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Abstract

The primary visual area (V1) of the mammalian brain is a thin sheet of neurons. Because
each neuron is dominated by either right or left eye one can treat V1 as a binary mixture
of neurons. The spatial arrangement of neurons dominated by di�erent eyes is known as the
ocular dominance (OD) pattern. We propose a theory for OD patterns based on the premise that
they are evolutionary adaptations to minimize the length of intra-cortical connections. Thus, the
existing OD patterns are obtained by solving a wire length minimization problem. We divide
all the neurons into two classes: right- and left-eye dominated. We �nd that if the number of
connections of each neuron with the neurons of the same class di�ers from that with the other
class, the segregation of neurons into monocular regions indeed reduces the wire length. The
shape of the regions depends on the relative number of neurons in the two classes. If both classes
are equally represented we �nd that the optimal OD pattern consists of alternating stripes. If
one class is less numerous than the other, the optimal OD pattern consists of patches of the
underrepresented (ipsilateral) eye dominated neurons surrounded by the neurons of the other
class. We predict the transition from stripes to patches when the fraction of neurons dominated
by the ipsilateral eye is about 40%. This prediction agrees with the data in macaque and Cebus
monkeys. Our theory can be applied to other binary cortical systems. c© 2000 Elsevier Science
B.V. All rights reserved.

1. Introduction

In mammals inputs from the two eyes come together in the primary visual area (V1)
which is a thin sheet of neurons. Neurons in V1 respond to the stimulation of the two
eyes unevenly: they are either right or left-eye dominated. Accordingly, each neuron
belongs to one of the two ocular dominance classes. The arrangement of neurons varies
between di�erent animals. In some species neurons belonging to di�erent classes are
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uniformly intermixed. In others the binary mixture of right- and left-eye-dominated
neurons is segregated resulting in a system of alternating monocular regions. This
system is known as the ocular dominance (OD) pattern [1].
Most theorists interested in the OD pattern [2,3] have been modeling its development.

They succeeded in generating OD patterns of realistic appearance. However, several
why rather than how questions remained unanswered. Why, from the functional point
of view, do the OD patterns exist? Why do some mammalian species have OD patterns
while others do not (like owl monkeys and adult marmosets [3])? Why do monocular
regions have di�erent appearances (stripes as opposed to patches) between di�erent
species and even between di�erent parts of V1 within the same animal?
Mitchison [4] suggested an answer to the �rst question using the wiring economy

principle [5–10]. The idea is that the evolutionary pressure to keep the brain volume
to a minimum requires making the wiring (axons and dendrites) as short as possible,
while maintaining function. In general, the function of a neuronal circuit speci�es the
connections between neurons (wiring rules). Therefore, the problem presented by the
wiring economy principle is to �nd, for given wiring rules, the spatial layout of neurons
that minimizes wire length. Then we can understand the existing layout of neurons as
a solution to the wire length minimization problem.
We adopt the wiring economy principle and address the above questions by for-

mulating and solving a wire length minimization problem. Neurons in V1 follow the
principle of columnar organization which states that the properties of neurons remain
the same perpendicular to the sheet [11]. Therefore, we consider a two-dimensional
neuronal layer of uniform density. The number of the left-eye-dominated neurons is a
fraction fL of the total number, and fR is a fraction of right-eye-dominated neurons
(fL + fR = 1).
We consider only inter-neuronal connections which do not leave V1 because they

constitute the majority of gray matter wiring [12–14]. We assume that each neuron
receives synapses from Ns neurons dominated by the same eye and from No neurons
dominated by the opposite eye. In other words, because synapses are unidirectional the
resulting wiring rules require each neuron to get unidirectional connections from Ns
neurons dominated by the same eye and from No neurons dominated by the opposite
eye.
Given these wiring rules we look for an optimal layout of neurons which minimizes

the total length of connections. Depending on the values of Ns, No, and fL, optimal
layout belongs to the one of the four phases shown in Fig. 1 where left-eye-dominated
neurons are shown in black and right-eye-dominated neurons – in white. In the un-
segregated Salt and Pepper phase right- and left-eye-dominated neurons are uniformly
intermixed (Fig. 1a). The Stripe phase consists of alternating monocular stripes of
neurons dominated by either eye (Fig. 1b). The L-Patch consists of the patches of the
left-eye-dominated neurons surrounded by the right-eye-dominated neurons (Fig. 1c).
The R-Patch consists of the patches of the right-eye-dominated neurons surrounded by
the left-eye-dominated neurons (Fig. 1d). The segregated Stripe, L-Patch, and R-Patch
phases dominate the phase diagram (see below).
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Fig. 1. Di�erent appearances of the ocular dominance pattern. Left-eye-dominated neurons are black while
right-eye-dominated neurons are white. (a) Salt and Pepper phase, uniformly intermixed left=right neurons.
(b) Stripe phase, alternating monocular stripes. (c) L-Patch phase, circular left-eye islands in the right-eye
sea. (d) R-Patch phase, circular right-eye islands in the left-eye sea.

