therefore the unreliability of synaptic connections. It
appears for this case that no delayed activity can exist for .. below 37 ms. The lower
values of N* are obtained for the case of white noise added to the external input (triangles).
The values for the noise component of the current of each neuron are uniformly distributed
between —A and A, where the amplitude of noise A is equal to 10% of the total input current
and its correlation time is 1 ms. The limiting value of the synaptic time constant for which the
delayed activity is not possible is much smaller for this case (~5 ms).

This result may seem counter-intuitive. Having added the external noise we increased the
viability of the high-frequency state, reducing the effects of the internal synaptic noise. This,
however, is not so surprising if one takes the neuronal synchrony into account. The synchrony
of neuronal firing results in oscillations in the average input current (see inset in figure 2(a)).
Such oscillations periodically bring the system closer to the edge of the attraction basin,
creating additional opportunities for decay. Thus a synchronous network is less stable than an
asynchronous one. External noise attenuates neuronal synchrony, smearing the oscillations of
the average input current. Thus the system with noise in the external inputs should have a larger
decay time and a smaller critical number of neurons N*. This idea is discussed quantitatively
in this section. This is similar to the stabilization of the mean-field solutions in the networks
of pulse-coupled oscillators (Abbot and Van Vreeswijk 1993).

Figure 10 shows the results of similar calculations for the attractor state with a higher
average firing frequency ( f = 28 Hz). This network shows a higher level of reliability and
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Figure 10. The minimum number of neurons N* needed to maintain delayed activity with an
average decay time of 20 s for the attractor with an average firing frequency of 28 Hz (A1 /I = 5/6).
Notations are the same as in figure 9. The cut-off value of the synaptic time constant is 27 ms.
The numerical results with external noise in this case are slightly above those predicted due to
insufficient suppression of the synchrony.

smaller values of N* for both synchronous and asynchronous (10% noise added) regimes. This
is consistent with equation (16). The results of the analytical calculations (solid curves) show
good agreement with the computer modelling (markers). The rest of the section is dedicated
to the discussion of different aspects of the analytical calculations and their results. A more
complete treatment of the problem can be found in appendix B.

To evaluate the minimum number of neurons in the closed hand form we solve equation (16)
for N

N ANt = (’)m m( ’_) (17)
b \/Kf Tepsc Al Tepsc .

This equation is valid for fz_. > 1. In the opposite case fr,. < 1 it hasto be amended.
To obtain the correct expression in the latter case the following considerations should be taken
into account.

3.1. Fluctuations of the average mean-field current

It is obvious that when the mean-field attractor becomes less and less stable in the local sense,
i.e. the dimensionless feedback coefficient v < 1 (equation (14)) approaches unity, the global
stability should also suffer. Indeed, if the system is weakly locally stable the fluctuations in
the average current are large. This should facilitate global instability. The facilitation can
be accounted for by noticing that the transition from the high-frequency state B to the low
frequency one A is most probable when the average current is low. Hence to obtain the most
realistic transition probability and the correct values for  and N* one has to decrease the values
of the average current and distance to the edge of the attraction basin by

I —> 1341,

(18)
Al > AI - 31,
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where the standard deviation of the average current 87 is calculated in appendix B

I
I = . (19)
NJ/2(1 = VK fT e
Here I is the average current before the shift, v ~ 0.8 for the 16 Hz state. This correction
decreases the ratio AI/I, decreasing 7 (see equation (16)). This implies that there is reduced
reliability of the network due to the average current fluctuations.

3.2. Large combinatorial space covered by small groups of neurons attempting to cross the
attraction basin edge

In the simple example with three neurons, in principle, each of them can contribute to the
decay process. If the network is larger the number of potentially dangerous groups grows as
a binomial coefficient C},, where n = NAI/I < N is the size of the dangerous group. The
correction to N* can be expressed as follows (appendix B):

N* = /(N2 + (NJ)? + N;. (20)

Here N; is the combinatorial correction

N (L >(Al/D+(AI/DIn A
Y Sle

21

Here
I

NN T 22)
¢(x)=xIn[1/x]+ (1 —x)In[1/(1 — x)].
Since the combinatorial contribution N is proportional to 1/f 1., it is negligible compared
to Ni o< 1/./ f Tepsc for large values of 7,,... Therefore N* ~ N as claimed by equation (17)
for this limit. On the other hand if . is small the main contribution to the critical number
of neurons N* comes from N.

