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It has long been recognized that sensory systems adapt to their inputs.
Here we formulate the problem of optimal variance estimation for a broad
class of nonstationary signals. We show that under weak assumptions, the
Bayesian optimal causal variance estimate shows asymmetric dynamics:
an abrupt increase in variance is more readily detectable than an abrupt
decrease. By contrast, optimal adaptation to the mean displays symmetric
dynamics when the variance is held fixed. After providing several empir-
ical examples and a simple intuitive argument for our main result, we
prove that optimal adaptation is asymmetrical in a broad class of model
environments. This observation makes specific and falsifiable predictions
about the time course of adaptation in neurons probed with certain stim-
ulus ensembles.

1 Introduction

Many real-world signals of interest to both biological and synthetic systems
are characterized by their large dynamic range. This dynamic range poses
a challenge to both wetware and hardware, which are often constrained to
operate within a much more limited dynamic range. For example, photore-
ceptors in the retina saturate over 2 orders of magnitude of light intensity,
yet the retina can operate over 10 orders of magnitude (Barlow & Mollon,
1982). How can a device operating over only 2 orders of magnitude deal
with signals that span 10? The retina exploits the nonstationary statistics
that characterize light intensity in the real world; on short time scales, light
intensity tends to fluctuate over a much smaller range. That is, the retina
adapts to the mean light intensity. Adaptation is a basic strategy used by
other sensory modalities as well, including the auditory and somatosensory
systems (Barlow & Mollon, 1982).

The mean is the simplest statistical characteristic, but it is not the only
one. A well-designed system might also be expected to adapt to the variance
of a signal. For example, if the input-output response function of a system
were sigmoidal, the mean might be used to fix the midpoint of the sigmoid,
while the variance might determine the slope at the midpoint. Adaptation to
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variance (contrast) is well established in the visual system (Shapley, Enroth-
Cugell, Bonds, & Kirby, 1972; Shapley & Enroth-Cugell, 1984; Enroth-Cugell
& Robson, 1966; Shapley & Victor, 1978, 1979; Kelly, 1961; deLange, 1958;
Giaschi, Douglas, Marlin, & Cynader, 1993; Bonds, 1991; Shapley, 1997).

If a system is to adapt to a signal’s nonstationary statistics, it must first
estimate those statistics. Optimal estimation of a nonstationary mean is a
well-understood problem (Papoulis, 1991). Optimal estimation of a nonsta-
tionary variance has received much less attention.

Here we consider the problem of estimating a nonstationary variance.
First we define a broad class of processes generated by hidden Markov
models that have a well-defined nonstationary variance. We then derive the
Bayesian optimal causal1 estimator of the instantaneous variance. Finally,
we show that for many processes within this class, the dynamics of the
optimal estimator show an asymmetry: an abrupt increase in variance is
more readily detectable than an abrupt decrease. This asymmetry offers a
falsifiable test of the hypothesis that sensory systems adapt optimally to
nonstationary variance.

2 General Framework

Our goal in this section is to define a class of discrete-time processes si with
an instantaneous time-varying variance σ 2

i , and then derive the Bayesian
optimal causal estimate of the standard deviation at time ti given its a priori
statistics and a realization2 sj≤i up to ti. In order to isolate the features of op-
timal adaptation to variance, we will consider time series with fixed means,
and whose third and higher moments are completely determined by the
time-varying second moment. In addition, we will study optimal estima-
tion for cases where the mean and variance are covarying. Under both of
these conditions, knowing the current value of the variance is tantamount
to knowing the whole distribution.

2.1 Markov Generating Process. We begin by writing a discrete-time
description of a hidden Markov model with one internal state variable, σ ,
and one observable output, s:

σi = F1[σi−1, zi,ui, . . .], (2.1)

si = F2[σi, yi], (2.2)

1 We call our estimator causal since its estimate for the standard deviation at (discrete)
time ti does not depend on its input at any later times tj, j > i.

2 We use sj<i to indicate all past observations ({s1, s2, . . . , si−1}) up to but not including
si, and sj≤i to indicate all past and present observations ({s1, s2, . . . , si}) up to and including
si.
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where subscripts index time steps and ui, yi, zi, and all other variables ap-
pearing after σi−1 in the argument of F1 are independent and identically
distributed (i.i.d.) random variables drawn from their a priori distributions
P(u), P(y), P(z), and so forth.3 The signal si will be the input to our estimator.
This formulation includes a broad class of models, and it can be generalized
to describe arbitrary nonstationary processes by adding more hidden vari-
ables. We will consider particular choices of F2 and P(yi) in which σ 2

i can be
interpreted as the “instantaneous variance” of the signal, si. For example,
we will sometimes define si = σi × yi, where P(y) is a gaussian with unit
variance, so that the variance of si is given by σ 2

i .
Our task is to use all observations s1, s2, . . . , si up to the present time ti to

estimate the current value of σi. This would be a trivial problem if si were
a deterministic function of σ , since then σ = F−1(s). We therefore focus on
the nontrivial case, where u, y, z, and so forth are stochastic.

2.2 Optimal Bayesian Estimator. We now derive the optimal Bayesian
estimator of the standard deviation. Because the generating process (see
equation 2.1) is Markovian, at every point in time our knowledge about σi
is completely summarized by the probability distribution, P(σi|sj≤i), of σi
given all previously observed data sj≤i. From this conditional distribution,
we can compute specific estimators such as the mean, the mode (most likely
value), or any other estimator with whatever properties we choose, but
we emphasize that the fundamental object for any estimation task is the
distribution P(σi|sj≤i) itself.

