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Abstract. Information theory provides a powerful framework to analyse how neurons represent
sensory stimuli or other behavioural variables. A recurring question regards the amount of
information conveyed by a specific neuronal response. Here we show that the commonly used
definition for this quantity has a serious flaw: the information accumulated during subsequent
observations of neural activity fails to combine additively. Additivity is a highly desirable property,
both on theoretical grounds and for the practical purpose of analysing population codes. We propose
an alternative measure for the information per observation and prove that this is the only definition
that satisfies additivity. The old and the new definitions measure very different aspects of the neural
code, which is illustrated with visual responses from a motion-sensitive neuron in the primate cortex.
Our analysis allows additional interpretation of several published results, which suggests that the
neurons studied are operating far from their information capacity.

1. Introduction

Signals in the nervous system take many different physical forms, including membrane
potentials, ionic currents, neurotransmitter concentrations and enzymatic activities. The
essential substance that is transported through neural pathways by these ever-changing symbols
is information. Thus, a student of the nervous system stands to benefit from understanding
the characteristic properties of this substance called information. By analogy, a vascular
physiologist would study fluid mechanics, because the physical properties of fluids place
important bounds on how rapidly blood can be transported from one place to another through
a given vessel. Similarly, there exists a theory of information that prescribes how to measure
this quantity, and spells out important constraints on transmitting information through a
communication channel such as a neural pathway. Ever since the formulation of this framework
by Shannon (1948a, b), there has been considerable interest in how neural systems deal with
these constraints, and how close they come to the performance limits specified by the theory
(Riekeet al 1997).

In many studies of neural function we stimulate one end of the nervous system—for
example, by a sensory input or by driving a specific neuron—and observe the response at
another end—for example, the firing of a population of neurons, or motor output. Generally,
different values of the input will lead to different values of the output, but clearly there are
limits to this, and those limits define the operating range of the neural system. For example,
as a result of noise or uncontrolled variables in the pathway, a given input value may lead to
several different output values. Similarly, a given output may have been caused by different
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inputs. Studies of neural coding are essentially aimed at understanding these probabilistic
relationships (Riekeet al 1997).

The fidelity of transmission between inputs and outputs can be assessed by Shannon’s
mutual information. This quantity measures the average information one obtains about the
input value from observing an output value, or vice versa. However, in many cases it would
be interesting to know the information gained from a specific observation, rather than the
average. For example, some neural firing patterns may be more informative about the stimulus
than others, and such a comparison could show which aspects of firing are reliable, and which
others are affected by noise. Similarly, some stimuli may be more informative about the neural
response than others, and such a comparison may reveal what the given neural circuit can
sense. However, Shannon’s formulation of the theory provides no prescription for measuring
this information specific to a particular symbol. Subsequent theoretical work attempts to
capture this specific information by two rather different definitions—which we will denoteI1
andI2—and there exists an infinity of equally plausible alternatives.

Any acceptable measure of this specific information must have one important property: it
should accumulate additively in the course of subsequent observations. Imagine making two
observations that provide information about some variable of interest. Compute the specific
information gained from the first, then the specific information obtained from the second; of
course, in this latter step you must consider what knowledge you already gained from the first
observation. It is then natural to expect that the specific information gained in each of the
two steps should sum to the information gained if you simply made both observations at the
same time. For example, the information obtained about a sensory stimulus from observing two
neurons in a population should equal the information from the first neuron plus the information
gained from the second neuron after one had already observed the first. Here we show that of
the two definitions advanced so far, onlyI2 has this property of additivity. In fact, we prove that
it is the only possible definition that satisfies additivity, which identifies it uniquely as a proper
measure of information. Unfortunately, this is not the expression used by neuroscientists:
published studies of neural coding all calculateI1. We show thatI1 is also unique, in that it is
the only definition that never produces negative numbers, and argue that it has the properties
of ‘surprise’ rather than ‘information’. This paper begins with a brief introduction to the
formalism of information theory. We then prove the unique properties ofI1 andI2 and illustrate
the difference between the two measures with a toy example from medical diagnostics. Both
analyses are then applied to recordings of a motion-sensitive neuron in primate visual cortex.
Finally, we make use of a classic theorem to reinterpret the measurements of the ‘surprise’I1
published in several previous studies.

1.1. Entropy

One can consider neural signalling as a communication process between a set of input symbols
X = {xi}—for example, different sensory stimuli—and a set of output symbolsY = {yj }—
for example, different neural firing rates. In the course of communication, different inputs
occur with probabilityp(xi) and the outputs with probabilityp(yj ). A given inputxi may
lead to several different outputsyj , with the conditional probabilityp(yj |xi). Similarly, a
given outputyj may have been caused by different inputsxi with conditional probability
p(xi |yj ) = p(yj |xi)p(xi)/p(yj ). Thus, observation of the output generally leaves some
uncertainty about the input. Shannon’s information theory (Shannon and Weaver 1963, Cover
and Thomas 1991) provides a way to measure this uncertainty: if eventsxi in the ensembleX
can happen with probabilityp(xi), then the uncertainty aboutX is defined as the entropy of
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the ensemble

H(X) = −
∑
i

p(xi) logp(xi) (1)

where ‘log’ denotes the logarithm to base 2. For example, the entropy of an event with two
equally likely outcomes is log(2) = 1, often expressed as ‘1 bit’.