The right-hand sides of equations (17) and (21) show a dependence on N* through the
shift in distance to the attraction edge §/ and the coefficient A. This dependence is weak,
however, since the former represents a very small correction and the latter depends on N*
only logarithmically. Nevertheless to generate a numerically precise prediction we iterate
equations (17), (20), and (17) until a consistent value of N* is reached. The results are
shown by lower solid curves in figures 9 and 10. They are in good agreement with numerical
simulations in which the synchrony of firing was suppressed by external noise.

3.3. Neuronal synchrony

The synchronization of neuronal firing can be critical for the stability of the high-frequency
attractor. Our computer modelling shows that in the large network the neuronal firing pattern is
highly synchronized to the order of T = 1/f, if the external noise is absent (for analysis of the
fully synchronous state see Gerstner (1995) and Gerstner ef al (1996)). In essence all neurons
fire simultaneously and periodically with period T. During one such ‘collective spike’ they
produce a large feedback current. Such a current can be above the firing threshold. However,
by the time the next spike is generated if the duration of EPSC is shorter than T the neurons
experience almost no feedback current. The sum of the external and the feedback current in
this case is close to just the external current, i.e. is below the threshold I* (see section 2).
The delayed activity, therefore, cannot be maintained if EPSC is too short, i.e. for fr., .. < 1
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(Wang 1999). This is consistent with the results of the computer simulations presented in
figures 9 and 10.

If 7, is comparable or larger than T synchrony facilitates the instability by producing
oscillations in the average current and thus brings the edge of the attraction basin closer.
It therefore effectively decreases the distance to the edge of the attraction basin A/. The
magnitude of this decrease is estimated in appendix B to be

21 frepsc — e_l/ﬁEPSC (fTEPSC +1) (23)

8lgyn ~
yn _
T f Topee 1 — e Vitgpsc

and
Al — Al — 81y, (24)

Here [ is the average current given by (18). This correction, which is the amplitude of the
oscillations of the average current due to synchrony, is in good agreement with computer
modelling (see the insert in figure 3(a)). The synchrony does not change the average current
in the network significantly. Therefore the latter should not be shifted as in (18).

These corrections imply that if the original value of AT is equal to the sum &/ + 8/,
(see equation (19)), the effective distance to the edge of attraction basin vanishes. Delayed
activity cannot be sustained under such conditions. This occurs at small values of 7. and
determines the positions of the vertical asymptotes (dashed lines) in figures 9 and 10. This
gives a quantitative meaning to the argument of the impossibility of stable delayed activity in
a synchronous network at the small values of the synaptic time constant given above (see also
Wang (1999)). When the synchrony is diminished by external noise, the cut-off value of 7,
is determined only by Al = 81 and is therefore much smaller. It is about 5 ms in our computer
simulations.

Synchrony also affects the values of the critical number of neurons for large and small
f s (N} and N3, respectively)

IN? 1 [20-n0)1
Nl*syn :< ) \/ ( K) n(t/fspsc), (25)

E frEPSC K(ez/‘ftEPSC -1
. (I e@l/D+Al/DInA 1-« 26
2 — \ AT e2/fTepsc — 1 K'le'z =

EPSC

These equations are derived in appendix B. To obtain the value of critical number of neurons
N* equation (20) should be used. Let us compare the latter equations to (17) and (21). For the
limit f >> 1 the expressions for Ny and N{,, converge to the same asymptote Ni' =~ N{ ,
whereas both Nj and Nj , go to zero.