Our approach di�ers from Mitchison’s in that we drop the retinotopy requirement,
i.e., the connection matrix in our approach (Ns and No) is independent on the position of
the center of the visual �eld on retina. This implies that the mutual interaction between
the ocular dominance pattern and the retinotopic map in weak. This simpli�cation is
supported by the existence of the receptive �eld scatter [15], random variation in the
receptive �eld position between adjacent neurons. For example, in macaque retinotopy
exists only on the scales greater than ≈ 1 mm [15], which exceeds the typical size of
monocular regions. This implies that the position of the center of the receptive �eld of
the neuron is not a well-de�ned quantity on the scales exceeding the characteristic di-
mension of the OD pattern. Hence, the selectivity of the local connections to retinotopy
should be weak.
In the Discussion we compare our predictions with the data from macaque and Cebus

monkeys and �nd good agreement. Also, we discuss simplifying assumptions made in
the paper and possible ways to extend the theory.

2. Results

We present the central results of the paper on a phase diagram (Fig. 2) showing
optimal phases for various ratios of same-eye to other-eye connections Ns=No and frac-
tions of left-eye neurons fL. If the numbers of same-eye and other-eye connections are
equal, Ns=No = 1 then Salt and pepper phase is optimal. Otherwise, if Ns=No 6= 1 the
wirelength is minimized by an OD pattern consisting of alternating monocular regions.
The shape of these regions depends on the relative fraction of the left-eye-dominated
neurons, fL. When the numbers of neurons dominated by each eye are close, fL ≈ fR,
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Fig. 2. Ocular dominance phase diagram calculated in the lattice model. Optimal phases are shown for various
values of the relative di�erence between the same-eye and the other-eye connections (Ns − No)=(Ns + No)
and a fraction of left-eye neurons f. Range of the Stripe phase optimality is shown in white, Patch phase
– in black, Salt and Pepper – in grey.

the Stripe phase is optimal. When the fraction of left-eye (right-eye)-dominated neu-
rons drops below a critical value fc ≈ 0:4 the L-Patch (R-Patch) phase becomes
optimal. Our predictions of the critical value agree with the data from macaque and
Cebus monkeys.
In the following section we formulate a wiring problem on a lattice. For small Ns and

No we solve it analytically while for large Ns and No we solve it numerically. Results
are shown in Fig. 2. Next, we introduce a continuous formulation of the problem. We
prove that Salt and Pepper is an optimal layout when Ns = No. Then we show that
for Ns 6= No segregation of neurons according to their OD reduces wire length. We
calculate in perturbation theory the wire length for Stripe and Patch phases and �nd the
range of parameters for the optimality of each phase. Perturbation theory provides an
analytical treatment of neuronal clustering so common throughout the nervous system.
The calculated phase diagram is similar to that obtained in the lattice model.

3. Lattice model

Although the arrangement of neurons in cerebral cortex is anything but grid-like we
can understand many features of the neuronal layout by studying lattice models. These
models compensate in clarity and computability what they lack in realism. Of course,
we need to make sure that the results are independent of the particular choices of
lattice parameters (for example the number of nearest neighbors).
We consider arranging a large number of neurons on a two-dimensional square lat-

tice. Each site must be occupied by either left- or right-eye-dominated neuron. The
number of the left-eye-dominated neurons is a fraction fL of the total number of
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Fig. 3. Ocular dominance patterns for fL = 1
2 and Ns = No = 4. (a) A realization of the Salt and Pepper

phase gives minimal wire length (l ≈ 9:67 lattice constants per neuron). (b) A realization of the Stripe
phase is suboptimal (l ≈ 10:24).

neurons and fR is a fraction of right-eye-dominated neurons. The problem is to �nd
a layout which minimizes the total length of wiring speci�ed by the following rule.
Each left-eye neuron has unidirectional connections with Ns left-eye neurons and with
No right-eye neurons. Each right-eye neuron has unidirectional connections with Ns
right-eye neurons and with No left-eye neurons. Unidirectionality of connections means
that connecting neuron A to neuron B, does not necessarily imply that neuron B con-
nects to neuron A. The motivation for this rule comes from the unidirectional properties
of synapses in the brain.
Because we attempt to minimize wire length we assume that for a given layout

the connections are established optimally. Thus, the problem is reduced to comparing
optimal wiring for various layouts. Therefore, we will assume that each neuron makes
the shortest possible connections satisfying wiring rules.