This definition satisfies an important property that we associate intuitively with
uncertainty: it is additive. If two different eventsX andY happen independently of each other,
then our uncertainty about both of their outcomes should equal the sum of the uncertainties
about each event. More generally, if the two events are not statistically independent, so that
observation of the first conveys some knowledge of the second, we expect that the uncertainty
about the joint event should equal the uncertainty about the first event plus the uncertainty
about the second given knowledge of the first. In fact, Shannon’s entropy has this property:

H(X, Y ) = −
∑
i,j

p(xi, yj ) logp(xi, yj )

= −
∑
i,j

p(yj )p(xi |yj ) log[p(yj )p(xi |yj )]

= −
∑
j

p(yj ) logp(yj )
∑
i

p(xi |yj )−
∑
j

p(yj )
∑
i

p(xi |yj ) logp(xi |yj )

= H(Y) +H(X|Y )
whereH(X|Y ) is the average uncertainty remaining aboutX after one has observedY , often
called the ‘equivocation’ or ‘conditional entropy’,

H(X|Y ) = −
∑
j

p(yj )
∑
i

p(xi |yj ) logp(xi |yj )

=
∑
j

p(yj )H(X|yj ),

and

H(X|yj ) = −
∑
i

p(xi |yj ) logp(xi |yj )

is the entropy ofX conditional on observation of a specific eventyj (Fano 1961, Hamming
1986, Cover and Thomas 1991).

This additivity with respect to compound events is a natural requirement we should impose
on any quantitative measure, if we want it to meet our intuitive notions of uncertainty. It has
been shown (Shannon 1948a, Khinchin 1957, Aczel and Daroczy 1975, Guiasu 1977) that this
is the key requirement leading to Shannon’s unique definition of entropy (1), and specifically
its logarithmic form.

1.2. Mutual information

Having developed a measure of uncertainty, one can define the transmitted information:
observing the outputY of the communication system reduces the uncertainty about the input
X fromH(X) toH(X|Y ). Thus Shannon identified the information conveyed byY aboutX
as the average change in uncertainty from observingY :

I (X;Y ) = H(X)−H(X|Y ) =
∑
i,j

p(xi, yj ) log

[
p(xi, yj )

p(xi)p(yj )

]
. (2)

Note that this measure is symmetric with respect to inputs and outputs,

I (X;Y ) = I (Y ;X).



328 M R DeWeese and M Meister

So knowledge of the input conveys as much information about the output as observation of the
output conveys about the input; for this reasonI (X;Y ) is called the ‘mutual information’.

Again, the mutual information satisfies an important intuitive additivity property. If we
observe two events taken from the ensemblesY andZ, then the informationI (X; {Y,Z})
that both events convey aboutX should be equal to the information gained fromY plus the
information gained fromZ given what we already knew fromY . This is easily verified (Fano
1961, Cover and Thomas 1991):

I (X; {Y,Z}) =
∑
ijk

p(xi, yj , zk) log

[
p(xi, yj , zk)

p(xi)p(yj , zk)

]
= I (X;Y ) +

∑
j

p(yj )I (X;Z|yj )

= I (X;Y ) + I (X;Z|Y )
where

I (X;Z|Y ) =
∑
j

p(yj )I (X;Z|yj )

is the average information aboutX obtained from observingZ, given that one already has
knowledge of some observation inY , and

I (X;Z|yj ) =
∑
ik

p(xi, zk|yj ) log

[
p(xi, zk|yj )

p(xi |yj )p(zk|yj )
]

is the information aboutX from observingZ, given prior observation of the specific eventyj .

1.3. Specific information

The mutual information (2) specifies how much information is conveyedon averageover
all symbols. As discussed above, one is tempted to ask whether some symbols are more
informative than others. So we seek a definition for the informationI (X; yj ) gained from
observation ofa specificoutput symbolyj about the range of possible input symbolsX; we will
call this the ‘specific information’ obtained fromyj . Observation ofyj changes the probability
distribution of the inputX from p(x) to p(x|yj ). These two distributions completely define
the knowledge we have aboutX before and after the observation. Thus the desired quantity
I (X; yj ) must be a functional of these two probability distributions:

I (X; yj ) = F [p(x), p(x|yj )]. (3)

Furthermore, we require that the average information gained over all possible observationsyj
should equal the mutual informationI (X;Y ):∑

j

p(yj )I (X; yj ) = I (X;Y ). (4)

An expression forI (X; yj ) that satisfies these requirements is

I1(X; yj ) =
∑
i

p(xi |yj ) log

[
p(xi |yj )
p(xi)

]
. (5)

However, it is not unique in this regard. An alternative is

I2(X; yj ) = H(X)−H(X|yj )
= −

∑
i

p(xi) logp(xi) +
∑
i

p(xi |yj ) logp(xi |yj ). (6)
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Figure 1. Schematic diagram for communication by a diagnostic test that produces false positives
and false negatives, each with frequencyε. This channel is known as the ‘binary symmetric channel
with noise’. x0: subject healthy;x1: subject sick;y0: test negative;y1: test positive.