First, we take advantage of the Markovian nature of σ to write an ex-
pression for the distribution for the current value of σ given all data up to
the last time step as a functional of P(σi−1|sj<i):

P(σi|sj<i) =
∫

dσi−1P(σi|σi−1)P(σi−1|sj<i), (2.3)

where P(σi|σi−1) is the distribution of the current value of σ given its pre-
vious value. Next we use Bayes’s rule to combine P(σi|sj<i) with a new
observation si to form P(σi|sj≤i),

P(σi|sj≤i) =
P(si|σi, sj<i)P(σi|sj<i)

P(si|sj<i)

= 1
Ä

P(si|σi)P(σi|sj<i), (2.4)

where we have explicitly rewritten the distribution in the denominator as a

3 We use the convention that all probability distributions are written as P(. . .); the
argument of P determines which probability distribution we mean.
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normalization constant, which can be obtained by integrating the numera-
tor:

Ä =
∫

dσiP(si|σi)P(σi|sj<i). (2.5)

We also made the substitution P(si|σi, sj<i) → P(si|σi), which follows from
equation 2.2. Combining equations 2.3 and 2.4 yields the recursive formula
we seek:

P(σi|sj≤i) = 1
Ä

P(si|σi)

∫
dσi−1P(σi|σi−1)P(σi−1|sj<i). (2.6)

Equation 2.6 is an expression for the distribution of the standard de-
viation σi. It is this distribution that is propagated for further estimates.
However, to assess the dynamics of the estimator, it is convenient to com-
pute some scalar function of the distribution, such as its mean or most likely
value. In most of the examples that follow, we will use the mean, but our
results do not depend on that choice.

Since the Bayesian estimation procedure described is central to all that
follows, we summarize the procedure:

1. Use the distribution for the standard deviation at ti−1 given all data up
to that point, P(σi−1|sj<i), and the prior distribution for the dynamics
of the standard deviation P(σi|σi−1) to compute P(σi|sj<i). Note that
P(σi|sj<i) is the distribution for the standard deviation at ti conditional
on all data up to but not including the most recent time step ti.

2. Use Bayes’s rule to combine the observed new data point si with
P(σi|sj<i) to obtain the conditional distribution for the standard de-
viation at the next time step, P(σi|sj≤i).

3. Compute some scalar from this distribution—for example, its mean
or most likely value—to assess dynamics.

3 Examples

In this section we consider two types of model environment: one in which
the variance of the input makes abrupt changes, and another in which it
changes smoothly with time. In both cases, we will find that the optimal es-
timator for the variance responds more quickly to increases than decreases.

3.1 Memoryless Variance Modulation: A Simple Example. To illustrate
the estimation procedure, we consider a very simple dynamical environ-
ment in which the standard deviation, σ , is drawn independently at each
time step,

σi = |zi|, (3.1)

si = σiyi. (3.2)
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Here both zi and yi are gaussian i.i.d. variables with zero mean and unit
variance, so that for each time step P(si|σi) = exp(−s2

i /2σ
2
i )/

√
2πσ 2

i , −∞ <

si < ∞, and P(σi) = 2 × exp(−σ 2
i /2)/

√
2π , 0 < σi < ∞. On average, then,

the signal, s, is distributed according to

P(si) =
∫ ∞

0
dσiP(si|σi)P(σi) =

∫ ∞
0

dσi
e−s2

i /2σ
2
i −σ 2

i /2

πσi
= K0(|si|)

π
, (3.3)

where K0 is the modified Bessel function of the second kind. Note that by
adding a constant to the right-hand side of equation 3.2, we could give
si a nonzero mean value, but this would change the optimal estimation
strategy only in a superficial way, so we will absorb any nonzero mean into
our definition for s.

We use Bayes’s theorem to compute the conditional distribution for σi
given the observation si,

P(σi|sj≤i) = P(σi|si) = P(si|σi)P(σi)

P(si)

= e−s2
i /2σ

2
i e−σ 2

i /2

σiK0(|si|) . (3.4)

This is just equation 2.6 for the special case where σi is drawn afresh at each
step independent of σj<i.

Different scalar functions of this distribution can now be compared. The
mean of this distribution is given by

σ̄ ≡
∫ ∞

0
dσiσiP(σi|si) =

√
π/2

e−|si|

K0(|si|) . (3.5)

For comparison, the maximum likelihood estimator for σ is obtained by
solving dP(σi|si)/dσi = 0,

σm.l. =
√
−1/2+

√
1/4+ s2

i . (3.6)

Despite the rather different forms of these expressions, these two estimators
agree well for s >∼ 1 where the distribution is not too asymmetrical about
the peak. (However, as s→ 0, σm.l. → 0, while σ̄ remains finite.) The corre-
sponding estimators involving the variance give essentially the same result:

σ̄ ≈
√
σ̄ 2 and σm.l. ≈

√
(σ 2)m.l.. Thus, our results reflect the statistics of the

input, but are not sensitive to the exact form of our estimator, as we will
discover in the upcoming sections.

In this simple example, we were able to find closed-form analytic ex-
pressions for a variety of estimates of σi at each time step. In the next few
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sections, we consider dynamics that require the optimal estimator to make
use of the history of the process. For these cases, we will obtain analytical
results for only the first time step. Fortunately, it will be possible to compute
the time course of our optimal estimator σ̄ (and σm.l.) numerically for any
prior distribution on σ , and any distribution for the signal being used to
probe the estimator.

3.2 Variance Switching.

3.2.1 Two Values. We will now derive the optimal estimator for a simple
nonstationary environment. Consider a world where the variance switches
between a high-value σ 2

high and a low-value σ 2
low. We will draw the switching

times from a homogeneous Poisson process so that they are totally uncor-
related with each other; knowing exactly when switches have occurred in
the past gives no information about when they will occur in the future. We
will then construct the optimal causal estimator, σ̄i, for the time-dependent
standard deviation of this process, which minimizes the root mean squared
(rms) error. Note that our estimator has access only to the signal, s, not to the
underlying switching times of σ , so even though the switching times of the
true σ are uncorrelated, our estimator must incorporate the entire past time
course of s to do the optimal job. Even in this impoverished environment,
we will find that the optimal estimator will behave in a subtle way: it will
respond to an increase in the variance more quickly than a decrease.