3.1. Small numbers of connections per neuron

We start by �nding optimal layouts for three illustrative examples of wiring rules
with small numbers of connections, Ns and No. We caution the reader that because
of the small numbers of connections phase assignments may seem arbitrary. These
examples are chosen to illustrate our main results which will be con�rmed both in the
lattice model with large Ns and No later in this section and in the continuous model
(Section 4).
For the �rst two examples we set equal numbers of left- and right-dominated neurons,

fL = fR = 1
2 . In the �rst example, each neuron connects with equal numbers of the

same-eye and other-eye neurons, Ns = No = 4. Then the optimal layout is the “chess
board” of left=right neurons, Fig. 3a. This layout is a realization of the Salt and Pepper
phase (Fig. 1a) because each neuron has an equal number of left and right neurons
among its immediate neighbors. To calculate the length of connections per neuron, l,
we notice that in this layout all neurons have the same pattern of connections. By
considering one of them (Fig. 3a) we �nd that l = 4 + 4

√
2 ≈ 9:67. This layout is

optimal because each neuron makes all of its connections with immediate neighbors.
A suboptimal layout for the same wiring rules is illustrated by a realization of the

Stripe phase (Fig. 3b). In this layout each neuron has the same pattern of connections



D.B. Chklovskii, A.A. Koulakov / Physica A 284 (2000) 318–334 323

Fig. 4. Ocular dominance patterns for fL = 1
2 and Ns = 5, No = 3. (a) A realization of the Salt and Pepper

is suboptimal (l ≈ 10:24). (b) A realization of the Stripe phase gives minimal wire length (l ≈ 9:67).

up to a mirror reection. By considering one of them (Fig. 3b) we �nd l=6+3
√
2 ≈

10:24, greater than l ≈ 9:67 for the Salt and Pepper phase. Here each neuron has
among its immediate neighbors only three other-eye neurons, while the wiring rules
require connecting with four other-eye neurons. A connection to a more distant neighbor
is longer making the layout suboptimal. We con�rm the optimality of the Salt and
Pepper phase for Ns = No for large Ns, No both numerically and analytically.
In the second example, each neuron connects with more same-eye than other-eye

neurons: Ns = 5, No = 3. Then a realization of the Salt and Pepper phase, Fig. 4a
is not optimal anymore. The length of connections per neuron is l ≈ 10:24, while
the Stripe phase, Fig. 4b gives l ≈ 9:67. The Salt and Pepper phase loses in wiring
e�ciency because there are not enough same-eye neurons among immediate neighbors
and connections with more distant neighbors are needed. The Stripe phase, Fig. 4b
recti�es this ine�ciency by having each neuron make connections only with imme-
diate neighbors. Thus, clustering of same-eye neurons is advantageous if each neuron
connects more with the same-eye than with the other-eye neurons.
In the third example, we use the same wiring rules (Ns=5, No=3) but take di�erent

numbers of left=right neurons, fL = 1=4, fR = 3=4. The realizations of the Salt and
Pepper phase is shown in Fig. 5a and of the Stripe phase in Fig. 5b. In these layouts,
di�erent neurons have di�erent patterns of connections. To �nd the wiring length per
neuron we average over di�erent patterns and �nd for the Salt and Pepper phase
l ≈ 11:26 and for the Stripe phase l ≈ 11:49. A more e�cient layout is the L-Patch
phase (Fig. 5c) where l ≈ 10:67. Although we cannot prove that the L-Patch phase is
optimal, this seems likely. Thus, the optimal shape of monocular regions depends on
the relative numbers of left=right neurons.