This second definition has a very simple interpretation: it amounts to the change in uncertainty
aboutX that occurs when one observesyj .

Among treatments of neural coding, virtually all of the literature uses definitionI1(X; yj )
for the information conveyed by a specificyj (Eckhorn and P̈opel 1974, 1975, Fuller and
Looft 1984, Optican and Richmond 1987, de Ruyter van Steveninck and Bialek 1988, Bialek
and Zee 1990, Richmond and Optican 1990, Theunissen and Miller 1991, Panzeri and Treves
1996, Rollset al 1996, 1998, Buracaset al 1998). No compelling reason for this choice is
provided, and we have found only one source (Riekeet al 1997, p 122) that mentions the
existence of an alternative definitionI2(X; yj ). In fact, there is an infinity of alternatives:
for example, any weighted average ofI1 andI2 will also satisfy the requirement (4). Thus,
one needs to introduce an additional criterion in order to choose an appropriate definition for
specific information. We will arrive at this criterion by inspecting howI1 andI2 behave in a
simple example.

2. An example

Suppose a rare disease afflicts individuals in a population with relative frequencyε. You
have available a diagnostic test for this disease. Unfortunately, the test is not perfect, but
occasionally produces false positive results or false negative results, and both happen to occur
with a probabilityε (figure 1). You perform this test on a subject and obtain a positive result,
y1. This could have arisen from a correct test on a sick person(x1) or from a false positive on
a healthy person(x0); in fact the two alternatives are equally likely. Thus, after observing the
test result, it is now equally probable that the subject is healthy as that he is sick:

p(x0|y1) = p(x1|y1) = 1
2 .

What would the two measuresI1 andI2 above tell us about the information gained from
this specific test result?

I1(X; y1) = p(x0|y1) log

[
p(x0|y1)

p(x0)

]
+ p(x1|y1) log

[
p(x1|y1)

p(x1)

]
= 1

2
log

1

2(1− ε) +
1

2
log

1

2ε

≈ 1

2
log

1

4ε
� 1, for ε � 1. (7)

So if we measure the specific information byI1, we conclude that the test yielded a large
amount of information, particularly if the disease is very rare. On the other hand,

I2(X; y1) = p(x0|y1) logp(x0|y1) + p(x1|y1) logp(x1|y1)

− p(x0) logp(x0)− p(x1) logp(x1)
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= 1
2 log 1

2 + 1
2 log 1

2 − ε logε − (1− ε) log(1− ε)
≈ −1, for ε � 1.

If we measure specific information byI2, then we have lost information by this test result,
approximately 1 bit. This is becauseI2 simply measures how much our uncertainty aboutX

has changed. Prior to the test, we were almost certain that the subject is healthy (assuming
ε � 1) and thus the entropyH(X) was almost zero. After the test, we are perfectly uncertain
bout the subject’s health, and thus the entropyH(X|y1) is 1 bit. Thus the test has increased
our uncertainty by approximately 1 bit. Clearly, the two information measuresI1 andI2 differ
a great deal in their interpretation of the test results.

A responsible clinician would want to repeat the test. Suppose the second test on the
same subject comes out negative,z = z0. Then we know that either the first test gave a false
positive or the second test gave a false negative result. Both possibilities are equally likely,
independently of whether the patient is truly sick. Thus, the probabilityp(x1|y1, z0) of the
subject being sick is exactly what it was before we performed any tests, namelyε:

p(x1|y1, z0) = 1− p(x0|y1, z0) = ε.

What do our specific information measures say about the information obtained from this
second test?

I1(X; z0|y1) = p(x0|y1, z0) log

[
p(x0|y1, z0)

p(x0|y1)

]
+ p(x1|y1, z0) log

[
p(x1|y1, z0)

p(x1|y1)

]
= (1− ε) log[2(1− ε)] + ε log[2ε]

≈ 1, for ε � 1,

whereas

I2(X; z0|y1) = −p(x0|y1) logp(x0|y1)− p(x1|y1) logp(x1|y1)

+p(x0|y1, z0) logp(x0|y1, z0) + p(x1|y1, z0) logp(x1|y1, z0)

= − 1
2 log 1

2 − 1
2 log 1

2 + ε logε + (1− ε) log(1− ε)
≈ 1, for ε � 1.