The process we are interested in can be written as

σi = ziσi−1 + (1− zi)(σhigh + σlow − σi−1), (3.7)

si = σiyi. (3.8)

Here zi is a binary variable that assumes values 0 with probability x and 1
with probability 1− x, and yi is gaussian with zero mean and unit variance.
The probability of switching per time step is thus x. The standard deviation
σi of the signal si now has a memory, with a correlation time τc ∼ 1

2x :

〈σiσi+t〉P(sj) =
(σhigh + σlow)

2

4
+ (σhigh − σlow)

2

4
e−2xt, (3.9)

for times long compared to the time step. Sample realizations of σ and s are
shown in Figure 1.

The optimal estimator for this simple problem can make use of the fact
thatσ takes on only two values by expressing the entire distribution P(σi|sj≤i)

as a single parameter: Plow
i ≡ P(σi = σlow|sj≤i). 1−Plow

i is then the probability
that σi = σhigh. Since x is the a priori probability that a switch occurred in
the last time step,

P(σi = σlow|sj<i) = Plow
i−1(1− x)+ (1− Plow

i−1)x (3.10)



Asymmetric Dynamics in Optimal Variance Adaptation 1185

0 20 40 60 80 100 120 140 160
0

5 Standard deviation of signal

0 20 40 60 80 100 120 140 160
−10

0

10
Instantiation of signal

0 20 40 60 80 100 120 140 160
0

5 Estimate of standard deviation

Time (iteration number)

Figure 1: Dynamics of the optimal estimator for two-state variance switching.
(Top) The standard deviation during one cycle of the “probe” signal. (Center)
A specific instantiation of this signal over the same period of time, generated
according to equation 3.7 from the time-varying standard deviation shown at
the top; this is the signal s available to the estimator. (Bottom) The optimal
causal estimate (obtained from s) of the standard deviation, averaged over 1000
cycles of the signal. For this example, the prior assumes that the signal, s, is
gaussian with a standard deviation that randomly switches with probability
.001 per time step between σlow = 1 and σhigh = 4, the same two values used
to generate the “probe” (top curve). Notice that the estimate responds more
quickly to an increase in the signal’s standard deviation (solid portion of curve)
than it does after a decrease (dashed curve). This difference in adaptation rates
is more apparent in Figure 2.

and P(σi = σhigh|sj<i) = 1−P(σi = σlow|sj<i). We now apply Bayes’s theorem
(see equation 2.4),

Plow
i = 1

Ä
P(σi = σlow|sj<i)P(si|σi = σlow) (3.11)

= 1
Ä

(1− x)Plow
i−1 + x(1− Plow

i−1)√
2π(σlow)

2
e−s2

i /2(σlow)
2
,

where the normalization is

Ä = (1− x)Plow
i−1 + x(1− Plow

i−1)√
2π(σlow)

2
e−s2

i /2(σlow)
2+
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xPlow
i−1 + (1− x)(1− Plow

i−1)√
2π(σhigh)

2
e−s2

i /2(σhigh)
2
. (3.12)

Thus, at each time step, equations 3.10 and 3.11 combine the new observation
si with Plow

i−1 to obtain the updated probability Plow
i . Note that for x = 1/2,

the current estimate for the standard deviation, σi, given by equation 3.10,
depends on only the current value of the signal si, as in the previous section.

The prior in this case assumes that the variance of s switches between
two known values at randomly chosen times. The variance spends equal
time at the high and low values, and switches between these values are
instantaneous in both directions, so the underlying dynamics of σ is totally
symmetric under the exchange σlow ↔ σhigh. Despite this, the optimal esti-
mator behaves asymmetrically to increases and decreases in variance. This
can be shown analytically for the first time step after abrupt switches in the
variance (see the appendix).

To study the entire time course of the adaptation, we use equation 3.11
to compute Plow

i numerically at every time step while probing the estima-
tor with a square wave in standard deviation. The estimator is optimized
for an ensemble of different waveforms of σ (here, the random telegraph
signal), but to illustrate the behavior of the estimator, we use a single such
signal (the square wave). In this case, the probe stimulus is not too unlikely
in the estimator’s prior distribution, which will not always be the case in
later sections. We calculate the estimate for the standard deviation, which
minimizes the rms error via

σ̄i = Plow
i σlow +

(
1− Plow

i

)
σhigh. (3.13)

Figure 1 shows the trajectory of this estimate averaged over many periods of
the standard deviation square wave. Figure 2 redisplays the portions of the
curve immediately following switches in the input standard deviation in a
way that makes it easier to compare the response times to abrupt increases
and decreases in standard deviation.

The observations s are drawn independently at every time step, so suc-
cessive presentations of the up and down jumps in standard deviation result
in new instantiations of s. It is clear from the figure that the optimal estimate
for the standard deviation tracks the upward step faster than the downward
step. In the next section, we confirm that this is true for a more complex prior.

3.2.2 Many Values. We now consider a prior in which σ jumps from one
value to the next at random times, but unlike the previous example, σ will
now assume a spectrum of values rather than just two:

σi = ziσi−1 + (1− zi)ui, (3.14)

si = σiyi, (3.15)
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Figure 2: Dynamics of optimal adaptation are faster following an increase than
a decrease in variance. Here we have replotted the optimal causal estimate of
the standard deviation σ̄ from the bottom plot of Figure 1 so that the rates
of adaptation after increases and decreases can be more easily compared. The
solid curve is the average σ̄ following upward jumps in the signal’s standard
deviation, as before. The dashed curve is the average σ̄ following downward
jumps, but it has been inverted to make the comparison easier. For both curves,
the time of the last switch is set to zero. Clearly, optimal adaptation in this case is
faster following abrupt increases in standard deviation than it is after decreases.

where u is uniformly distributed over some finite range of nonnegative
values, [a, b], and y and z are gaussian and binary i.i.d., respectively, as in
the last section. In other words:

