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Optimal Sizes of Dendritic and Axonal Arbors in a
Topographic Projection

DMITRI B. CHKLOVSKII
Sloan Center for Theoretical Neurobiology, The Salk Institute, La Jolla, California 92037

Chklovskii, Dmitri B. Optimal sizes of dendritic and axonal arbors
in a topographic projection.J. Neurophysiol.83: 2113–2119, 2000. I
consider a topographic projection between two neuronal layers with
different densities of neurons. Given the number of output neurons
connected to each input neuron (divergence) and the number of input
neurons synapsing on each output neuron (convergence), I determine
the widths of axonal and dendritic arbors which minimize the total
volume of axons and dendrites. Analytical results for one-dimensional
and two-dimensional projections can be summarized qualitatively in
the following rule: neurons of the sparser layer should have arbors
wider than those of the denser layer. This agrees with the anatomic
data for retinal, cerebellar, olfactory bulb, and neocortical neurons the
morphology and connectivity of which are known. The rule may be
used to infer connectivity of neurons from their morphology.

I N T R O D U C T I O N

Understanding brain function requires knowing connections
between neurons. However, experimental studies of interneu-
ronal connectivity are difficult and the connectivity data are
scarce. At the same time, neuroanatomists possess much data
on cellular morphology and have powerful techniques to image
neuronal shapes. In this situation I propose the use of morpho-
logical data to infer interneuronal connections. Any such in-
ference must rely on rules which relate shapes of neurons to
their connectivity.

The purpose of this paper is to derive such a rule for a
frequently encountered feature in the brain organization: a
topographic projection. Two layers of neurons are said to form
a topographic projection if adjacent neurons of the input layer
connect to adjacent neurons of the output layer (Fig. 1). As a
result, the output neurons form an orderly map of the input
layer.

I characterize interneuronal connectivity for a topographic
projection by divergence and convergence factors defined as
follows (Fig. 1):Divergence, D, of the projection is the number
of output neurons which receive connections from an input
neuron.Convergence, C,of the projection is the number of
input neurons which connect with an output neuron. I assume
that these numbers are the same for each neuron in a given
layer. Furthermore, each neuron makes the required connec-
tions with the nearest neurons of the other layer. In most cases,
this completely specifies the wiring diagram.

A typical topographic wiring diagram shown in Fig. 1
misses an important biological detail. In real brains, connec-
tions between cell bodies are implemented by neuronal pro-

cesses: axons which carry nerve pulses away from the cell
bodies and dendrites which carry signals toward cell bodies
(Cajal 1995a). Therefore each connection is interrupted by a
synapse which separates an axon of one neuron from a dendrite
of another. Both axons and dendrites branch away from cell
bodies forming arbors.

In general, a topographic projection with given divergence
and convergence may be implemented by axonal and dendritic
arbors of different sizes, which depend on the locations of the
synapses. For example, consider a wiring diagram withD 5 1
andC 5 6 (Fig. 2A). Narrow axonal arbors may synapse onto
wide dendritic arbors (Fig. 2B) or wide axonal arbors may
synapse onto narrow dendritic arbors (Fig. 2C). I call these
arrangements type I and type II, correspondingly. The question
is: which type is preferred?

I propose a rule which specifies the sizes of axonal arbors of
input neurons and dendritic arbors of output neurons in a
topographic projection: High divergence/convergence ratio fa-
vors wide axonal and narrow dendritic arbors whereas low
divergence/convergence ratio favors narrow axonal arbors and
wide dendritic arbors. Alternatively, this rule may be formu-
lated in terms of neuronal densities in the two layers: Sparser
layer has wider arbors. In the above example, divergence/
convergence (and neuronal density) ratio is 1/6 and, according
to the rule, type I arrangement (Fig. 2B) is preferred.

In this paper I derive a quantitative version of this rule from
the principle of wiring economy which can be summarized as
follows (Cajal 1995b; Cherniak 1992; Chklovskii and Stevens
1999; Mitchison 1991; Young 1992): Space constraints require
keeping the brain volume to a minimum. Because wiring
(axons and dendrites) takes up a significant fraction of the
volume, evolution has probably designed axonal and dendritic
arbors in a way that minimizes their total volume. Therefore
we may understand the existing arbor sizes as a result of wiring
optimization.