Since again, as in the asynchronous case, both Ny - and N7 depend on the quantity that
we are looking for N* (however, again very weakly), an iterative procedure should be used
to determine the value of N*. Having applied this iterative procedure we obtain the upper
solid curves in figures 9 and 10 and, therefore, we obtain excellent agreement with the results
obtained numerically. In addition we calculate the cut-off t,., below which the delayed
activity is impossible in the synchronous case. For the attractor with f & 16 Hz the cut-off
value is 37 ms, while for the higher frequency attractor (f ~ 28 Hz) the value is 21 ms. These
values are shown in figures 9 and 10 by dashed lines. We therefore conclude that the delayed

activity mediated by the AMPA receptor is impossible in the synchronous case.
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4. Discussion

4.1. The cooperative character of the decay of the high-frequency attractor

The subject of this paper is related to the question of stability of the high-frequency attractor.
This state is locally stable, i.e. small synaptic and other noises cannot kick the system out of the
basin of attraction surrounding the state. However, this state is not guaranteed to be globally
stable. After a certain period of time large fluctuations in the synaptic currents makes the
system reach the edge of the attraction basin and the persistent memory state decays into the
low-frequency state. Before the network reaches the edge of the attraction basin it performs an
excursion into the region of parameters which is rarely visited under usual circumstances. This
justifies the use of term ‘instanton’ for such an excursion, emphasizing the analogy with the
particle travelling in the classically forbidden region in quantum mechanics. Such an analogy
has been used before in application to the perception of ambiguous stimuli by Bialek and
DeWeese (1995). The present study, however, is based on the microscopic picture, deriving
the decay times from synaptic properties.

The use of a very simple model network allowed us to look into the nature of the global
instability of delayed activity. The principal result of this paper is that the unreliability of
synaptic conductance provides the most effective channel for the delayed activity decay. We
propose the optimum fluctuation of the synaptic conductances leading to the loss of WM. The
decay rates due to such a fluctuation, calculated analytically, agree well with the results of a
numerical study.

In the most trivial scenario the network shuts itself down by not releasing the
neurotransmitter in a certain fraction of synapses of all neurons. In such a scenario all the
neurons cross the border of the attraction basin of the high-frequency state simultaneously.
Such a mechanism of decay was shown to be ineffective. Instead, the network chooses to
cross the border of the attraction basin by shutting the activity down in a small subpopulation
of neurons, taking advantage of the large combinatorial space spanned by such groups. The
effective mechanism of decay, therefore, involves the formation of a critical nucleus in the
neuronal population. Once the nucleus is formed decay is unavoidable. The cooperative nature
of decay in this problem is analogous to some examples of tunnelling of macroscopic objects
in condensed matter physics (Larkin and Lee 1978, Levitov et al 1995).

4.2. NMDAR and reliability

In this paper we derive the relationship between the dynamic properties of the synaptic receptor
channels and the stability of the delayed activity. We conclude that the decay of the latter is
a Poisson process with the average decay time depending exponentially on the EPSC time
constant. Our quantitative conclusion applied to AMPA receptors, which have a short EPSC,
implies that it is not possible to sustain persistent activity in the synchronization of firing in
a network. In the case of asynchronous networks one needs a large number of neurons >30
to store one bit of information with AMPA receptors. On the other hand NMDARs seem
to avoid such problems, providing reliable bit of information storage with about 15 neurons
for both synchronized and asynchronous cases. We therefore suggest an explanation for the
experimentally observed high significance of the NMDAR for WM.

In addition to the general evolutionary importance of the NMDA channel for WM, we have
a suggestion for the mechanism of the deterioration of WM in the NMDA channel blocking
experiments. The blockade of the NMDA channel decreases the feedback network current and
the average firing frequency. According to our analytical calculation (see equation (16)) both
‘of these effects decrease the average WM storage time, thus impairing WM. We also predict
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that with normal NMDARs the number of neurons able to store one bit of information for 20 s
is about 15. Should our theory be applicable to rats performing delayed matching to position
task (Cole et al 1993) the conclusion would be that the recurrent circuit responsible for this
task contains more than 15 neurons. Of course this would imply that other sources of loss of
memory, such as distraction (Camperi and Wang 1998), are not present.

One can conclude from our study that if the time constant of the NMDA channel EPSC
is further increased, WM can be stored for a much longer time. Assume that 7, is increased
by a factor of 2, for instance, by genetic enhancement (Tang et al 1999). If the network
connectivity, firing frequency, and average currents stay the same as in the wild type, the
exponential in equation (16) is increased by a factor of 10°. This implies that WM can be
stored for days instead of minutes. Alternatively the number of neurons responsible for the
storage of quantum of information can be decreased by a factor of 0.7 keeping the storage time
the same. This implies a higher storage capacity of the brain of genetically modified animals.