P(σi|σi−1) = xFlat(σi)+ (1− x)δ(σi − σi−1), (3.16)

where Flat(σ ) is 1/(b − a) whenever a ≤ σ ≤ b, and 0 otherwise so that
all allowed values for the standard deviation are equally likely. From equa-
tion 3.15, si is gaussian with variance σ 2

i , so equation 2.6 becomes

P(σi|sj≤i)= 1
Ä

1
σi

exp
(
− s2

i

2σ 2
i

)
[xFlat(σi)+(1−x)P(σi−1=σi|sj<i)]. (3.17)
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Figure 3: Dynamics of optimal adaptation for a uniform, “jumping” prior
probed with a step. As in the plot in Figure 2, the solid curve shows the dy-
namics of average σ̄ following an upward jump in standard deviation from 1 to
4, while the dashed curve (inverted) shows the behavior following a downward
jump from 4 to 1. Here, the estimator is optimized for a gaussian distributed
signal with a standard deviation that jumps with probability per time step (x)
of .001 to a new value drawn at random from all values between 0.1 and 8.
Note that following an upward jump, the initial response is more rapid, the
asymptotic behavior is slower, and the estimate overshoots the correct value.

The estimate for the standard deviation that minimizes the rms error is
given by the mean of this distribution:

σ̄i ≡
∫

dσiσiP(σi|sj≤i). (3.18)

Figure 3 illustrates the dynamics of σ̄ for x = 1/1000 and σhigh/σlow = 4.
Once again, for times immediately following a jump in variance, the initial
upward adaptation is faster than downward. For longer times, however,
the upward adaptation asymptotes more slowly. This is related to the fact
that the number of independent examples of the signal needed to get an
estimate of either the mean or the standard deviation to some fixed level of
accuracy grows quadratically with standard deviation.

Curiously, the upward adaptation tends to overshoot before asymptoting
to its final value, provided that the larger of the two standard deviation
values we are probing with is not too close to the upper cutoff (8 in this
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case). There is a simple explanation. After receiving an unexpectedly large
value for si, the estimator infers that the variance must have jumped to a
higher value. Initially, it weights all standard deviation values between si
and the upper cutoff about equally, since its prior on the standard deviation
is flat. After measuring the signal for many time steps, the estimator homes
in on the true value.

Neither of the two curves in Figure 3 is well fit by a single exponential,
nor are they obviously related by some other simply parameterizable family
of curves. For this reason, the effective rate of adaptation for either curve
is a function of the delay since the last jump in the probe variance, which
makes quantitative comparisons between different parameter settings diffi-
cult. Qualitatively, the differences between the curves are more pronounced
as σhigh/σlow is increased or x is decreased. In the other extreme, if we set
σlow = σhigh, then no adaptation is required. In the limit of long delays,
the behavior is predictable from simple statistics. Intermediate delays give
mixed results, which depend on the details of the prior. In the limit of short
delays, we observe universal behavior: the asymmetrical dynamics, which
we have emphasized.

If we minimize the error of our estimate of the variance rather than the
standard deviation, we arrive at essentially the same results, whether we
use a flat a priori distribution for the standard deviation or the variance.
In addition, the dynamics of the mode, σm.l., of P(σi|sj≤i) are essentially the
same as for the mean and display the same asymmetry.

So far we have probed our estimator with a signal that is not too unlikely
in its expected input ensemble. This will not be the case in the next section.

3.3 Smoothly Changing Variance. We now consider a prior in which the
variance changes smoothly with time according to diffusive dynamics (or a
random walk in the discrete version shown here) with reflecting boundaries
at a and b:

σi =

σi−1 + 2D1tzi, if a ≤ σi−1 + 2D1tzi ≤ b
2b− σi−1 − 2D1tzi, if σi−1 + 2D1tzi > b,
2a− σi−1 − 2D1tzi, if σi−1 + 2D1tzi < a,

(3.19)

si = σiyi, (3.20)

where b > a > 0, 1t is the duration of each time step, D is the (one dimen-
sional) diffusion constant, and y and z are both gaussian distributed i.i.d.
processes with unit variance and zero mean. Far from the boundaries, this
implies that

P(σi|σi−1) = 1√
4πD1t

exp
(
− (σi − σi−1)

2

4D1t

)
(3.21)
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and

P(si|σi) = e−s2
i /2σ

2
i√

2πσ 2
i

. (3.22)

D is defined as the inverse of the correlation time constant, D = 1/τc. Like
the example in the previous section, the underlying dynamics of σ are sym-
metric with respect to increases and decreases in standard deviation. By im-
posing reflecting boundary conditions, we ensure that the time-averaged
distribution for the standard deviation is flat, so that any asymmetry in
adaptation time is not due to the relative likelihood of big and small stan-
dard deviation values.

Combining equations 3.21 and 3.22 with equation 2.6 as before, we obtain
an expression for updating the conditional distribution for the standard
deviation after receiving si:

P(σi|sj≤i) = 1
Ä

e−s2
i /2σ

2
i√

2πσ 2
i

∫ b

a
dσi−1

1√
4πD1t

× exp
(
− (σi − σi−1)

2

4D1t

)
P(σi−1|sj<i), (3.23)

where4 we have again introduced a and b, the lower and upper cutoffs for
σ . We will again use the mean of this distribution as our estimate for the
current standard deviation, σ̄i (see equation 3.18).

For the first time step after an abrupt change in variance, we can derive
a compact expression for the rate of adaptation following an upward jump
in variance σlow → σhigh (see the appendix):

rateup ≡ σ̂ up
i − σlow = D1t

2
σlow

[(
σhigh

σlow

)2

− 1

]
. (3.24)

Dividing this by the corresponding expression for a downward jump yields:

rateup

ratedown
≡ σ̂

up
i − σlow

σ̂ down
i − σhigh

=
(
σhigh

σlow

)3

. (3.25)

This is certainly asymmetric, with the upward adaptation faster than the
downward adaptation for any pair of variances.