3.2. Large numbers of connections per neuron

Lattice models with small numbers of connections per neuron yield quick results
good for illustration purposes. However, they are di�cult to generalize to the wiring
rules with large numbers of connections more appropriate for cortical circuits where
each neuron connects with ≈ 104 neurons. Therefore, we study lattice problems with
large numbers of connections per neuron.
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Fig. 5. Ocular dominance patterns for fL = 1
4 and Ns = 5, No = 3. Realizations of the (a) Salt and Pepper

(l ≈ 11:26) and (b) Stripes (l ≈ 11:49) are suboptimal. (c) A realization of the L-Patch phase gives
minimal wire length (l ≈ 10:67).

When the number of connections per neuron is much greater than the number of
nearest neighbors, the e�ect of the discreteness of the lattice on the results is negligible.
In particular, for a given fraction fL and ratio Ns=No only the periodicity of the optimal
layout depends on the No. Thus, the solution of the wire length minimization problem
for one value of No can be generalized to other problems with the same fL and Ns=No.
We solve the wire length minimization problem using the following numerical algo-

rithm. We �x the values of fL and Ns=No. We use lattice sizes up to 300× 300 sites
and No = 240. We consider neuronal layouts belonging to several phases: Salt and
Pepper, Stripe, L-(R) Patch (both triangular and square lattice), Checkerboard (only
for fL = 1

2). For each phase we �nd the optimal period which minimizes wire length.
Then we compare wire length in the optimal layouts of di�erent phases. We plot the
optimal phases for various values of fL and Ns=No on the phase diagram (Fig. 2).
These results were discussed above.

4. Continuous model

In this section we study the limit when Ns and No are very large. Instead of con-
sidering each receiving connections neuron separately it makes sense to treat them as
a mixture of two “liquids”, the left- and right-eye ones, having continuous in space
densities. Segregation of such a mixture implies that the OD structure is formed.
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4.1. The model

In this subsection, we will assume that the neuron con�guration represented by the
neuron densities is given. It can be any arbitrary con�guration, including Salt and
Pepper, Stripes, or Patches. For the given neuron densities we draw the connections
between the cells which
• satisfy the wiring rules (Ns same and No other neuron connection have to be estab-
lished); and

• minimize the total wire length.
In the end of the subsection, we calculate the wire length for the Salt and Pepper
con�guration.
We consider the mixture of neurons of two types: dominated by the left and right

eyes. We assume that the neurons are located in the plane. This assumption is based
on the fact that the OD remains constant in the direction perpendicular to the cortex
surface. The variables of the problem can therefore be considered functions of the
remaining two coordinates, r.
Instead of considering each individual cell we characterize the neuron con�guration

by continuous local variables. We de�ne the local density of neurons dominated by the
right eye nR(r) as the average density in a square containing su�ciently large number
of cells (¿ 10), yet small compared to the typical spatial scales of the con�guration
(∼ 1 mm). Similarly nL(r) is the local density of cells dominant by the left eye.
Although both nR(r) and nL(r) can vary in space, the total density of neurons n0 ≡
nR(r) + nL(r) is a constant, independent of the position in the cortex.
In our model nR(r) and nL(r) completely de�ne the neuron con�guration. For ex-

ample the Salt and Pepper con�guration, in which the densities of right- and left-eye
neurons are uniform, can be de�ned as follows:

nR(r) ≡ �nR = fRn0 ;

nL(r) ≡ �nL = fLn0 ;

�nR + �nL = n0 : (1)

Here fR is de�ned as the fraction of the right-eye neurons with respect to the total
number of cells (in general not 12 ).
Having de�ned the neuron con�guration by �xing the densities nR(r) and nL(r) we

proceed to establishing the connections between cells. Two requirements have to be
taken into account. First, we have to satisfy the wiring rules. Second, for given densities
nR(r) and nL(r) the total length of connections has to be minimum. Consider a pattern
of connections from a neuron dominated, for example, by the right eye. Consider also
the region in the cortex it is connected to. There are in fact two such regions, for the
right- and left-eye connections. We claim that each of these regions is a disc. To prove
this, notice that if the connections are produced with neurons outside of this disk rather
than inside the wire length is increased. This is inconsistent with the requirement of
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the optimum wiring for a given con�guration. We denote the radii of these two disks
RRR(r) and RRL(r), implying the radii of right-eye neuron at point r connection regions
to the right-eye and left-eye cells correspondingly. Similar quantities can be introduced
for the left-eye neurons at point r, i.e., RLR(r) and RLL(r). We introduce the index
notation i = {R; L}. Then the four radii discussed can be collapsed into one notation
Rik(r), standing for the radius of the connection region for the neuron of OD i at
point r to the cells of OD k. The radius can be determined from the wiring rules (Ns
and No connections to the cells of the same and other OD, respectively, have to be
established):