Both I1 andI2 suggest that information was gained from this second test. As measured byI2,
the information gained in the second test is exactly equal and opposite to the information lost
during the first test. Thus the total information gained from both tests is zero. This agrees with
the fact that we know precisely as much about the patient’s health after these two tests as we
did before. As measured byI1, on the other hand, the accumulated information gained from
these two tests is large, particularly whenε � 1, which blatantly contradicts the facts.

This example illustrates an important difference betweenI1 andI2: I2 is additive whereas
I1 is not. If we use measureI2, then the information obtained from two observations,yj and
zk, is equal to that obtained fromyj plus that obtained fromzk given what was already known
from yj :

I2(X; {yj , zk}) = H(X)−H(X|yj , zk)
= H(X)−H(X|yj ) +H(X|yj )−H(X|yj , zk)
= I2(X; yj ) + I2(X; zk|yj ).
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On the other hand, this is not the case forI1 (Watanabe 1969, p 533):

I1(X; {yj , zk}) =
∑
i

p(xi |yj , zk) log

[
p(xi |yj , zk)
p(xi)

]
I1(X; yj ) + I1(X; zk|yj ) =

∑
i

p(xi |yj ) log

[
p(xi |yj )
p(xi)

]
+
∑
i

p(xi |yj , zk) log

[
p(xi |yj , zk)
p(xi |yj )

]
6= I1(X; {yj , zk}).

(8)

3. A unique measure of ‘specific information’

The lack of additivity presents a serious problem for the candidacy ofI1 as a measure of specific
information. First of all, it conflicts with our intuitive notion that information accumulates
additively over a sequence of observations, such that the total obtained in all steps is equal to
what we would calculate if we considered all the events as a single observation. Secondly, the
additivity for entropy and information measures is at the heart of Shannon’s information theory.
In fact, as reviewed above, additivity is the defining criterion that leads to the logarithmic
form of Shannon entropy, on which the entire formalism is based (Shannon 1948a, Khinchin
1957, Aczel and Daroczy 1975, Guiasu 1977). Finally, a measure of specific information
I (X; yj ) is useful only because it allows us to make comparisons across symbolsyj . For
example, analyses of neural coding often compare the information obtained from different
response patterns (Eckhorn and Pöpel 1974, 1975, de Ruyter van Steveninck and Bialek 1988,
Bialek and Zee 1990) or the information transmitted by different stimuli (Fuller and Looft
1984, Optican and Richmond 1987, Richmond and Optican 1990, Theunissen and Miller
1991, Panzeri and Treves 1996, Rollset al 1996, 1998, Buracaset al 1998). With increasing
availability of simultaneous recordings from an entire neuronal population (Krüger and Aiple
1988, Wilson and McNaughton 1993, Warlandet al1997), it is possible to compare the specific
information each neuron provides with the population code. In all these cases one presumes
that the various specific informations represent the contribution of each observed symbol to the
communication process, and that these contributions sum to the overall information flow. If,
instead, the components do not sum to the whole, then a comparison between the components
is pointless. Thus we are led to rejectI1 as a measure of specific information.

I2 appears as a suitable alternative that satisfies additivity. An intriguing feature of
I2(X; yj ) is that it can be negative, as for the first diagnostic test in the above example.
This is because certain observationsyj do, in fact, increase our uncertainty about the state of
the variableX. However, the average ofI2(X; yj ) over all possibleyj is equal to the mutual
information (4), which is never negative (Shannon and Weaver 1963, Cover and Thomas
1991). Furthermore, if one insists on additivity, then the specific information—however it is
defined—must on occasion take on negative values: as illustrated in the above example, two
subsequent observations may combine to produce zero information, and thus they cannot both
make positive contributions. One can go further and prove thatI2(X; yj ) is, in fact, a unique
definition of specific information: it is the only expression that satisfies additivity

I (X; {yj , zk}) = I (X; yj ) + I (X; zk|yj ) (9)

and averages to the mutual information∑
j

p(yj )I (X; yj ) = I (X, Y ). (10)
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A proof is given in the appendix.
Because additivity is central to the practical utility of an information measure, as discussed

above, we conclude thatI2(X; yj ) is the preferred definition of specific information, and will,
from now on, denote it simply byI (X; yj ):
I (X; yj ) = information aboutX from observingyj

= I2(X; yj ) = −
∑
i

p(xi) logp(xi) +
∑
i

p(xi |yj ) logp(xi |yj ). (11)

4. A unique positive measure: the ‘specific surprise’

Nevertheless,I1(X; yj ) is a potentially useful measure related to the effects of observingyj .
We suggest that this measure be termed the ‘surprise’ aboutX from observation of a specific
yj , and will, from now on, denote it byS(X; yj ):

S(X; yj ) = surprise aboutX from observingyj

= I1(X; yj ) =
∑
i

p(xi |yj ) log

[
p(xi |yj )
p(xi)

]
.