4 For brevity, we dropped some terms on the right-hand side of equation 3.23 which we
included in our algorithm to enforce our reflecting boundary conditions. Since we always
placed our boundaries far from the extreme values of our probe stimulus compared to
D1t, our results were independent of the boundary conditions.
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Figure 4: Dynamics of optimal adaptation for a diffusive prior probed with a
step. As in Figures 2 and 3, the solid curve shows the dynamics of the average σ̄
following an upward jump in standard deviation from 1 to 4, while the dashed
curve (inverted) shows the behavior following a downward jump from 4 to 1.
In this case, the estimator is optimized for a gaussian distributed signal with a
standard deviation that diffuses (i.e., takes a random walk) between 0.05 and 5.0
with reflecting walls at the boundaries. The correlation time (the inverse of the
one-dimensional diffusion constant) of the diffusion process is 300 time steps.
Note that following an upward jump, the initial response is more rapid and the
asymptotic behavior is slower.

For the complete dynamics, we must compute the solution numerically.
To do this, we discretize the probability distribution P(σi|sj≤i) between the
reflecting boundaries at .05 to 4.95 in bins of width .025. The results for
D1t = 1/300 are plotted in Figure 4.

For the sake of comparison between the different models, we can relate
the correlation time of this diffusing prior to that of the switching prior of
the last section by estimating the expected time for the standard deviation to
diffuse from σlow to σhigh. For σhigh = 4, σlow = 1 and D1t = 1t/τc = 1/300,
the average time for the rms displacement of the standard deviation to reach
σhigh − σlow = 3 is

3 =
√

2t/τ ⇒ t = 4.5τ ∼ 1400 time steps, (3.26)



1192 Michael DeWeese and Anthony Zador

so the correlation time for these parameter settings roughly corresponds to
that of the switching prior with the probability of switching per time step
(x) near 1/1400.

As in the previous examples, adaptation immediately following an up-
ward jump is faster than it is after a downward jump. As before, the upward
adaptation is slower to asymptote to its final value due to the larger value of
the final variance. Once again, we find that neither of the two curves is well
fit by a single exponential, which makes quantitative comparisons between
different parameter settings complicated for intermediate to long times after
jumps in standard deviation. Qualitatively, the differences between the two
curves become more pronounced with increasing σhigh/σlow and decreasing
D1t. Unlike the previous example, the diffusion prior produces monotonic
behavior with no overshoot, so the curves cross at some intermediate time
during the adaptation. Another difference is that in this example, the curves
are independent of the boundary conditions, whereas the dynamics of the
last example were strongly cutoff dependent. Clearly, qualitatively univer-
sal behavior is present immediately after abrupt changes in the variance,
while the dynamics are prior dependent at later times.

As in the previous section, we repeated the analysis of this section for a
diffusing variance rather than standard deviation and found no significant
difference in our results whether we minimized the error of the standard
deviation or the variance. Again, the mode, σm.l., of P(σi|sj≤i) displayed the
same asymmetrical dynamics as did the mean of that distribution.

To summarize our results so far, we computed the optimal estimator σ̄
for three processes with different dynamics for their respective time-varying
variances. At any single moment in time, these processes were all gaussian
with zero mean. In each case, when dynamics were probed with a square
wave of standard deviation, the adaptation to an upward jump was faster
than for a downward jump. We now consider nongaussian signal distribu-
tions and environments where the mean and variance fluctuate together.

3.4 Other Signal Distributions.

3.4.1 Nongaussian Signal Distributions and Nonflat Priors on the Standard
Deviation. In all of the previous examples, we considered nonstationary
signals that were gaussian distributed at every moment in time. We repeated
each of these examples for exponentially distributed signals, and the results
were qualitatively the same as for gaussian signals in every case. In fact,
the asymmetry in the dynamics persisted even if we biased the prior dis-
tribution on the standard deviation to favor smaller values. Specifically, we
sometimes used a flat prior for 1/σ rather than for σ so that P(σ ) = dσ/σ 2.

As we explain in section 4, the adaptation dynamics are largely deter-
mined by the occurrence of outliers in the signal distribution immediately
after abrupt changes in the probe stimulus. For that reason, the dynamics
are roughly independent of the exact shape of the distribution everywhere
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except in the tails. In the appendix, we prove that under weak assumptions,
the dynamics are asymmetric immediately following jumps in the probe
stimulus for the binary switching standard deviation model, provided that
the tails fall off like exp(−asn

i ) for all positive a and n. This is a rich set of func-
tions for the shape of the tails for which the distribution has well-defined
moments at all orders. The proof is valid for a distribution of nearly any
shape, so long as it does not get arbitrarily small anywhere except in the
tails. For the diffusing standard deviation model with P(si|σi) ∝ exp(−asn

i ),
we can derive a compact expression for the ratio of the rate of adaptation
immediately following an upward jump in variance σlow → σhigh versus the
corresponding downward jump (see the appendix),

rateup

ratedown
≡ σ̂

up
i − σlow

σ̂ down
i − σhigh

=
(
σhigh

σlow

)n+1

, (3.27)

which is clearly asymmetric for all positive a and n, though the exact ratio
depends on n.

3.4.2 Simultaneously Adapting to the Mean and Variance. In each of the
examples above, the optimal estimate of the standard deviation σ̄ is a func-
tion of the absolute value of the signal s since P(−si|σi) = P(si|σi) in each
case. Therefore, our results would be the same for a different signal s′, which
is positive definite:5

P(s′i|σi) =
{

2P(si|σi) if s′i > 0
0 otherwise. (3.28)

A gaussian, nonnegative signal distributed according to

P(s′i|σi) =
√

2
πσ 2

i
exp

(
− (s

′
i)

2

2σ 2
i

)
(3.29)

has an “instantaneous” mean, µ′i, and standard deviation, σ ′i , given by

µ′i = σi

√
2
π
, (3.30)

σ ′i = σi

√
1− 2

π
. (3.31)

For an exponentially distributed nonnegative signal,

P(s′i|σi) = 1
σi

exp
(
− s′i
σi

)
, (3.32)

5 Here we assume that the probability of si being exactly zero is of measure zero.
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the “instantaneous” mean and standard deviation are the same:

µ′i = σ ′i = σi. (3.33)

For all the models we have studied, the dynamics of optimal adapta-
tion look the same whether the mean is constant or tightly coupled to the
fluctuating standard deviation.