Nik =
∫
|r−r′|6Rik (r)

dr′nk(r′) : (2)

Here the elements of matrix Nik , i= {R; L} are equal to Ns if i= k and No otherwise.
It is now possible to determine the total connection length in the cortex L. To this

end we add up the lengths of the connections of individual neurons Lik(r) over the
whole area:

L=
∫
dr

∑
i; k=R; L

ni(r)Lik(r) ; (3)

where

Lik(r) =
∫
|r−r′|6Rik (r)

dr′nk(r′)|r− r′| : (4)

The last factor in this expression is the connection length as a function of separation
|r − r′| between neurons. In principle, cost function may not be a linear function
of separation. This would be the case if the axon diameter changed with distance.
However, we take it to be linear assuming no substantial change of the average axonal
diameter as a function of length. Eqs. (2)–(4) de�ne our model completely.
Using Eq. (3) we calculate the wire length for the homogeneous Salt and Pepper

con�guration. To this end we substitute the densities given by Eq. (1) into (2) to �nd

RSPik =

√
Nik
�nk

: (5)

Then using Eqs. (3) and (4) we obtain

Lik =
2
3
RSPik Nik (6)

and �nally

LSP =
2A
3

[√
N 3s
� (

√
nR +

√
nL) +

√
N 3o
�

(
nR√
nL
+

nL√
nR

)]
; (7)

where A is the total area of the cortex.
In the next subsection, we show that wire length can be reduced with respect to (7)

by introducing a small inhomogeneity into the neuron densities nR and nL. To this end
we treat our model (2)–(4) in the framework of the perturbation theory.
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4.2. Instability of the uniform state leads to the formation of patterns

The purpose of this subsection is to study structures that do not deviate far from the
uniform Salt and Pepper con�guration discussed in the previous subsection. Because
we have solved the uniform con�guration exactly, the con�gurations which are not far
from it are also treatable by the perturbation theory analysis, i.e., expansion of the wire
length (3) in terms of the deviation of densities of right- and left-eye neurons from
the constant. This treatment determines which of the inhomogeneous phases (Stripe
or Patch) is optimum. Also, comparison with the numerical results shows that the
perturbation theory results hold even for big di�erences in density.
We therefore consider a small repositioning of neurons, leading to the deviation of

densities from constant �n(r). Because nR + nL = n0

nR(r) = �nR + �n(r) ;

nL(r) = �nL − �n(r) : (8)

As this is only rearrangement the average of �n(r) over the entire volume �n(r) is zero,
i.e., the total number of left- and right-eye neurons is not changed by the perturbation.
We then substitute these functions into our model (2)–(4) and calculate expansion of
the wire length in the Taylor series in �n(r). It has the form

L=LSP +L(1) +L(2) + · · · ; (9)

whereLSP is given by Eq. (7),L(1)˙ �n,L(2)˙ �n2 are the �rst- and the second-order
corrections to the wire length. From the condition �n(r) = 0 it follows that L(1) = 0.
The second-order correction to the wire length is

L(2) =
∫
dr dr′

∑
i; k=R; L

RSPik

×{U1ik(r− r′)�ni(r)�nk(r′) + U2ik(r− r′)�nk(r)�nk(r′)} : (10)

Here �ni(r) is the perturbation of density of neurons of ith dominance (�nR = �n,
�nL =−�n,) and

U1ik(r) = �(RSPik − |r|)
( |r|
RSPik

− 1
)
; (11)

U2ik(r) =
1

4�(RSPik )2

∫
dr′′�(RSPik − |r− r′′|)�(RSPik − |r′′|) ; (12)

where �(x) = 1, if x¿0, and �(x) = 0, if x¡ 0. Because U2ik has the geometrical
interpretation of the overlap between two disks

U2ik(r) =


 1
2�arccos

( |r|
2RSPik

)
− |r|
4�RSPik

√
1−

( |r|
2RSPik

)2 �(2RSPik − |r|) : (13)
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Using Eq. (8) we express the second-order correction to the wire length (10) as a
pairwise density–density interaction

L(2) =
∫
dr dr′�n(r)U(r− r′)�n(r′) ; (14)

where the “interaction potential” U(r) is given by

U(r) =U1(r) +U2(r) ; (15)

U1 = U1RR + U1LL − U1RL − U1LR ; (16)

U2 = U2RR + U2LL + U2RL + U2LR : (17)