To obtain the rule I formulate and solve a wiring optimiza-
tion problem. The goal is to find the sizes of axons and
dendrites which minimize the total volume of wiring in a
topographic wiring diagram for fixed locations of neurons. I
specify the wiring diagram with divergence and convergence
factors. Throughout most of the paper I assume that the cross-
sectional area of dendrites and axons are constant and equal.
Therefore the problem reduces to the wiringlengthminimiza-
tion. My results are trivially extended to the case of unequal
fiber diameters as shown below.

Purves and co-workers (Purves and Hume 1981; Purves and
Lichtman 1985; Purves et al. 1986) have previously reported
empiric observations which may be relevant to the present
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theory. They found a correlation between convergence and
complexity of dendritic arbors in sympathetic ganglia. Conclu-
sive comparison of this data with the theory requires establish-
ing topographic (or some other) wiring diagram and measuring
axonal arbor sizes in this system.

In the next section I consider a one-dimensional version of
the problem. In this version, wire length is minimized by wide
dendritic and no axonal arbors (type I) in case of divergence
less than convergence and by no dendritic and wide axonal
arbors (type II) in the opposite case. Next, I consider a two-
dimensional version of the problem. If both convergence and
divergence are much greater than one, the optimal ratio of
dendritic and axonal arbors equals the square root of conver-
gence/divergence ratio.

I test the rule on the available anatomic data. For several
projections between retinal, cerebellar, olfactory bulb, and
neocortical neurons, arbor sizes agree with the rule. Finally, I
discuss other factors which may affect arbor sizes.

T O P O G R A P H I C P R O J E C T I O N I N O N E D I M E N S I O N

Consider two parallel rows of evenly spaced neurons (Fig. 1)
with a topographic wiring diagram characterized by diver-
gence,D, and convergence,C. The goal is to find axonal and
dendritic arbor sizes which minimize the combined length of
axons and dendrites. I compare different arbor arrangements by
calculating wire length per unit length of the rows,L. I assume
that input/output rows are close to each other and include in the

calculation only those parts of the wiring which are parallel to
the neuronal rows.

I start by considering a special case where each input neuron
connects with only one output neuron (D 5 1) (Fig. 2A). There
are two limiting arrangements satisfying the wiring diagram:
type I has wide dendritic arbors and no axonal arbors (Fig. 2B);
type II has wide axonal arbors and no dendritic arbors (Fig.
2C). Intuitively, the former arrangement has smaller wire
length: short axons synapsing onto a common buslike dendrite
is better than long axons from each input neuron synapsing
onto a short dendrite. To confirm this I calculate wire length in
the two extreme arrangements forD 5 1 (seeMETHODS)

LI 5 ~1 2 1/C! (1)

LII 5 H C/4, C 2 even
~C 2 1/C!/4, C 2 odd

(2)

These results show that forD 5 1 and C # 3 the two
arrangements have the same wire length. ForD 5 1 andC .
3 the arrangement with wide dendritic arbors and no axonal
arbors (type I) has smaller wire length than the arrangement
with wide axonal arbors and no dendritic arbors (type II).

I can readily apply this result to another special case,C 5 1,
by invoking the symmetry of the problem in respect to the
direction of the signal propagation. I can interchange the words
“axons” and “dendrites” and variablesD andC in the deriva-
tion and use the above argument. ForC 5 1 andD # 3 the two
extreme arrangements have the same wire length, whereas for
D . 3 the arrangement with wide axonal arbors (type II) has
shorter wiring than the arrangement with wide dendritic arbors
(type I).

Next, I consider the case when both convergence and diver-
gence are greater than one (D, C . 1). For the two extreme
arrangements I get (seeMETHODS)

LI 5 D~1 2 1/C! (3)

LII 5 C~1 2 1/D! (4)

Comparison of the two expressions reveals the following: if
divergence is less than convergence, then the optimal arrange-
ment has wide dendritic and no axonal arbors (type I). If
divergence is greater than convergence, then the optimal ar-
rangement has wide axonal and no dendritic arbors (type II). If
convergence and divergence are equal, both arrangements have
the same wire length.

I can restate this result by using the identity between the
divergence/convergence ratio and the neuronal density ratio
(seeMETHODS): In the optimal arrangement the sparser layer has
wide arbors, whereas the denser layer has none.