Note thatS(X; yj ) is particularly large whenp(x|yj ) dominates in regions ofX where
p(x) is small. In that case the observation has moved our estimate ofx towards values that
seemed very unlikely prior to the observation: a ‘surprising’ result. For example, this applies
to the first diagnostic test in the above scenario, whose positive outcome suddenly makes it
much more likely that the subject is sick. The comparison ofS andI in that example confirms
that one can experience plenty of surprise without gaining any information. More generally,
we would not expect the surprise to be additive. For example, if we were given the outcome
of the two diagnostic tests as a combined observation, we could immediately conclude that
the two tests are inconsistent; while this itself may be unusual, the combined tests say nothing
about the health of the subject, and consequently there is no surprise about that input variable.
Thus it is clear that the surpriseS(X; yj ) and the specific informationI (X; yj ) measure two
very different aspects of the communication process.

Another natural expectation is that ‘surprise’ should be a positive number. At worst, it
might be zero, namely when the observation ofy changes nothing about the distribution of
x. It is difficult to associate an intuitive meaning with negative surprise. As a matter of fact,
it is well known that the quantityS(X; yj ) is never negative (Fano 1961, Cover and Thomas
1991). Furthermore, one can show thatS(X; yj ) is unique in this regard: it is the only quantity
specific to observation ofyj that is strictly non-negative

S(X; yj ) > 0 for all yj (12)

and whose average amounts to the mutual information∑
j

p(yj )S(X; yj ) = I (X;Y ). (13)

A proof is given in the appendix.

5. Information and surprise in a neural code for visual motion

To illustrate the developments of the preceding sections we now analyse the encoding of visual
motion information by neurons in the middle temporal (MT) cortical area of an alert macaque
monkey (for experimental details see Buracaset al (1998)). In one experiment, eight different
visual stimulixi were presented within the neuron’s receptive field, consisting of a windowed
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Figure 2. Information and surprise about the neural response obtained from a specific stimulus. A
neuron in macaque area MT was stimulated with constant visual motion in eight different directions
(for experimental details, see Buracaset al (1998)). For each stimulus direction, this polar plot
shows the specific informationI (thick line) and the specific surpriseS (medium line) conveyed
about the response by that stimulus. The average firing rate is plotted by the thin line.

grating moving in one of eight possible directions. The neural responseyj was measured as
the number of spikes during 1 s ofstimulus presentation. Figure 2 illustrates how the average
firing rate varies with the stimulus. Like many neurons in the MT area, this cell fires most
vigorously to motion in a particular direction (the ‘preferred’ direction) and least to motion in
the opposite (or ‘anti-preferred’) direction, with intermediate responses for other directions.
On any given trial, however, the spike count may vary considerably. The reliability of the
response resulting from any given stimulus is captured by the specific informationI (xi;Y ). A
third curve plots the specific surpriseS(xi;Y ) that knowledge of the stimulus conveys about the
response. Averaging either the specific information or the specific surprise over all directions
results in the full mutual information, as guaranteed by (10) and (13).

The three curves are quite distinct: the firing rate is maximal in the preferred direction, the
specific information peaks in the anti-preferred direction, and the specific surprise is bimodal.
These qualitative features are easily explained: in response to constant motion stimuli, the
variance in the spike count during a given time window is roughly proportional to the average
spike count (Shadlen and Newsome 1994, Buracaset al 1998). Thus the mean and variance
of the spike count distributionp(yj |xi) are greatest in response to motion in the preferred
direction, and least for motion in the anti-preferred direction. Averaging over all eight equally
likely directions(p(xi) = 1

8), one obtains a very broad spike count distributionp(yj ) that
is peaked at intermediate values. The specific informationI (xi;Y ) measures the difference
in entropy between this average spike count distribution and the distribution for a specified
directionp(yj |xi). Since the distribution is most narrow when the stimulus moves in the anti-
preferred direction, this corresponds to the greatest specific information. On the other hand,
the specific surpriseS(xi;Y ) measures the degree of separation between the two spike count
distributions. Because the average distribution is peaked at intermediate spike count values,
the surprise is large in both the preferred and anti-preferred directions where the overlap is
small. This example illustrates that information and surprise describe very different aspects
of the communication process in neural systems. Neither of these aspects is contained in the
tuning curve, which measures only the average response, not its trial-to-trial variation, and
thus reveals nothing about the fidelity of the neural code.