We notice that expression (14) is similar to the Hamiltonian used by Cowan and
Friedman [16], which corresponds to Swindale [17] learning rules. The advantage of our
approach is that we derive this expression from a single principle without assuming a
particular form of “interaction potential”. In addition, we go on to solve this expression
analytically. This allows us to map out a phase diagram which relates the ocular
dominance pattern to biologically measurable connection rules without appealing to
“Mexican hat” connection weights.
We convert Eq. (14) into Fourier space using the property of a convolution

L(2) =
∫

dq
(2�)2 Ũ(q)|�ñ(q)|

2 ; (18)

where Ũ(q) and �ñ(q) are Fourier transforms of the “interaction potential” and the
perturbation of density, respectively. The Fourier transform of a function f(r) is de�ned
as f̃(q) =

∫
drf(r) exp(−iqr); where i =√−1 is the imaginary unity. Eq. (18) is the

central result of this subsection.
Function Ũ(q) determines the changes in the total wire length due to the deviation

of the neuron density from constant. For example, if the perturbation of density has the
form of plane wave (�n=a cos(q0r)), the change in the total wire length is proportional
to Ũ(q0)a2. Thus if Ũ(q) is negative at certain q0, such a perturbation decreases the
total wire length. It is therefore advantageous from the point of view of wire length
economy to create a perturbation of density at this wave vector. In this case the uniform
Salt and Pepper con�guration (�n=0) is unstable with respect to the formation of the
OD patterns. Hence, negative function Ũ(q) indicates the formation of an OD pattern.
We therefore analyze the conditions at which the function has negative values. Two

statements can be made in this respect. First, assume that Ns = No. Then Ũ(q) is
never negative. Indeed in this case U1RR ≡ U1LR and U1RL ≡ U1LL (see De�nition (11)
and Eq. (5)). Therefore, according to (16), U1 ≡ 0. At the same time U2ik(q)¿0 as a
Fourier transform of the convolution of two disks. Hence if Ns=No, U(q) ≡ U2(q)¿0.
This implies that Salt and Pepper is optimum if Ns = No. Second, consider Ũ(q) at
fR=fL= 1

2 and arbitrary Ns 6= No. In this case Ũ(q) always has negative values. This
means that on the line of equal right-left eye occupancy fR =fL = 1

2 the OD patterns
are always optimum, except for the point Ns = No. We do not give the proof of this
property due to the space limitations.
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Fig. 6. Function Ũ(q) calculated numerically for Ns = 10, No = 7, fR = 1
2 , and n0 = 1. The value of wave

vector corresponding to the most negative value of the function is denoted Q0.

To illustrate these properties we show an example of Ũ(q) in Fig. 6. The function
obviously has negative values, signifying instability and an OD pattern formation. The
instability is strongest at the wave vector corresponding to the most negative value of
Ũ(q). Indeed, creating the structure at this wave vector reduces the total wire length
most e�ectively. We predict therefore the spatial period of the OD pattern. For the
case Ns ≈ No shown in Fig. 6 (Ns = 10 and No = 9) function Ũ(q) reaches the most
negative value at

Q0 ≈ 3
RSPRR

≈ 3
RSPRL

: (19)

The spatial period of the OD pattern is therefore

�=
2�
Q0

≈ 2RSPRR ≈ 2RSPRL : (20)

In other words, it is approximately equal to the diameter of the disc of connections.

4.3. Competition between the Stripe and Patch phases

Next, we use the perturbation theory to calculate approximately the wire lengths of
di�erent OD structures. Because the structures are periodic the integral in Eq. (18) can
be reduced to the sum over the reciprocal lattice vectors Q:

L(2) =
1
A

∑
Q 6= 0

Ũ(Q)|�ñ(Q)|2 ; (21)

where A is the total area of the system. Di�erent OD structures have di�erent sets of
Q and �ñ(Q). For example, for Stripes Qx=2�n=�, Qy=0, where n=±1;±2; : : : and
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Fig. 7. Ocular dominance phase diagram calculated in perturbation theory. Range of the Stripe phase opti-
mality is shown in white, Patch phase – in black, Salt and Pepper – in grey. The axes are labeled similar
to Fig. 2.