4.3. The critical size of the network

The natural question is whether our estimate N = 15 is relevant to the cortical circuits
containing a large number of neurons. By using a network containing for example N = 1000
neurons the instability to noise can be made completely irrelevant. First, the decay of delayed
activity is indeed observed in both psychophysically and physiologically (see Cole et al (1993),
Funahashi et al (1989)). The system therefore is close to the maximum performance that can be
reached by existing neural circuits. Hence noise is relevant in the existing conditions. Second,
our estimate for the critical number of neurons increases if a sparsely connected network is
employed. If a neuron receives inputs only from € N neurons involved in the storage of the
same bit, the critical number of neurons should be increased by a factor 1/./¢. If € = 0.1,
as in Brunel (2000), the critical value of N can reach 40-50. Inhibitory neurons amplify the
relative noise in the input current, increasing the critical number of neurons too. We conclude
therefore that a greater understanding of the architecture of the recurrent circuits is needed to
make an exact claim how close the actual number of neurons is to the minimum value evaluated
in the presented study. We can, however, make a comparison to the cortical sensory areas,
where more experimental evidence is available. The study of correlations between monkey
psychophysical performance and responses of a single neuron in area MT (Shadlen et al 1996)
reveals that at least 100 MT neurons are engaged in the directional discrimination task. Since
direction can be coded by three to five bits, this result implies 20-30 neurons/bit. On the other
hand responses of neurons in temporal visual cortex to faces (Rolls et al 1997) show that 14
neurons code 2.77 bits of information on average. This corresponds to about 5 neurons/bit.
If any reciprocity is maintained between sensory and mnemonic areas, a similar number of
neurons coding for one bit should be observed in the prefrontal cortex. This makes our estimate
of N = 15 more realistic.

Since noise due to synaptic transmission failures is uncorrelated from cell to cell its
effect decreases when the size of the network increases. In large networks the uncorrelated
component of noise, which may be due to, for example, distractors (Durstewitz et al 2000),
becomes relevant. The transitions caused by distractors therefore become important when the
number of neurons in the network exceed a certain value Ny. Assume that the distribution of
input current due to distractors is Gaussian with standard deviation, . The critical number of
neurons below which our theory takes place Ny is obtained from equation (16)

1 g
N~ — | ——. 27
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Here we ignore any logarithmic factors. Our theory therefore has a region of validity if
N* < Ny (see equation (17)), i.e. if the distance to the edge of the attraction basin is larger then
the standard deviation of the input current due to distractors: Al > o. The latter condition
seems plausible, since otherwise the persistent activity is destroyed by distractors almost
instantaneously. Assuming that our theory has a region of validity, i.e. the latter condition is
satisfied, the following three regimes are possible depending on the value of N. (i) N < N*,
the persistent activity is highly unstable with respect to intrinsic noise and is destroyed almost
instantaneously (in about 100 ms). (i) N* < N < Ny, our theory is valid, the decay time
is given by equation (16), and is of the order of a few minutes. (iii) Ny < N, the intrinsic
noise is irrelevant and decay is caused by distractors. More experimental evidence is needed
to establish what regime the real cortical networks operate in. It is worth noting, however, that
the latter regime seems unlikely, since in this case the number of neurons can be reduced at
least to Ny without any loss in reliability. Our theory may therefore be relevant in establishing
the evolutionary factors determining the architecture of such circuits.

4.4. The impact of synchrony

Our study shows that in the absence of noise the firing of cells in recurrent circuits is strongly
synchronized both with fast AMPAR and slow NMDAR. Thus the feedback current experiences
oscillations at the firing frequency shown in figure 3(a) and described by equation (B.14). This
is partially in agreement with conclusions of Wang (1999), who suggests that a fast AMPA
current may lead to synchronous firing. In addition, we suggest that even a slow NMDAR
mediated feedback current may lead to synchrony (as in figure 3(a)). However, the impact of
synchrony is drastically different in the cases of AMPAR and NMDAR mediating the feedback.
In the former case the oscillations of the current, given by equation (B.14), are very large and
the feedback current is virtually unimportant. Thus the synchronized high-frequency state in
the case of AMPAR is locally unstable. In the case of NMDAR, however, the synchronous
state can be made to be locally stable. The instability of the synchronous high-frequency state
in this case is much softer and is reflected by the reduction of its lifetime with respect to the
asynchronous state. This is in line with the conclusion of Wang (1999), suggesting that slow
NMDAR channels may be required for the maintenance of a persistent state in the case of
synchronous firing.