So far I compared extreme arrangements with wide arbors in
one row and none in the other. What about intermediate ar-
rangements, with both axonal and dendritic arbors of nonzero
width? To address this question I consider the limit of large
divergence and convergence factors (C, D .. 1). I find wire
length as a function of the axonal arbor sizesa (seeMETHODS)

L~sa! 5 n1saS1 2
D

C
D 1 D (5)

Because 0, sa , C/n1, I find the following: If D/C , 1, then
the minimal wire length is achieved whensa 5 0, arrangement
with wide dendritic and no axonal arbors (type I). IfD/C . 1,

FIG. 1. Wiring diagram of a topographic projection between input (E) and
output (M) layers of neurons. Divergence,D, is the number of outgoing
connections (here,D 5 2) from an input neuron (wavy lines). Convergence,C,
is the number of connections incoming (here,C 5 4) to an output neuron (bold
lines). Arrow, direction of signal propagation.

FIG. 2. Two different arrangements implement the same wiring diagram.A:
topographic wiring diagram withC 5 6 andD 5 1. B: arrangement with wide
dendritic arbors and no axonal arbors (type I).C: arrangement with wide
axonal arbors and no dendritic arbors (type II). Because convergence exceeds
divergence, type I has shorter wiring than type II.
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then the minimal wire length is achieved whensa 5 C/n1
arrangement with wide axonal and no dendritic arbors (type II).
If D/C 5 1, then all possible axonal arbor widths give the same
wire length.

This proves that forC, D .. 1 extreme arrangements
minimize wire length. In cases of smallC and D I checked
intermediate solutions one by one. In many cases intermediate
arrangements have the same wire length as the extreme solu-
tion. However, only for a few “degenerate”D, C pairs there are
equally good intermediate arrangements with the reverse ratio
of average axonal and dendritic arbor sizes relative to the
extreme solution.

My results are conveniently summarized on the phase dia-
gram in Fig. 3, which shows optimal arrangements for various
pairs of divergence and convergence factors. I mark the de-
generateD, C pairs by diamonds on the phase diagram (Fig. 3).

What if axons and dendrites have different cross-sectional
areas? The principle of wiring economy requires that wire
volume rather than wire length should be minimized. I can
modify the arguments of this section by including the cross-
sectional areas of the processes. I find forD, C .. 1 that if
divergence/convergence ratio is less than the ratio of axonal
and dendritic cross-sections, then the optimal arrangement has
wide dendritic and no axonal arbors (type I). In the opposite
case I find wide axonal and no dendritic arbors (type II).

T O P O G R A P H I C P R O J E C T I O N I N T W O D I M E N S I O N S

Consider two parallel layers of neurons with densitiesn1 and
n2. The topographic wiring diagram has divergence and con-
vergence factors,D and C, requiring each input neuron to
connect withD nearest output neurons and each output neuron
with C nearest input neurons. Again, the problem is to find the
arrangement of arbors which minimizes the total length of
axons and dendrites. For different arrangements I compare the
wire length per unit area,L. I assume that the two layers are
close to each other and include only those parts of the wiring
which are parallel to the layers.

I start with a special case where each input neuron connects
with only one output neuron (D 5 1). Consider an example
with C 5 16 and neurons arranged on a square grid in each
layer (Fig. 4A). Two extreme arrangements satisfy the wiring

diagram: type I has wide dendritic arbors and no axonal arbors
(Fig. 4B); type II has wide axonal arbors and no dendritic
arbors (Fig. 4C). I take the branching angles equal to 120°, an
optimal value for constant cross-sectional area (Cherniak
1992). Assuming “point” neurons, the ratio of wire length for
type I and II arrangements

LI

LII

< 0.57 (6)

Thus the type I arrangement with wide dendritic arbors has
shorter wire length. This conclusion holds for other conver-
gence values much greater than one, providedD 5 1. How-
ever, there are other arrangements with nonzero axonal arbors
that give the same wire length. One of them is shown in
Fig. 4D. Degenerate arrangements have axonal arbor width
0 , sa , 1/=n1, where the upper bound is given by the
approximate interneuronal distance. This means that the opti-
mal arbor size ratio forD 5 1

sd

sa

. În1

n2

(7)

By using the symmetry in respect to the direction of signal
propagation I adapt this result for theC 5 1 case. ForD . 1,
arrangements with wide axonal arbors and narrow dendritic
arbors (0, sd , 1/=n2) have minimal wire length. These
arrangements have arbor size ratio

sd

sa

, În1

n2

(8)

FIG. 3. Phase diagram for the one-dimensional projection. Optimal ar-
rangements for possible pairs of convergence and divergence are shown.L,
projections where wire length is minimized by both wide axonal and wide
dendritic arbor arrangements.