Whereas the above analysis measures the knowledge gained from a specific stimulus about



334 M R DeWeese and M Meister

Table 1. Information and surprise about the stimulus obtained from a specific neural response. A
neuron in macaque area MT was stimulated with a moving grating (for experimental details, see
Buracaset al (1998)): every 16.7 ms, the grating stepped either in the neuron’s preferred direction
(x1) or the opposite direction(x0). The resulting spike count was either above threshold(y1) or
below threshold(y0). (a) The statistical relationships between stimulixi and responsesyj . (b) The
specific informationI and specific surpriseS obtained about the stimulus from the presence(y1)

or the absence(y0) of a spike.
(a)

xi p(xi) p(xi |y0) p(xi |y1)

x0 0.84 0.89 0.10
x1 0.16 0.11 0.90

(b)

yj I (X; yj ) S(X; yj )
y0 0.12 0.01
y1 0.14 1.93

the neuron’s response, a second experiment served to analyse how much a specific response
conveys about the stimulus. Here the stimulus consisted of a grating that moved randomly,
executing a short step every 16.7 ms either in the cell’s preferred direction (stimulusx1) or
the anti-preferred direction(x0) (Buracaset al 1998). For many MT cells, it was found
that ‘preferred’ steps of the grating elicited action potentials with a specific latency, though
not all such steps produced a spike. Thus, the response to each step could be categorized
into a binary variable by performing a weighted spike count over a brief time window, and
testing whether the result was above a certain threshold (responsey1) or below (y0). This
procedure yielded many stimulus-response pairs(x, y), and from their joint distribution the
mutual informationI (X;Y )was computed as in (2). After optimizing the stimulus parameters
and the procedure for categorizing the spike count, it was found that the response conveyed on
average∼ 5.5 bits s−1 of information about the stimulus (Buracaset al 1998).

Does such a neuron convey more information when it fires or when it remains silent?
Table 1 shows the statistical relationship between the stimulus directionsX and the binary
responsesY for a particular MT cell. Note that the grating moved in the preferred direction
in only a minority of the steps, a fraction∼0.16. When the neuron did not respond, the
conditional probability for a preferred step was somewhat lower still,∼0.11. On occasions
where the neuron did respond, a preferred step was very likely, with conditional probability
∼0.90. Because the stimulus distribution changes more dramatically when the neuron fires
than when it does not fire, the specific surprise is much greater when observing a spike,
S(X; y1), than when not observing a spike,S(X; y0). On the other hand, the two conditional
distributions given a spike,p(xi |y1), or no spike,p(xi |y0), are almost perfectly reversed, and
thus their entropies are almost identical. As a result, the values for the specific information
from either observing a spike,I (X; y1), or not observing a spike,I (X; y0), are very similar.
We conclude that, at least for this neuron, periods of high- and low-firing rate are almost equally
informative about the stimulus.

6. Specific surprise and channel capacity

The information-theoretic approach in neuroscience is partly motivated by the belief that
neural systems have reached some performance optimum in processing information to cope
with their environment. With few notable exceptions (Bialeket al1991, Riekeet al1997) this
idea has rarely been tested. Here we show that one test of optimal performance can be obtained
from a measurement of the specific surprise. Since prior studies of event-specific coding in the
nervous system all measured the specific surprise rather than the specific information (Eckhorn
and P̈opel 1974, 1975, Fuller and Looft 1984, Optican and Richmond 1987, de Ruyter van
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Steveninck and Bialek 1988, Bialek and Zee 1990, Richmond and Optican 1990, Theunissen
and Miller 1991, Panzeri and Treves 1996, Rollset al1996, 1998, Buracaset al1998), one can
thus draw some additional conclusions about the efficiency of coding in these neural systems.

All these studies concern sensory systems, in which information about a set of stimuliX is
represented in neural responsesY . As discussed above, the average information that a response
event conveys about the stimulus is given by the mutual information (2). This quantity depends
on the conditional probabilityp(yj |xi) that a given stimulusxi will cause a certain response
yj , and also on the frequencyp(xi) with which the various stimuli are used. The relationship
p(yj |xi) between stimuli and responses is a property of the circuit, and depends on the function
of its neurons and their interconnections. On the other hand, the frequency of input stimuli
p(xi) is a property of the environment in which the circuit operates. Given the circuit properties
p(yj |xi), there is a maximal possible transmission rate,C, achieved by properly adjusting the
stimulus distributionp(xi): this is called the capacity of the communication channel (Shannon
1948a). If a system transmits information at this full capacity, then the distribution of stimuli
is optimally matched to the neural codep(yj |xi). Do real sensory systems operate at this
optimum?

It is not straightforward to determine the optimal input distribution for a given channel,
and much of coding theory is dedicated to this problem (Hamming 1986). However, there is a
simple test to check whether a given system is transmitting optimally (Shannon 1948a, p 390,
Fano 1961, p 136): a system operates at its capacityC if and only if the specific surprise is
equal for all output symbols, that is

S(X; yj ) = C for every symbolyj . (14)

Since the mutual information is symmetric between inputs and outputs, the same must hold
for all input symbols,

S(xi;Y ) = C for every symbolxi. (15)