We also studied the decay process in the presence of uncorrelated noise in the afferent
inputs. The study suggests that the effect of such a noise on WM storage reliability is not
monotonic. The addition of small white noise (<10% of the total external current) increases
the reliability by destroying synchronization and is therefore beneficial for WM storage. A
further increase in noise (> 12%) destroys WM, producing transitions between low- and high-
frequency states. We conclude therefore that there is an optimum amount of afferent noise,
which on one hand smoothes the synchrony and on the other hand does not produce a decay
in delayed activity.

If the afferent noise is not too large the neurons fire in synchrony. The natural consequences
of synchrony are a decrease in the coefficient of variation of the interspike interval for single
neurons and the increase in the crosscorrelations between neurons. The latter prediction is
consistent with the findings of some multielectrode studies in monkey prefrontal cortex (see
Dudkin et al (1997a), Funahashi (1998)). On the other hand synchrony may also be relevant
to the phenomenon of temporal binding in visual cortical areas (Engel et al 1999, Roskies
1999). We argue therefore that temporal binding with a precision of many milliseconds can
be accomplished by recurrent neural networks.
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4.5. The high firing rate problem

We suggest a solution to the high firing frequency problem by using a more precise model
of the spike generation mechanism, i.e. the leaky integrator model with time varying resting
potential and integration time. The minimum firing frequency for the recurrent network based
on such a model is determined by the rate of variation of the potential and time-constant and
is within the range of physiologically observed values. Further experimental work is needed
to see if the model is applicable to other types of neurons, such as inhibitory cells.

4.6. Conclusion

In conclusion we have studied the stability of delayed activity in recurrent neural network
subjected to the influence of noise. We conclude that the global stability of the persistent
activity is affected by properties of the synaptic receptor channel. The NMDA channel, having
a long EPSC duration time, is a reliable mediator of the delayed response. On the other hand
the AMPA receptor is much less reliable, and in the case of synchronized firing cannot be used
to sustain response. The effect of the NMDA channel blockade on the WM task performance
is discussed.
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Appendix A. Single-neuron transduction function

In this appendix we calculate the single-neuron transduction function. The first step is to
find the membrane voltage as a function of time. From equation (1) using the variation of
integration constant we obtain

V() = Viese 5O+ / dr' SOOI ¢y + E() /1 (1)) (A1)
Here
S(t) = / dr'/T (1), (A2)

and we introduced the refractory period both for generality and to resolve the peculiarity at
t = 0. For constant current and functions given by (2) and (3) the expression for the voltage
can be further simplified

‘ AE\ 19 Lo (e¥/®)e=5®
- 0] _eS® - i VL adi
V() = Vieset® + Egll — e 1+ (1 % ) o (exln — Dyija (A3)
where
1 eat/to —1
S@) = &- In (m_—l) (A.4)

and L, (x) is defined for an integer n by

1
Lo(x) = In(x), Lp(x) = ;(x =" =Ly (), (A.5)
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and is obtained for fractional n by analytical continuation. For example
Li(x)=x—1-In(x),
Ly(x) = (x = D*/2 —x +1 - In(x),

Ly(x) =(x—1*/3—(x—1D?/2+x -1 —In(x), (A.6)

Solving the equation V (¢) = 6 produces the interspike interval ¢ and frequency f = 1/¢. The
solution cannot be done in the closed form but some asymptotes can be calculated, however.
The calculation depends on the value of the parameter § = ot /1.

(1) € = at/19p < 1. For this limit

(eato/ro _ 1)1/01

E+g22 7
is very small and can be neglected everywhere, except when multiplied by the large factor
L, this gives

LG o (o 8) e

S0 (A.7)

2
A . 3
(ex%/t0 — 1)l/a l1+a 2 1 +2a§ A9

The equation on the interspike interval is

(A.9)

2
6=E0+(T()1—AE)[ E —s ! ]

l+a 2 (1+a)(1+20)
Solving this quadratic equation with respect to £ we obtain the asymptote given by equation (4).

(i1) € > 1. In this case the solution can be found directly from equation (1) by assuming
V = 0. Solving the resulting algebraic equation for ¢ we obtain equation (7).