FIG. 4. Different arrangements implement the same wiring diagram in 2
dimensions.A: topographic wiring diagram withD 5 1 and C 5 16. B:
arrangement with wide dendritic arbors and no axonal arbors (type I).C:
arrangement with wide axonal arbors and no dendritic arbors (type II). Because
convergence exceeds divergence, type I has shorter wiring than type II.D:
intermediate arrangement which has the same wiring length as type I.

2115OPTIMAL SIZES OF DENDRITIC AND AXONAL ARBORS
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Next, I consider the case when both divergence and conver-
gence are greater than one. Due to complexity of the problem
I study the limit of large divergence and convergence (D, C ..
1). I find analytically the optimal layout which minimizes the
total length of axons and dendrites. Unlike the one-dimensional
projection, optimal sizes of both axons and dendrites turn out
to be nonzero.

Notice that two neurons may form a synapse only if the
axonal arbor of the input neuron overlaps with the dendritic
arbor of the output neuron in a two-dimensional projection
(Fig. 5). Thus the goal is to design optimal dendritic and axonal
arbors so that each dendritic arbor intersectsC axonal arbors
and each axonal arbor intersectsD dendritic arbors.

To be specific, I consider a wiring diagram with conver-
gence exceeding divergence,C . D (the argument can be
readily adapted for the opposite case). I make an assumption,
to be verified later, that dendritic arbor diametersd is greater
than axonal one,sa. In this regime each output neuron’s den-
dritic arbor forms a sparse mesh covering the area from which
signals are collected (Fig. 5). Each axonal arbor in that area
must intersect the dendritic arbor mesh to satisfy the wiring
diagram. This requires setting mesh size equal to the axonal
arbor diameter.

By using this requirement I express the total length of axonal
and dendritic arbors as a function of only the axonal arbor size,
sa. Then I find the axonal arbor size which minimizes the total
wire length. Details of the calculation are given inMETHODS.

Here, I give an intuitive argument for why in the optimal
layout both axonal and dendritic size are nonzero. Consider
two extreme layouts. In the first one, dendritic arbors have zero
width, type II. In this arrangement axons have to reach out to
every output neuron. For large convergence,C .. 1, this is a
redundant arrangement because of the many parallel axonal
wires of which the signals are eventually merged. In the second

layout, axonal arbors are absent and dendrites have to reach out
to every input neuron. Again, because each input neuron con-
nects to many output neuron (large divergence,D .. 1), many
dendrites run in parallel inefficiently carrying the same signal.
A nonzero axonal arbor rectifies this inefficiency by carrying
signals to several dendrites along one wire.

I find that the optimal ratio of dendritic and axonal arbor
diameters equals the square root of the convergence/divergence
ratio, or, alternatively, to the square root of the neuronal
density ratio

sd

sa

5 ÎC

D
5 În1

n2

(9)

Because I considered the case withC . D this result also
justifies the assumption about axonal arbors being smaller than
dendritic ones.

So far I treated axons and dendrites on equal footing. In real
brains, however, axons are usually thinner than dendrites re-
flecting electrophysiological differences between them. Be-
cause the wiring economy principle requires minimizing the
total volume occupied by axons and dendrites, expressions of
this section must be modified. This is easily done by taking
fixed average axonal and dendritic cross-sectional areas,ha and
hd, and minimizing the total volume. For example, by repeating
the calculations shown inMETHODS, I get a modified expression
for the optimal arbor size ratio

sd

sa

5 ÎCha

Dhd

5 În1ha

n2hd

(10)

There is an interesting consequence of the total volume
minimization. A straightforward calculation shows that in the
optimal arrangement the total axonal volume of input neurons
is equal to the total dendritic volume of the output neurons.