4 Discussion

4.1 Main Result. A system whose inputs span a large dynamic range can
use adaptation to exploit their nonstationary statistics. Adaptation requires
an estimate of the present statistics of the signal based on its recent past.
Optimal estimation of the mean of a nonstationary signal is a well-studied
problem. Here we have considered optimal estimation of the second-order
statistics.

We have shown that optimal adaptation to variance leads to asymmet-
rical dynamics. In particular, the optimal estimate for the variance tracks
an abrupt increase in variance more closely than an abrupt decrease in en-
vironments, where the true dynamics of the variance is symmetric. This is
true whether the mean is fixed or allowed to vary with the standard devi-
ation. It is easy to show that this is not a feature of optimal adaptation to
a time-varying mean in environments where the variance is fixed and the
mean fluctuates in a symmetric fashion.

4.2 Intuition Behind the Main Result. Our basic result can be readily
understood with the following intuitive argument. Consider the generic
case for the instantaneous signal distribution, where P(si|σi) has a single
maximum that roughly coincides with its mean, and parameterize the dis-
tribution so that changing σi merely rescales si while leaving the mean un-
changed (e.g., P(si|σi) could be gaussian with zero mean and a standard
deviation of σi). When we probe with an upward jump in variance, the es-
timator expects to see an s that is not much larger than the old standard
deviation, but instead measures a value that is on average equal to the new,
larger standard deviation. After receiving this unlikely outlier, the estimator
immediately infers that the standard deviation has increased. On the other
hand, if the standard deviation jumps down, then the estimator will most
likely receive an s that is much smaller than the old standard deviation, but
this is near the peak of the distribution of s for any standard deviation, so it
will wait for more data before lowering its estimate for the current standard
deviation.

This argument is based on the occurrence of outliers in the likelihood
P(si|σi) of the observed signal si given the current estimate for the stan-
dard deviation σi. If many independent presentations of the signal can be
observed in the average time it takes for the standard deviation to fluc-
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tuate between the high and low values of the probe stimulus, we should
expect outliers in the likelihood distribution to dominate the behavior of
our estimator immediately following jumps in the true standard deviation.
This separation between the time scales of signal detection and changes in
the environment is what makes the problem of adaptation interesting. If
the environment completely changes between observations, then the opti-
mal estimation strategy does not require dynamic adaptation, as we saw in
section 3.1.

As long as the prior distribution for the dynamics of the standard devia-
tion is not too asymmetrical, our intuition about the likelihood should hold
for the full Bayesian treatment. This is true no matter what form the like-
lihood takes—it can be asymmetric, multimodal, finite for positive values
only, or something else—provided that it approaches zero only out in the
tail(s). In the appendix, we prove that optimal adaptation is indeed faster
after abrupt increases in the standard deviation for a large class of model
environments, just as we saw for the previous examples.

4.3 Connection with Experiment. It is common to identify the firing
rate of a cell in response to a stimulus of given intensity with its state of
adaptation. Our formulation of the variance estimation problem does not
specify what aspect of the output of any given cell type will reflect its state
of adaptation, so we are not restricting ourselves to cells whose firing rates
encode the mean or variance of a sensory signal. Implicit in our framework is
the idea that adaptation is a useful property that is not due solely to fatigue of
cellular mechanisms or saturation of their inputs. It is well documented that
adaptation occurs even when saturation is not present (Shapley & Victor,
1978).

We have stated our results in terms of ratios of adaptation times rather
than absolute times, partly because we found a very general behavior for
this ratio. In order to convert discrete time into experimental units, one
would need to measure the “integration time” of the biological system be-
ing studied. In other words, observations of the signal at consecutive time
steps in our framework represent effectively independent measurements,
so our discrete time steps reflect both the filtering of the sensory system
and the effective noise at the input. If the system is visual, then the spatial
statistics of scenes from the creature’s environment can be convolved into
the temporal statistics of the signal impinging on local regions of the retina
through saccades and body motion.

In qualitative agreement with our findings, recent experiments by Smir-
nakis, Berry, Warland, Bialek, and Meister (1997) have shown that ganglion
cells in the salamander and rabbit retinas adapt faster to abrupt increases
than decreases in variance. In these experiments, the activity of individual
ganglion cells was monitored while the retina was stimulated with light
whose contrast switched between a high and low value while the mean was
fixed, as in Figure 1 (top). Between the jumps, in contrast, the trial-averaged
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firing rate followed an exponential path, the time constant of which was
always faster after upward jumps in contrast.

In section 3.4.2, we showed that optimal adaptation is asymmetrical in
several environments in which the mean fluctuates with the standard devi-
ation. In natural scenes, the mean and standard deviation of light intensity
are probably correlated. Naively, one might imagine that the mean and stan-
dard deviation are proportional since they have the same units. This would
be the case in a room with spatially fixed light sources all controlled by a
single dimmer switch and walls that have a reflectance that does not de-
pend on the intensity of the light. Natural environments could in principle
be much more complex than this.6 Unfortunately, the true relationship be-
tween the mean and standard deviation of natural scenes is not yet fully
understood, but it is reasonable to assume that the standard deviation will
be roughly proportional to the mean light level in many environments. For
example, for one data set, the local standard deviation is roughly three times
the mean with a correlation coefficient of about 1/2 (Ruderman, personal
communication).

It is well known that sensory cells (photoreceptors and ganglion cells in
the retina) adapt more quickly to sudden increases than decreases in the
mean light intensity (Barlow & Mollon, 1982). This is usually attributed
to limitations of the biological machinery, but our results indicate that this
behavior could reflect the optimal strategy for the environment they evolved
in. These ideas give parameter-free predictions once the relevant biological
constraints and input statistics are known.