Appendix B. Decay of the high-frequency attractor

B.1. Asynchronous case: derivation of NI and Ny

As shown in the main text the decay of the high-frequency state occurs through the formation
of the critical nucleus of size n = NAI/I and involves therefore a small subpopulation of the
entire network. Hence, the reduction in the average current in the network during the decay is
small. For the asymptotic limit A « I one can neglect the variation of the average network
current when calculating the probability of the formation of the critical nucleus. Once it is
formed decay is unavoidable. Thus the transition probability associated with this mechanism
is independent of the network dynamics and has a universal form.

We first calculate the probability distribution of the input current for a single neuron. When
doing so we can neglect the variations in the average network current as indicated above. The
average and standard deviation of the input current of each neuron, given by equations (9)
and (10) are

I = Nicf T jo (B.1)
and

812 = (I, — )2 = Nk fr j2/2. (B.2)
The distribution of I, according to the central limit theorem is therefore

1 (I, — 1)?
——eXp| .
J2ns1? 2817

p(ln) = (B.3)
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The probability that the input current is below the threshold 7*, i.e. the neuron does not fire, is
given by the error function derived from distribution (B.3)

A .
P= / dl, p(I,) ~ Ae™/ Tersc NATYTE (B.4)

oo

where A = /Al /4nkft N, and Al = [ — I*. In the derivation of (B.4) we used the
asymptotic expression for the error function

Y e_xz/zaz o 2 /5.2
d ~ ey /% .
/_oo NN ’ ®-
when y € —o.

The reverberations of the current will be impossible if n = N AI/I neurons are below the
threshold. When this occurs the feedback current to each neuron is reduced with respect to the
average current by Al, i.e. is below the threshold, and further delayed activity is impossible.
The probability of this event is given by the binomial distribution

po ~ Ch P". (B.6)

Here the binomial coefficient Cj; = N!/(N — n)!n! accounts for the large number of groups
of neurons that can contribute to the decay.

Since the input currents stay approximately constant during time interval t,,.., we break
the time axis into windows with duration At ~ .. and denote by p the average probability
of decay of the high-frequency activity during such a little window. Assuming that k£ windows
have been passed since the delayed activity commenced. The probability that the decay occurs

during the kth time window, i.e. exactly between t = kAt and t = (k + 1) At, is
p®)At= (1 - p)p. (B.7)

Here (1 — p)* is the probability that the decay did not happen during either of & early
time intervals. After simple manipulations with this expression we obtain for the density
of probability of decay as a function of time

p(t) =e P8 pAt. (B.8)

This is a Poisson distribution and decay is a Poisson process. The reason for this is that the
system retains the values of input currents during the time interval At ~ 1. ~ 100 ms.
Therefore all processes separated by longer times are independent. Since the decay time is of
the order of 10-100 s, the attempts of the system to decay at various times can be considered
independent. We finally notice that since the values of the current are preserved on the scales
of .. we can conclude that

EPSC
P~ Do (B.9)
given by equation (B.6). The average decay time can then be estimated using (B.8):

f
~py. (B.10)

tEPSC

Inthe limit ft,, > 1the minimum size of the network necessary to maintain the delayed
activity is small. We can therefore assume N to be small for this limit. The same assumption
can be made for n < N. Thus for an effective network (using the neurons sparingly) we can
assume the combinatorial term in equation (B.6) to be close to unity. Since in the expression
for pg ~ C A" exp(—nk f Tope NAI?/ I?) it is also compensated by the small prefactor of
the exponential A* < 1 (see equation (B.4)), we can assume Cy A" ~ 1 for the effective

network. Therefore for the limit fz,. > 1 the main dependence of the parameters of the
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model is concentrated in the exponential factor. This set of assumptions in combination with
equation (B.10) leads to the expression (16) in the main text. If more precision is needed
equation (B.10) can be used directly.

To find the critical number of neurons N* we calculate the logarithm of both sides of

equation (B.10) and obtain
In(t/74s.) & —InCl. — nln po. (B.11)

Using the asymptotic expression for the logarithm of the binomial coefficient, which can be
derived from the Stirling’s formula

InC} = N¢(n/N); N,n>1;
¢(x) =xIn[1/x]+ (1 — x)In[1/(1 — x)],

we derive the quadratic equation for N*

(B.12)

INGY vo T /AT Al i
T) K f Topse (N*)P—N [d) (T) + —[—A] —In—~0. (B.13)

EPSC

Solving this equation we obtain the set of equations (17), (20), and (21) in the main text.