C O M P A R I S O N O F T H E T H E O R Y W I T H A N A T O M I C

D A T A

This theory makes predictions relating convergence/diver-
gence ratio of a neuronal projection to the relative sizes of
axonal and dendritic arbors. To test these predictions I analyze
real neuronal projections for which both neuronal morphology
and connectivity are known. These projections take place be-
tween various classes of retinal, cerebellar, olfactory bulb, and
neocortical neurons.

Retinal neurons

Retinal neurons are well suited for testing the theory because
their connectivity and morphology are well known. Moreover,
because retinal neurons use mostly graded potentials, their
axons and dendrites can be treated on the same footing. In
particular, I assume that their cross-sectional areas are the
same.

I consider several projections between pairs of neuronal
classes. In all cases divergence is either equal or close to one.
Thus the theory predicts that the ratio of dendritic and axonal
arbor sizes must be greater than the square root of the input/
output neuronal density ratio,sd/sa . (n1/n2)

1/2 (Eq. 7).
I present the data on the plot of the relative arbor diameter,

sd/sa, versus the square root of the relative densities, (n1/n2)
1/2

(Fig. 6). Because neurons located in the same layer may belong

FIG. 5. Topographic projection between the layers of input (E) and output
(M) neurons. For clarity, out of the many input and output neurons with
overlapping arbors only a few are shown. Number of input neurons is greater
than number of output neurons (C/D . 1). Input neurons have narrow axonal
arbors of widthsa connected to the wide but sparse dendritic arbors of width
sd. Sparseness of dendritic arbor is given bysa because all input neurons
spanned by the dendritic arbor have to be connected.
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to different classes each having different arbor size and con-
nectivity, I plot data from different classes separately. All the
data points lie above thesd/sa 5 (n1/n2)

1/2 line in agreement
with the prediction.

This shows that even though the actual retinal circuit is more
complicated than a single projection between two neuronal
classes, the theory gives a reasonable first-order approximation.

Cerebellar neurons

High level of regularity and high convergence and diver-
gence factors in cerebellum make it a natural choice to test the
predictions. I apply the theory to the projection from granule
cell axons (parallel fibers) onto Purkinje cells. Because these
cells form the majority of connections in the molecular layer,
I can neglect other cell types and assume a single projection.
Although divergence factor can be a few hundred, the ratio of
granule cells to Purkinje cells is 3,300 (Andersen et al. 1992),
indicating a high convergence/divergence ratio. In this case the
theory predicts a ratio of dendritic and axonal arbor sizes of 58.
This is qualitatively in agreement with wide dendritic arbors of
Purkinje cells and no axonal arbors on parallel fibers.

Quantitative comparison is complicated because the projec-
tion is not strictly two-dimensional: Purkinje dendrites stacked
next to each other add up to a significant third dimension.
Naively, given that the dendritic arbor size is about 400mm,
Eq. 9predicts axonal arbor of about 7mm. This is close to the
distance between two adjacent Purkinje cell arbors of about 9
mm. Because the length of parallel fibers is.7 mm, absence of
axonal arbors comes as no surprise.

Olfactory bulb neurons

Another part of the brain containing projections with high
convergence and divergence factors is the olfactory bulb. The
basic circuit of this part is reminiscent of the retinal circuit
(Shepherd and Koch 1998). I focus on the projection between
mitral and granule cells in the external plexiform layer. Again,
I can neglect other projections because the majority of the
synapses in the layer are between mitral and granule cells. This
projection is peculiar in that synapses are dendro-dendritic.
However, the theoretical predictions should not be affected by
this fact. The ratio of granule to mitral cells is about 100:1
(Shepherd and Koch 1998). In this case the theory predicts the
ratio of dendritic arbor diameters to be 10. This is in agreement
with observed arbors sizes 1,200mm (mitral secondary den-
drites) (Shepherd and Greer 1998) and 50–200mm (granule
dendrites) (Shepherd and Greer 1998).

Neocortical neurons

In cerebral cortex, axons and dendrites take up approxi-
mately equal fractions of the total volume,'0.3 each (Brait-
enberg and Schuz 1998). This is unlikely to be an accidental
coincidence because the linear dimensions of axons and den-
drites are different. Axons of a given neuron are typically three
times thinner than dendrites while being on average ten times
longer (Braitenberg and Schuz 1998). Because the volume
scales with the length times diameter squared, it comes out
roughly the same for both types of processes.