By applying this theorem to published measurements of the specific surprise, one finds
that these neural systems do not operate at capacity. The deviations from constant surprise per
symbol (14), (15) are large, though this does not readily quantify the extent to which coding is
suboptimal. For example, de Ruyter van Steveninck and Bialek (1988) recorded the spike train
of a visual neuron in the fly under a broad ensemble of visual stimuli, and compared the surprise
S(X; yj ) about the stimulusX obtained from different kinds of spike pairsyj (equation (2) in
de Ruyter van Steveninck and Bialek (1988)). The surprise varies considerably depending on
the interval between the two spikes; it increases dramatically for very short intervals (figure 7 in
de Ruyter van Steveninck and Bialek (1988)), because these encode features that are very rare
in the stimulus ensemble. Thus, if one considers spike pairs as the symbols of this neural code,
the system clearly does not exhaust the available information capacity per symbol. On the other
hand, the information content per symbol may not be the relevant criterion of performance.
In particular, short inter-spike intervals clearly require less transmission time than long ones.
Thus, maximizing the information per symbol does not maximize the information per unit
time, which may be the more pressing concern for a fly involved in visually guided pursuit of a
potential mate (Land and Collett 1974). In fact, subsequent work showed that the information
rate per unit time in this system comes close to the physically achievable limit (Bialeket al
1991).

In a different study, Optican and Richmond (1987) computed the surpriseS(xi;Y ) that
each visual stimulusxi conveys about the possible responsesY of neurons in the primate
cortex. Again, this quantity varied a great deal across stimuli, by at least a factor of ten,
whereas it should be constant if the neural code operated at capacity (figures 2–4 in Optican
and Richmond (1987), figure 12 in Richmond and Optican (1990)). The same conclusion can
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be drawn from a study of olfactory responses in primate cortex (figures 3–6 in Rollset al
(1996)). Finally, the above analysis of direction-tuning in primate MT neurons (figure 2) also
documented that the surprise varies considerably with the stimulus, although another neuron
from the same population showed less variation (figure 2 in Buracaset al (1998)). In these
cases it is likely that the stimulus ensembles used during experiments are poorly matched to
the neural system’s capabilities. This is almost certainly a concern in recordings from the
visual cortex using stimulation with static Walsh patterns. These stimuli have mathematically
appealing properties, but in practice they lead to very small information rates (Optican and
Richmond 1987), about 20-fold lower per spike than what cortical neurons can sustain (Buracas
et al 1998). Clearly it will be of interest how these performance measures fare under natural
stimulation encountered during behaviour (Treveset al 1999). Particularly in the case of
cortical representations, the analysis should be extended to cover multiple neurons in the
population that collectively encodes the stimulus.

7. Conclusion

Shannon’s quantitative definition of information has been a powerful tool in analysing
communication systems. Here we have discussed how one might extend this measure of
information so it applies to specific transmitted symbols. The history of this issue is remarkably
sparse. In his founding treatise, Shannon (1948a, b) found no need to define the information
related to specific events, but operated only with quantities that are averaged over all symbols,
such as the entropyH(X) and the mutual informationI (X;Y ). Brillouin (1956) pointed
out that information from individual observations can be negative. He cites the example of a
telegram whose last symbol is either 0= ‘all wrong, pay no attention to this message’ or 1=
‘telegram is OK, you can use it’. Observation of 0 destroys all the information that accumulated
during observation of the preceding symbols and thus should be viewed as carrying negative
information. Brillouin concludes that Shannon’s theory must be extended to treat such a case.
This extension is, in fact, achieved if one defines the information conveyed by a specific symbol
yj in the manner we propose in (11).

Fano’s introduction to the theory (1961) begins by defining a ‘microscopic’ quantity,
namely the information between one specific output symbolyj and a specific input symbolxi :
I (xi; yj ) = log[p(xi |yj )/p(xi)]. Note that this quantity is symmetric,I (xi; yj ) = I (yj ; xi),
and additive,I (xi; {yj , zk}) = I (xi; yj )+I (xi; zk|yj ). From this starting point, Fano computes
the ‘average amount of information provided byyj about the transmittedx’ by averaging
I (xi; yj ) over allxi , conditional on observation ofyj : I1(X; yj ) =

∑
i p(xi |yj )I (xi; yj ). He

also considers the alternative definitionI2(X; yj ) = H(X) − H(X|yj ), but rejects it. This
is surprising, since Fano—like many other authors—considers the property of additivity an
essential ‘natural’ attribute of information (Fano 1961, p 30–31), andI1(X; yj ) is not additive,
as shown above in (8). Subsequent texts (Abramson 1963, Hamming 1986, Mansuripur 1987)
generally follow a similar argument in defining the specific information from an output symbol
asI1(X; yj ). The alternative definitionI2(X; yj ) is rarely even considered (Watanabe 1969,
Golomb et al 1994), though Watanabe (1969, p 533) remarks in passing that the quantity
I1(X; yj ) is not additive.