B.2. Synchronous firing case

In this section we assume that all the neurons in the network fire simultaneously. The important
quantities which will be studied are the time dependence of the averaged over the network
current /(¢) and the fluctuations of the input current into a single neuron 3_]? The former is
responsible for the shift in the distance to the edge of the attraction basin (equation (24)), the
latter determines the average decay time, as follows from the previous section.

Assume that the neuron fired at # = 0. The average number of EPSCs arriving to the
postsynaptic terminal is « N due to the finite probability of the synaptic vesicle release « and
the all-to-all topology of the connections. The average current at times 0 <t < T = 1/f is
contributed by the spikes at = 0 and by all previous spikes at times Tk, k =1,2, ...

I_(t) = Ioe_'/rspsc + [Oe“(”T)/rEpsc R
= Joe™/Tersc /(1 — e~/ Tersc ), (B.14)

where we introduced the notation Iy = « Nj,. The average over time value of this averaged
over neurons current is (/) = Iy f T, where by angular brackets we denote the time average:
(A) = fo A(r)dt/T. The average current I therefore experiences oscillations between
Imax = 1(0) and I, = I(T). The minimum value of I is below the average current (.
This minimum value according to the logic presented in the main text, determines the shift
of the distance to the edge of the attraction basin. This shift is therefore (I} — Ipj,. Our
computer modelling, however, shows that the actual amplitude of the current oscillations is
consistently about 60% of the value predicted by this argument. This was tested at various
values of parameters. The explanation of this 60% factor is as follows. In the case where
all the neurons fire simultaneously the shape of the dependence of the average current versus
time is saw-like. However, the spikes do not fire absolutely simultaneously. The uncertainty
in the spiking time is of the order of T. This uncertainty, which is intrinsic to the recurrent
synaptic noises, and therefore difficult to calculate exactly, smears out the saw-like dependence
of the average current of time (see inset in figure 3(a)). This smearing can approximately be
accounted for by dumping the higher harmonics of the saw-like dependence. When only
the principal harmonic remains, the amplitude of the saw-like curve is reduced by a factor
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2/m =~ 0.6. This is consistent with the numerical result. We therefore conclude that the shift
of Al is

8lyyn =~ 0.6[{I) — I(T)] (B.15)

which leads to equation (23) in the text.
We now turn to the calculation of the standard deviation of the input current into one
neuron. Similar to (B.14), using the central limit theorem we obtain
oo
SI2(t) = Y jek(l — k) Ne™ 2Tk meesc (B.16)
k=0
This quantity is most important at ¢ = 7 when the average current reaches its minimum and
the neuron stops firing with maximum probability. Performing the summation we therefore
obtain

k(1 —k)I? |
(Kfrepsc)zN Cz/frEPSC — 1

Substituting this value into equation (B.4) in the previous section and repeating the subsequent
derivation we obtain equations (25) and (26) in the main text.

SIX(T) = (B.17)

B.3. Fluctuations of the average current

In this subsection we calculate the fluctuations of the average network current. We consider
the asynchronous case for simplicity. The conclusions are perfectly good for the synchronous
case, for the reasons that will become clear later in this section, and agree well with computer
simulations.

The average current satisfies the linearized equation similar to the linearized version of
equation (12)

Tase AL (1) = (v = DAT(@) +£Q). (B.18)

Here A (1) is the deviation of the average network current from the equilibrium value and £(¢)
is the noise. The unitless network feedback coefficient v < 1 is defined by (14). As evident
from this equation A(z) has a slow time constant Tpse/ (1 — V) (since 1/(1 — v) > 5 in our
simulations). On the other hand the noise £(¢) is determined by synapses and has a correlation
time that is relatively small (~7,.).
The correlation function of noise in the average current can be found from equation (9):
812

E()=(EOEOD) = W"exp(—ltl/TEpsc)- (B.19)
Here angular brackets imply averaging over time and the value of E(t = 0) follows from
equation (B.2) and the central limit theorem (dispersion of the average is equal to the dispersion
of each of the homogeneous constituents /, divided by the number of elements N'). We conclude
therefore that