This fact can be explained by the present theory as a result
of volume minimization for a circuit with high divergence and
convergence values. In cerebral cortex the majority of connec-
tions are intracortical (Ahmed et al. 1994; LeVay and Gilbert
1976; Peters et al. 1994). If I assume that each cortical neuron
receives inputs fromN other cortical neurons in its vicinity and
sends outputs toN, other cortical neurons then cortical con-
nections can be viewed as a topographic projection from the
cortical neurons onto themselves. Diameters of axonal and
dendritic fibers are determined by requirements on their elec-
trophysiological properties. Then the minimal total volume of
axons and dendrites is achieved by choosing arbor sizes in
accordance withEq. 10. This results in axons and dendrites
occupying the same volume.

In general, application of the rule requires some care be-
cause it was derived for a simplified model. I considered a
topographic projection only between a single pair of layers.
However, neurons often make connections to different layers.
In particular, dendritic arbors of the output layer may be
determined by connections other than to the input layer. For
example, consider the topographic projection from thalamus to
the primary visual cortex. One may think that because the
density of magnocellular thalamic afferents is smaller than
neurons in layer 4Ca (80 mm22 compared with 1.83 104

mm22) (Peters et al. 1994), then the axonal arbors should be
wider than the dendritic ones. Although this is true [600mm
(Blasdel and Lund 1983) compared with 200mm (Wiser and
Callaway 1996)], the majority of inputs to layer 4Ca are
intracortical (Peters et al. 1994) Therefore the dendritic arbor
size may be determined by these other projections.

FIG. 6. Anatomic data for several pairs of retinal cell classes which form
topographic projections withD 5 1. All data points fall in the triangle above
thesd/sa 5 (n1/n2)

1/2 line in agreement with the theoretical prediction (Eq. 7).
The following data has been used:E, midget bipolar3 midget ganglion
(Dacey 1993; Milam et al. 1993; Watanabe and Rodieck 1989);▫, diffuse
bipolar3 parasol ganglion (Grunert et al. 1994; Watanabe and Rodieck 1989);
ƒ, rods3 rod bipolar (Grunert and Martin 1991);‚, cones3 HI horizontals
(Wassle et al. 1989);e, rods3 telodendritic arbors of HI horizontals (Rodieck
1989).
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O T H E R F A C T O R S A F F E C T I N G A R B O R S I Z E S

I have argued that the relative size of axonal and dendritic
arbors is related to the convergence/divergence ratio due to
simple geometric constraints. One may object to this theory on
the grounds that axons and, especially, dendrites perform func-
tions other than linking cell bodies to synapses and, therefore
the size of the arbors may be dictated by these other consid-
erations. Although I cannot rule out these effects, I believe that
the primary function of axons and dendrites is to connect cell
bodies to synapses to conduct nerve pulses between them.
Indeed, if neurons were not connected, more sophisticated
effects such as nonlinear interactions between different den-
dritic inputs could not take place. Therefore in the first-order
approximation the most basic parameters of axonal and den-
dritic arbors such as their size should follow from consider-
ations of connectivity. When the details of nonlinear interac-
tions in dendrites become well understood, their impact on the
arbor size can be incorporated in the theory.

One may argue that there is another geometric constraint on
the dendritic arbor size: dendritic surface area may be needed
to accommodate all the synapses. However, this argument does
not specify arbor sizes; a compact dendrite of elaborate shape
can have the same surface area as a wide dendritic arbor.
Moreover, the density of synapses on dendrites seems to be
highly variable indicating that the limit of synapses per unit
area is not reached in real brains. Therefore this argument
seems unlikely to determine arbor sizes.

Finally, agreement of the predictions with the existing ana-
tomic data suggests that the rule is based on correct principles.
Further extensive testing of the rule is desirable. Violation of
the rule in some system would suggest the presence of other
overriding considerations in the design of that system, which is
also interesting.

In conclusion, I propose a rule relating connectivity of
neurons to their morphology based on the wiring economy
principle. This rule may be used to infer connections between
neurons from the sizes of their axonal and dendritic arbors.