� is the spatial period of the structure. The Fourier transform of density

�ñStripes(Q) =
2A
�|Q| sin

(
fR|Q|�
2

)
: (22)

For the triangular lattice of Patches Qx = Q0(l
√
3=2), Qy = Q0(k + l=2), with l; k =

±1;±2; : : : and Q0 = 4�=�
√
3, where � is the lattice spacing. The Fourier transform

of density

�ñPatches(Q) =
2A
�|Q|

√
2�fR√
3
sin


|Q|�

√
fR

√
3

2�


 : (23)

Based on Eqs. (21)–(23) we compare di�erent OD structures and generate the phase
diagram similar to one given in the introduction (see Fig. 7).
Figs. 2 and 7 have many similar features. First, the diagram is symmetric with

respect to the line fR= 1
2 . This is a consequence of the left-right eye symmetry of the

general wire length functional (3) inherited by the second-order functional (18). The
reason for the existence of such a symmetry is interchangeability of left and right eyes
inherent to this model. If, for instance, in a given con�guration one relabels left-eye
neurons into the right-eye ones and vice versa, the wire length does not change.
Second, the Salt and Pepper phase occupies a stripe around the line Ns = No.

The width of this line is given by |Ns − No|¡ 0:01Ns. This is the result of the
above-mentioned stability of Salt and Pepper on the line Ns = No. As it is shown
by the diagram, the stability extends into some region around this line.
Third, there is a transition between Stripes and Patches at fR ≈ 0:4 and 0:6. The

region on the diagram corresponding to 0:4¡fR¡ 0:6 is almost completely occupied
by the Stripes while the rest of the diagram (fR¡ 0:4 and fR¿ 0:6) by the Patches.
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We explain this in the framework of the perturbation theory. The main contribution
to Eq. (21) comes from the terms with the smallest |Q|. This happens because both
Ũ(Q) and ñ(Q) decay very fast with the increase of |Q|. Stripes and Patches can
approximately be compared using only the terms with the smallest |Q| ≡ Q0. The two
solutions have equal wire length if

2Ũ(Q0)|�ñStripes(Q0)|2 = 6Ũ(Q0)|�ñPatches(Q0)|2 ; (24)

where factors 2 and 6 are the numbers of the smallest wave length harmonics in the
Stripe and Patch phases, respectively. Using Eqs. (22) and (23) to solve the latter
equation for fR we obtain numerically for the �lling factor of the transition fR ≈ 0:4.
Due to the mentioned left–right eye symmetry of the model similar transition occurs
at fR = 1− 0:4 = 0:6.
We would like to notice �nally that comparison of the perturbation theory to exact

calculations shows that the former works well even if the deviation of the density
from constant is not small (∼ 0:5n0). Such a comparison shows that ([L − LSP] −
L(2))=L(2)¡ 5%. In addition, the perturbation theory provides a framework to under-
stand numerous qualitative features of the phase diagram discussed above.
Von der Malsburg [18], has surmised that there is a phase transition between Patches

and Stripes driven by the cost of the left=right eye boundary. However, he did not
address di�erent numbers of connections with same vs. other-eye neurons and made
several di�erent assumptions (e.g. �xing the periodicity of the pattern). Thus, our
results o�er a more complete description of the OD patterns while relying only on one
principle – wire length minimization.

5. Discussion

5.1. Comparison with experiment

Our theory relates the properties of the neural circuit to the neuronal layout. In
particular, the phase diagram relates the relative fractions of neurons, fR, and of con-
nections, Ns=No, to the appearance of the OD pattern. Ideally, this theory could be
tested by measuring these numbers experimentally and comparing the observed OD
pattern to the one predicted by the phase diagram. However, a direct measurement of
Ns=No is not available yet and one can only surmise that it is greater than one.
In the mean time we can test some predictions of our model which are independent

of the ratio Ns=No. Fig. 1 shows that the transition from the Stripe and the L-Patch
(R-Patch) phase takes place when fR ≈ 0:4 (or fL ≈ 0:4) for a wide range of Ns=No.
This number can be compared with the experimentally observed value of fR at which
the transition occurs. The statement that the Patch phase becomes optimal when one
eye prevails is, indeed, non-trivial since there may be a system of alternating wide and
narrow monocular stripes instead.
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Fig. 8. Transition between the Stripe and Patch phases occurs at theoretically predicted value of fR. Shown
is a fragment of the macaque ocular dominance pattern from Horton and Hocking, 1996 [22]. Neurons
dominated by the right eye are grey and neurons dominated by the left eye are white. Black contours
correspond to the value fR=0:4 averaged over a window equal to the one shown by the dashed square. The
side of the square is equal to 5.8 mm and is chosen to be much larger than the OD period (≈ 1 mm) and
much smaller than the characteristic size of OD variation. Transition from Stripe to Patch phase visually
coincides with the black contour.