For any practical purpose, additivity truly is an essential property of information.
Abandoning it leads to absurd results when one combines the information from two or more
events, as seen in the examples discussed here. We showed thatI2(X; yj ) = I (X; yj ) is the
only expression that satisfies this requirement and thus the preferred choice for measuring the
‘event-specific information’. The quantityI1(X; yj ) = S(X; yj ) also has unique properties, in
that it is strictly non-negative, and it can be viewed as the ‘event-specific surprise’. Information
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and surprise generally report different aspects of the neural code (figure 2, table 1). In particular,
a comparison of surprise across symbols in the code allows a test for optimal transmission.
Of course, a complete understanding of the neural code—including the degree to which it
deviates from optimality—requires not justI (X; yj )andS(X; yj ), but the full joint distribution
of stimuli and responsesp(xi, yj ). A satisfying biological understanding will further require
some assessment of the subjective value that different events have for behaviour. Nevertheless,
mutual information has been a powerful concept in communication science, and we expect
that its logically consistent extension to single symbols, as advocated here, will prove useful.

Appendix

A.1. Proof thatI2(X; yj ) is the only additive measure of specific information

Prior to any observation, the probability distribution of the inputX is p(x). After observing
the specific eventyj , this distribution has changed fromp(x) to

q(x) = p(x|yj ).
As discussed above (3), the specific informationI (X; yj ) obtained from this observation must
be a functional of the two distributionsp(x) andq(x):

I (X; yj ) = F [p(x), q(x)]. (16)

If subsequently we observe eventzk, the probability distribution ofx changes fromq(x) to

r(x) = q(x|zk) = p(x|yj , zk).
The information gained in this step must be the same functional of the initial and final
distributions

I (X; zk|yj ) = F [q(x), r(x)].

If we consider both eventsyj andzk as a single combined observation then the probability
distribution ofX changes fromp(x) to r(x), and thus the information gained is

I (X; {yj , zk}) = F [p(x), r(x)].

The requirement for additivity (9) specifies that

F [p(x), r(x)] = F [p(x), q(x)] + F [q(x), r(x)].

It follows directly that

F [q(x), r(x)] = F [p(x), r(x)] − F [p(x), q(x)]

= −G[r(x)] + G[q(x)].

So the specific informationI (X; yj ) = F [p(x), p(x|yj )] must be the difference between the
values of some functionalG[ ], evaluated first for the prior distributionp(x) and then for the
conditional distributionp(x|yj )

I (X; yj ) = G[p(x)] −G[p(x|yj )].
We then show thatG[ ] is, in fact, the entropy functionalH [ ]. Consider the special case

where

p(xi |yj ) = δij =
{

1 i = j
0 i 6= j

that is, any observation ofy specifies the precise value ofx. In that case

G[p(x|yj )] = K
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has the same constant value for allyj , because the argumentp(x|yj ) is the delta function in
each case. Furthermore, since any observation ofy leaves no uncertainty aboutx,H(X|Y ) = 0
and the mutual informationI (X, Y ) is simply the entropyH(X). Thus (10) leads to∑

j

p(yj )(G[p(x)] −G[p(x|yj )]) = G[p(x)] −K = H [p(x)] = H(X).

So

G[p(x)] = H [p(x)] + K

and one concludes that

I (X; yj ) = G[p(x)] −G[p(x|yj )] = H [p(x)] −H [p(x|yj )] = H(X)−H(X|yj )
= I2(X; yj ).

A.2. Proof thatI1(X; yj ) is the only non-negative measure that averages to the mutual
information

We seek a measureS(X; yj ) that is never negative (12) and whose average over observationsyj
is the mutual information (13). As argued forI (X; yj ) in (16), the surpriseS(X; yj ) must be
a functional of the two distributionsp(x) andp(x|yj ), simply because these two distributions
completely describe the effect of observingyj . Thus, we can generally write

S(X; yj ) = I1(X; yj ) +A[p(x), p(x|yj )] (17)

whereI1(X; yj ) is given by (5) andA[ ] is some functional of the two distributions. Then (13)
requires that ∑

j

p(yj )A[p(x), p(x|yj )] = 0. (18)

Since this property ofA[ ] must be satisfied for all possible forms ofp(x) andp(x|yj ), it
must somehow arise from the constraints on these probability distributions. The only such
constraint relevant to the summation in (18) is∑

j

p(yj )(p(xi)− p(xi |yj )) = 0. (19)

ThusA[ ] must be of the form

A[p(x), p(x|yj )] =
∑
i

Bi · (p(xi)− p(xi |yj ))

whereBi = Bi [p(x)] can be any functional ofp(x) but does not depend onyj .
Now consider the case wherep(x|yj ) differs very little fromp(x),

p(xi |yj ) = p(xi) + di

with |di | � 1 and
∑

i di = 0. Then (5), (17) and (19) lead to

S(X; yj ) =
∑
i

di · (1 +Bi) + (terms of orderd2
i ).

For this to be non-negative for all possible{di} requires thatBi = −1 for all i, and consequently

A[p(xi), p(xi |yj )] =
∑
i

Bi · (p(xi)− p(xi |yj )) = 0.

Thus, one concludes that

S(X; yj ) = I1(X; yj ).
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