M E T H O D S

I frequently use the following identity (Purves et al. 1986) relating
convergence/divergence ratio and neuronal densities ratio

C

D
5

n1

n2

(11)

To prove it, I calculate the number of connections (or synapses, if
connections are monosynaptic) per unit length in two ways. The
number of connections (or synapses) is the number of input neurons,
n1, times divergence,D. At the same time, the number of connections
(or synapses) is the number of output neurons,n2, times convergence,
C. Because the answer should not depend on the argument,n1D 5
n2C andEq. 11follows trivially.

Projection in one dimension

First, consider the case ofD 5 1. In type 1 arrangement (Fig. 2B),
the size of a dendritic arbor,sd, is the interneuronal spacing 1/n1 times
the number of interneuronal intervals covered by the arbor,C 2 1

sd 5 ~C 2 1!/n1 (12)

The number of dendritic arbors per unit length is equal to the density
of output neuronsn2. The combined dendritic arbor length per unit
length isn2sd. Because the axonal arbors do not contribute, the total
wire length per unit length

LI 5 n2sd 5 n2~C 2 1!/n1 (13)

By usingEq. 11and recalling thatD 51, I getEq. 1.
In type II arrangement (Fig. 2C), the wire length is equal to the sum

of the lengths of axons converging on each output neuron multiplied
by the neuronal density in the output layern2

LII 5 Hn2@~C 2 1! 1 ~C 2 3! 1 · · ·1 1#/n1 5 n2C
2/4n1, C 2 even

n2@~C 2 1! 1 ~C 2 3! 1 · · ·1 0#/n1 5 n2~C
2 2 1!/4n1, C 2 odd

(14)

UsingEq. 11I express the result in terms of convergence alone (D 5
1) and getEq. 2.

Now consider the case ofD, C . 1. By usingEq. 11, I find from
Eq. 13that

LI 5 D~1 2 1/C! (15)

This isEq. 3of the main text. By using the symmetry in respect to the
direction of signal propagation I findEq. 4of the main text.

Next, I consider an arrangement with arbitrary sizes of axonal,sa,
and dendritic,sd, arbors (Fig. 7) in the limit of D, C .. 1. To satisfy
the wiring diagram each input neuron must connect withD output
neurons and each output neuron must connect withC input neurons.
This places a constraint on the sum of axonal and dendritic arbor
widths

sa 1 sd 5 D/n2 5 C/n1 (16)

Therefore axonal arbor width can take values 0, sa , C/n1. The total
wire length per unit length is

L 5 san1 1 sdn2 (17)

Using Eqs. 11and16, I get Eq. 5of the main text.

Projection in two dimensions

I consider the case ofC, D .. 1 (Fig. 5). The following calculation
is valid to the leading order inD andC: I omit numerical factors of
order one which depend on the precise geometry of axonal and
dendritic arbors. The total length of a dendritic arbor,ld, is equal to the
number of periods in the meshsd

2/sa
2 times the mesh size,sa

ld 5
sd

2

sa

(18)

FIG. 7. Topographic projection between
the rows of input (E) and output (M) neurons.
Density of input neurons is greater than the
output,C/D . 1. Sizes of the axonal arbors
aresa and of dendritic arbors aresd. We show
in bold the cell bodies of theC input neurons
projecting to one output neuron (bold).

2118 D. B. CHKLOVSKII

 on O
ctober 4, 2006 

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org


The size of the dendritic arbor,sd, follows from expressing con-
vergence as the product of the area covered by the dendritic arbor
times the density of input neuronsC 5 sd

2n1

sd
2 5

C

n1

(19)

Substituting this intoEq. 18I find

l d 5
C

n1sa

(20)

The length of an axonal arbor is approximately given by its size

l a 5 sa (21)

Then the total wire length per unit area is

L 5 l dn2 1 l an1 5
Cn2

n1sa

1 san1 (22)

To find the optimal axonal arbor sizesa, I differentiate wire length
in respect tosa and set the derivative to zero

L

sa

5 2
Cn2

n1sa
2 1 n1 5 0 (23)

Solution of this equation gives the optimal size of an axonal arbor,sa

sa 5 ÎCn2

n1
2 5 ÎD

n1

(24)

By usingEq. 19I get the size of the dendritic arbor

sd 5 ÎC

n1

(25)

The last two equations combined giveEq. 9of the main text.
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