Appendix: A Proof and Some Exact Results

A.1 Proof of Asymmetric Dynamics for Binary Variance Switching.
We will now prove that under weak assumptions, optimal adaptation is
faster immediately following upward jumps in the standard deviation σ of
its input signal s than it is for downward jumps for a system that expects the
standard deviation to switch between two values, σlow and σhigh, at random
times (as in section 3.2.1). For clarity, we will prove our result for a specific
signal distribution and then state a more general result, which can be proved
following the same steps.

6 As a toy example of an environment where the mean and standard deviation are not
proportional, consider a bird’s-eye view of a plowed field with parallel furrows running
from north to south. Early in the day, when the sun is low on the horizon, the mean light
level is low, and the standard deviation is comparable to the mean due to the shadows cast
into the furrows. At noon, when the sun is high in the sky, there are few shadows since
the sun can illuminate the bottoms and shallow sides of the furrows, so the entire scene is
equally illuminated, resulting in a standard deviation much smaller than the (high) mean
light intensity.
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We make the following assumptions:

1. The standard deviation switches between a low value, σlow, and a high
value, σhigh > 2σlow, at (discrete) times drawn from a homogeneous
Poisson process; x is the probability of switching per time step.

2. The probability distribution of the (nonnegative) signal for fixed stan-
dard deviation is bounded everywhere except in the tail, y ≤ P(si|σi) ≤
z for 0 ≤ si ≤ 3σi, and falls off exponentially in the tail, P(si|σi) ∝
exp(−a(si/σi)) for si > 3σi. Note that P(si|σi) need not be monotoni-
cally decreasing for 0 ≤ si ≤ 3σi.

3. The estimator makes many observations of the signal in the average
time required for the standard deviation to drift between σlow and
σhigh: x ¿ 1. All other parameters are of order unity so that x ¿
{1, y/z, yσlow, σlow/σhigh,3}.

Consider the probability that the optimal estimator will correctly detect
an upward jump from σlow to σhigh. More precisely, we want the probability
that σ̄i = σhigh one time step after our estimator was “sure” that the standard
deviation was at a low value, σlow, given that the true standard deviation is
currently at the high value, σhigh:

Pup ≡
∫

dsiP(si|σi = σhigh)P(σi = σhigh|si, σi−1 = σlow)

=
∫

dsiP(si|σi = σhigh)
P(si|σi = σhigh)P(σi = σhigh|σi−1 = σlow)

P(si|σi−1 = σlow)

=
∫

dsi
P(si|σi = σhigh)

1+ 1−x
x

P(si|σi=σlow)
P(si|σi=σhigh)

, (A.1)

where we have used Bayes’s theorem between the first and second lines,
and reintroduced x, the probability of switching per time step. Our claim
is that this is greater than the probability that the estimator will correctly
detect a downward jump in the reverse situation:

Pdown =
∫

dsi
P(si|σi = σlow)

1+ 1−x
x

P(si|σi=σhigh)

P(si|σi=σlow)

. (A.2)

Under the conditions described above, P(si|σi = σhigh)/P(si|σi = σlow)

is never less than y/z for all allowed values of si, so we can always set x
sufficiently small in equation A.2 to guarantee that Pdown is proportional to
x:

Pdown = x
∫ ∞

0
dsi

P2(si|σi = σlow)

P(si|σi = σhigh)
+O

[
x2
]

= x
∫ 3σhigh

0
dsi

P2(si|σi = σlow)

P(si|σi = σhigh)
+
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x
∫ ∞
3σhigh

dsi
aσhigh

σ 2
low

exp

[
−a

(
2
σlow
− 1
σhigh

)
si

]
+O[x2]

≤ x

[(
z
y

)2

+
σ 2

high

2σhighσlow − σ 2
low

]
+O[x2].

We have made use of the fact that 0 < 3σhigh ≤ 1/y in the last line.
Clearly, Pdown is proportional to our small parameter x as long as x ¿

σlow/σhigh since z/y is of order one. However, P(si|σi = σhigh)/P(si|σi = σlow)

grows arbitrarily large as we move further out in the tail, so Pup can remain
finite as x→ 0. If we restrict our attention to si > 3σhigh so we are in the tail of
the distribution for either value of the standard deviation, the denominator
of the integrand in the last line of equation A.1 is much greater than one
only for

si ¿ s′ ≡
ln
[
σhigh

σlow

1
x

]
a
(
1/σlow − 1/σhigh

) . (A.3)

If s′ ≥ σhigh3, then we can exploit the fact that the integrand in equation A.1
is nowhere negative to rigorously bound Pup from below by isolating the
contribution to the integral from the region si > s′:

Pup ≥
∫ ∞

s′
dsi

P(si|σi = σhigh)

1+ 1−x
x

P(si|σi=σlow)
P(si|σi=σhigh)

≥ N
∫ ∞

s′
dsi

exp
[−asi/σhigh

]
2

≥ yσhigh

2
ea3

a

[
σlow

σhigh
x

]( 1
σhigh/σlow−1

)
, (A.4)

where we have replaced the normalization factor N with its smallest possible
value yea3 for fixed a and3. By choosing a probe stimulus with σhigh > 2σlow,
we can make the first term in the final line of equation A.4 sublinear in x,
so that Pup is larger than Pdown for x sufficiently small.