12
E(t=0)= N (B.20)

EPSC

The correlation function of A I can then be easily found from equation (B.18) using the Fourier
transform. With C(t) = (AI(t)AI(0)) then

E(w)

(1 =)+ (w1,

Clw) = (|Al(w)*) = (B.21)

PR
PSC)
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Since

2T, B =0)
1+ (0T )?

the expression for C(t) is readily obtained by inverting the Fourier transform (B.21). In the

limit 1 — v « 1, which holds in our simulations the answer is

Zt=0)

_— exp[—(1 — v)|z|/Tepsc 1. (B.23)

The value of C taken at ¢ = 0 determines the standard deviation of the average current (19).

The fluctuations described by the correlation function (B.23) have a large correlation time

compared to the firing frequency. We conclude therefore that synchrony should not affect the
long range component of the correlation function.

E(w) = (B.22)

C@) =

Appendix C. Transitions from the low-frequency state to the high-frequency state

In this appendix we derive the transition rate for the spontaneous ‘creation’ of delayed activity.
We consider a network similar to the one used in the rest of the paper. There are two specifics
in this problem: first, the transition occurs from the state where there is virtually no recurrent
feedback current. The transition is therefore induced mostly by the noise in the afferent inputs.
Second, since the recurrent feedback is negligible, the transition involves the entire network and
is therefore described by the mean-field approximation. The universality pertinent to the non-
mean-field approach is lost here and transition probabilities can be derived only approximately.

We begin by evaluating the fluctuations of the average network current, which is done
similarly to the previous appendix

817 =812 + 8 I2. (C.1)

Here 812 and 8 IZ are the fluctuations due to recurrent and external noise respectively. The

former is given by equations (19) and (B.23):
I§

ZKRfR'CRNI%(I - l)) '
with the quantities labelled by subscript R referring to the recurrent connections. The latter
fluctuation 812 is calculated similarly to (B.23). When doing this we keep in mind that
external currents are most likely transmitted by the AMPA receptor, since the receptor has
to be voltage-independent to act in the low-frequency state. Therefore the correlations of
noise in the external current are more short-lived: Eg(t) = Eg(t = 0) exp(—|t|/te), with
Ep(t=0)= Ié /2 fEtEN]%. Here the subscript "E’ applies to quantities describing the external
current with g ~ 10 ms. Repeating the derivation from the previous appendix we obtain

12

8If = = :

ZKEfE‘L'RNE(l - U)
Here we assume that the time constant of the recurrent connections is large: g ~ 100 ms >
g ™~ 10 ms.

Let us compare the fluctuations due to the external and recurrent currents. We first do
the estimate for the high-frequency state. Assuming that kg ~ kg, fg ~ fr,» Ng ~ 10%,
Ng ~ 10%, and Iz ~ 0.1Ig we obtain 8Ig/8Iz ~ 0.1. Thus fluctuations in the external current
are smaller than in the recurrent one. If however the recurrent current is reduced by an order
of magnitude, like in the low-frequency state, the fluctuations are of similar strengths. We
therefore keep both terms in the expression for the rate of transitions from the low-frequency
state.

SI2 = (C.2)

(C.3)
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The mean life-time of the low-frequency state is now given by

t ~ tr/Ppo, (C.4)

where py is the probability that the average network current reaches the threshold, derived in
a similar way to the expressions in the previous appendix

0 81 —Al%)2817
po = dI p(I) ~ —e : (C.5)
lt AI

Here A1 is the distance from the low-frequency state to the edge of the attraction basin /*. The
value of the dispersion of the input current is given by equation (C.1). The latter expression
has an approximate character, since the tails of the distribution of the average current around
the stable state can be affected by the variation of the firing rate.
If the recurrent currents in the low-frequency state are negligible, then a simple estimate
can be found for the transition time
[~ 1;Re(l—V)Kr;fr-:l'nNé(Al/ls)z_ (C.6)

On comparison to the non-mean-field expression (16) we notice that the transition time is
increased due to the second power of the factor Al /I < 1 in the exponential. This is due to a
non-cooperative character of decay of the low-frequency state.
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