We test our result on the data from macaque and Cebus monkey. The relative
area occupied by the right=left eye depends on the location in V1. In the part of V1
corresponding to the center of the visual �eld both eyes are represented equally, i.e.,
fR ≈ 0:5. In agreement with the phase diagram, the OD pattern consists of stripes. In
contrast, in the area corresponding to the periphery of the visual �eld one of the eyes
(ipsilateral) becomes underrepresented. This occurs because some part of the image is
occluded for the ipsilateral eye by the nose of the animal. Therefore fR¡ 1

2 there (if the
right eye is ipsilateral). In such areas the OD pattern becomes patchy (see Fig. 8), just
as expected from the phase diagram. We verify the location of the transition by using
the following algorithm. We �nd fR for each point of the pattern by calculating the
relative area occupied by the left=right regions in a window centered on that point and a
few OD periods wide (dashed lines in Fig. 8). Then we draw a contour corresponding
to fL = 0:4 (Fig. 8). Next, we check visually whether the location of this contour
is close to the transition from Stripes to Patches. Indeed, the large black contour in
Fig. 8 coincides with the transition indicating good agreement.
In Cebus monkey the OD pattern has a similar transition [19]. For monkey CO6L

from Rosa et al. [19] we determine visually that along the horizontal meridian the
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transition occurs at the eccentricity of 20–40◦. According to the plot of the relative
representations given in Rosa et al. [19], fR changes in the range 0.32–0.42 at these
eccentricities. Our prediction of fR = 0:4 falls into this interval. For the upper 45

◦

meridian of the same monkey the transition occurs at the eccentricity of 30–40◦ or
at �lling fractions 0.33–0.43. Again, the predicted value belongs to this interval. We
conclude that this data agrees with our predictions although a more precise measurement
would be helpful.
In cats the OD patterns resemble Patches. In this case our theory implies that one

eye should be underrepresented. In fact, Shatz and Stryker [20] reported that the �lling
fraction of the ipsilateral eye in the entire cat V1 is smaller than 0:5. This may explain
the existence of Patches in cat V1. However, other authors Anderson et al. [21] claimed
that both eyes are represented almost equally. More precise measurements of the ocular
dominance are needed to make a conclusive judgement.

5.2. Further development of the theory

Next, we elaborate on several simplifying assumptions made in the paper. Although
these assumptions should not a�ect our conclusions signi�cantly, they are worth further
exploration.
First, the transition between Stripes and Patches may be more complex than dis-

cussed. We considered only two candidate phases: Stripes and a triangular lattice of
circular Patches. It is possible that some intermediate phases become optimal near the
transition. For example, Fig. 8 hints that parallel chains of elongated Patches may give
more e�cient wiring. This would slightly modify our phase diagram.
Second, we based our theory on looking for an optimal layout of neurons which

minimizes total wire length. The considered structures are, therefore, regular and peri-
odic. However, developmental noise may lead to uctuations in the OD pattern which
reduce slightly its wiring e�ciency. Although actual OD patterns contain such uctua-
tions we do not know whether these are due to suboptimal wiring or variations in the
wiring rules from point to point.
Di�erent phases may have di�erent stability in respect to noise. Judging from the

data, the Stripe phase holds up well on the scale of a few periods. The Patch phase,
however, does not show a regular triangular lattice. We think that this is because of a
relatively small di�erence in wire length between the triangular and the square lattice
of Patches. (It is about 0:5% of the total wire length, compared to 2% di�erence
between Stripes and Patches for the upper left part of the phase diagram.)
Third, our theory can be expanded to address the interaction between di�erent maps.

Variables of other maps can enter the expression for the total wire length (Eq. (3))
through additional values of indices i and k, which so far reect ocular dominance.
Moreover, these indices can become continuous variables if the sums in (3) are replaced
by integrals. This would be appropriate for including interactions with retinotopic and
orientational selectivity maps.
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Fourth, we applied our theory to the OD patterns as the best-studied structure. Since
our model is based on minimal assumptions, it can be applied to other binary structures
such as cytochrome oxidase blobs.
In conclusion, we explained the OD patterns in mammalian V1 by minimizing wire

length given general functional considerations. Good agreement with experiment lends
strong support to the notion that OD structures are adaptations to reduce intra-cortical
wiring.
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