On the other hand, if s′ is less than σhigh3, then we can safely integrate
over the entire tail region of P(si|σhigh) to get a different bound:

Pup ≥
∫ ∞
σhigh3

dsi
P(si|σi = σhigh)

1+ 1−x
x

P(si|σi=σlow)
P(si|σi=σhigh)

≥ N
∫ ∞
3σhigh

dsi
exp

[−asi/σhigh
]

2

≥ yσhigh

2a
, (A.5)
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which is greater than Pdown for all a such that

a <
yσhigh

2x

[(
z
y

)2

+
σ 2

high

2σhighσlow − σ 2
low

]−1

. (A.6)

If a is too large to satisfy this inequality, then we focus on the region in
the tail of P(si|σlow) but not of P(si|σhigh):

Pup ≥
∫ 3σhigh

3σlow

dsi
P(si|σi = σhigh)

1+ 1−x
x

P(si|σi=σlow)
P(si|σi=σhigh)

≥
∫ 3σhigh

3σlow

dsi
y

1+ 1
x

z exp(a3−asi/σlow)

y

≥ σlowy
a

ln
[

xy exp[a3(σhigh/σlow − 1)]+ z

xy+ z

]
≥ σlowy

a

(
a3(σhigh/σlow − 1)+ ln

[
xy

xy+ z

])
≥ y3(σhigh − σlow)−O[x ln(x)], (A.7)

where we have assumed that a is at least of order 1/x in the last line, which
is the one case not covered by the two previous bounds on Pup. Again, 3,
yσlow, and yσhigh are all much greater than x, so this bound is greater than
our upper bound for Pdown.

We have shown that the optimal estimator adapts more quickly to abrupt
increases than decreases in the standard deviation of its input for the con-
ditions enumerated above. By following the same steps, one can prove the
same result by relaxing condition 2 to include all signal distributions with
either one or two tails that decrease monotonically with |si|; each tail must
take the same form for any value of the standard deviation, so that changing
the standard deviation amounts to rescaling s and renormalizing:

P(s|σhigh) = σlow

σhigh
P

(
σlow

σhigh
s

∣∣∣∣∣ σlow

)

for
(

si

σi
< −3L

)⋃(
si

σi
> 3R

)
. (A.8)

The tails must fall off faster than a power law to ensure that the variance
and all higher moments are well defined. We can also permit a region about
zero that is less than y and even zero so long as the form of P(si|σi) in this
region remains unchanged up to a factor of order one (i.e., s does not scale
with σ in this region), as would be the case for a detector whose sensitivity
falls off for small signal strengths placed in an environment where low
signal values always occur with some finite probability. In other words,
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y < P(si|σi) < z for −σi3L ≤ si ≤ −σhighλL and σhighλR ≤ si ≤ σi3R; but
P(si|σi = σhigh) = P(si|σi = σlow) for −σhighλL ≤ si ≤ σiλR. In each case
one has to check that the ratio σhigh/σlow is sufficiently large to complete the
proof.

For example, if the tail with the slowest rate of decrease falls off like
exp[−a|si/σi|n], then our result holds provided that σhigh/σlow > (n + 1)/n.
This is a very general set of functions that give well-defined moments. As
one might expect, the faster the tail(s) fall off, the more inclusive is the range
of values of the probe’s standard deviation.

A.2 Analytic Expressions for Smoothly Changing Variance. We can
derive an exact expression for the rate of adaptation to the standard devi-
ation σ of a stochastic variable s immediately after an abrupt jump in the
standard deviation for a system optimized for a diffusing standard devia-
tion. The quantity we want to calculate is the average value of σ̄ one time
step after our estimator was “sure” that the standard deviation was at a low
value, σlow, given that the standard deviation is currently at a high value,
σhigh. We will assume that s is gaussian for our derivation, and then state
the general solution for P(s|σ) ∝ exp(−a|s|n) for all positive a and n.

We begin our derivation by replacing P(σi−1|sj<i) in equation 3.23 with a
dirac delta function, δ(σi−1 − σlow), and average over the value of the new
data point, si, in the conditional distribution P(si|σi = σhigh):

σ
up
i ≡

∫
dσiσi

∫
dsiP(si|σi = σhigh)P(σi|si, σi−1 = σlow)

=
∫

dsi
e−s2

i /2(σhigh)
2√

2π(σhigh)
2

∫
dσi exp

(
− s2

i
2σ 2

i
− (σi−σlow)

2

4D1t

)
∫

dσi
1
σi

exp
(
− s2

i
2σ 2

i
− (σi−σlow)2

4D1t

) . (A.9)

The amount that this differs from σlow is proportional to the effective rate
of adaptation immediately after the upward jump in variance. The effec-
tive upward adaptation rate can then be compared to the corresponding
difference for a switch from σlow to σhigh.

The main trick for solving the integrals in equation A.9 is to make use of
the fact that each time step is short compared to the correlation time of the
diffusion process, which allows us to expand about D1t = 0:

1√
4D1t

exp
(
− (σi − σlow)

2

4D1t

)
→ δ(σi − σlow)

+2D1t
2!

∂2δ(σi − σlow)

∂σ 2
i

. (A.10)

We do not write this as an equality since it is valid to make this substitution
only when the gaussian appears inside an integral over its argument σi. To
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derive this substitution, consider a gaussian with a small variance v multi-
plied by a doubly differentiable function f inside an integral. Expanding f
in a Taylor series gives:∫

dx
e−x2/2v
√

2πv
f (x) ≈ f (0)+ v

2!
∂2 f
∂x2

∣∣∣∣
x=0

. (A.11)

This is exactly what we would have gotten by making the above substitution
for the gaussian within the integral and integrating by parts.

With this substitution, we expand both integrals over σi to first order in
D1t, then expand the full si integrand to first order and perform the integral
to obtain:

σ
up
i = σlow +D1t

2
σlow

[(
σhigh

σlow

)2

− 1

]
. (A.12)

Finally, we repeat this procedure for a downward jump from σhigh to σlow
and find a simple form for the ratio of upward-to-downward adaptation
rates immediately after a jump in the standard deviation:

σ
up
i − σlow

σhigh − σ down
i

=
(
σhigh

σlow

)3

. (A.13)

This result is valid for gaussian s; by repeating the calculation for P(si|σi) =
exp(−a|si|n), we can derive a more general expression:

σ
up
i − σlow

σhigh − σ down
i

=
(
σhigh

σlow

)n+1

, (A.14)

which is valid for all positive a and n. Again we see that optimal adap-
tation is faster following abrupt increases in standard deviation for signal
distributions with well-defined moments at all orders.
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