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ABSTRACT 

We have trained monkeys to perform a feature conjunction search task for color and 
motion and have recorded from neurons in area MT during the performance of this task. 
In order to put the experimental results into a theoretical context, we have developed a 
system-level model of visual processing incorporating several attentional mechanisms 
known to function in mammalian visual systems. A reinforcement learning (temporal 
difference) algorithm was employed to replicate the learning process in monkeys. The 
model learned to perform the feature-conjunction search task with performance closely 
resembling that of human and monkey conjunction search. 

The model builds on the notion of two visual streams: The temporal visual stream, 
crucial for object recognition, exerts top-down influences on early visual representations; 
these influences (feature-specific attention) prime feature detectors to bias their sensitivity 
towards object features of interest (feature selection). The parietal (dorsal) visual stream, 
known to be involved predominantly in spatial vision (coordinate transformations for 
various actions), exerts top-down spatial selection on the feature maps. Both feature and 
spatial selection processes bias bottom-up activation of feature maps so that both stimulus 
salience and the behavioral goals are reflected in the resulting saliency map (Koch & 
Ullman, 1985) which determines the site of information readout into memory. 

INTRODUCTION 

Despite the central place held by attention in cognitive psychology, research on 
attention has been marked by contradictions between competing schools of thought (e.g. 
early vs. late filtering; negative definition of attention as processing bottleneck vs. 
attention as a positive adaptation for selection of mformation for behavioral ends; etc.). In 
this paper we suggest how various manifestations of visual attention might be explained by 
a distributed system of visual processing. We attempt to build a bridge between visual 
search behavior, known to involve dynamic allocation of attention, and physiological data 
relevant to the operation of attention. The bridge includes three levels of analysis (Marr, 
1982): (i) computational goals of attention, (ii) algorithms of selection by attention, and 
(iii) the mechanisms of selection and their impact on sensory information processing. In 
the following sections we summarize psycho physical and physiological data obtained from 
monkeys performing a visual search task, and present a systzrns-level model to account for 
the findings. 
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Two broad processing streams have been identified in the visual system: 
processing for action in the dorsal visual stream (transformations of spatial information), 
and processing for object recognition and identification in the ventral visual stream (shape 
and feature analysis; e.g., Milner & Goodale, 1995). We suggest that massive back- 
projections in these two streams of processing may mediate two different top-down 
control mechanisms, performing spatial and featural selection of targets for further 
processing. 

The serial search task, on which our experiments and modehg is focused, is likely 
to engage both spatial selection and feature selection mechanisms. We propose that, on 
one hand, feature selection biases feature representations (in the spatially global way) in 
early visual cortical maps so that (i) regions gaining positive bias become interpreted as 
"figure" (vs. non-selected "ground"); (ii) the effective search-set gets constrained (c.f. 
Wolfe et al, 1989; Wolfe, 1994; Desirnone & Duncan, 1995; Duncan ,1996). On the other 
hand, focused spatial selection (i) supplies ascendancy to the selected regions of cortical 
"feature" maps so that these regions gain priority for recognition and awareness over 
nonselected regions (cf. Koch & Ullman, 1985); (ii) modifies neuronal population codes to 
represent finer information about local stimulus properties. Thus, the two selection 
mechanisms interact to mutually constrain processing to those aspects of visual stimuli 
most relevant to behavioral goals. 

In the following sections we first describe our psychophysical data obtained from 
humans and monkeys, and results of single unit recording from area MT of macaques 
performing a serial visual search task. Then we present a system level model for visual 
search and detailed simulations of attent ional modulations in feature maps. These 
simulations attempt to account for (sometimes contradictory) neurophysiological data on 
attentional modulations. In closing, we show that the systems-level model can be trained 
to perform the visual search task. 

EXPERIMENTAL RESULTS 

We adopted a paradigm of visual search for conjunctions of color and motion task, 
which requires voluntary attention (Nakayarna & Silverman, 1986). We trained human 
subjects and a rhesus monkey on the search task diagrammed in Figure 1. 

As shown previously (Nakayarna & Silverman, 1986), the search time for a unique 
combination of color and direction of motion in multi-object arrays increases linearly with 
the number of distractors for human observers. Search times collected in psychophysical 
experiments with monkeys, trained to perform the color/motion conjunction search, also 
depend linearly on number of distractors (Fig.:! a,b). Despite significant decrease (up to 
six-fold) in the slope of the search function of some human subjects with practice, the 
slopes remain comparable to that of monkeys (6.7-23.1 mslaperture for humans, 7.5- 17.2 
mslaperture, for monkeys) (Buracas & Albright, 1994). The monotonically increasing 
search times provide evidence that both species perform the task in a manner demanding 
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Fig. I. The search task, A sample 
aperture --the cue -- is presented 
initially for one sec., followed by a 
search array of apertures containing 
random dots moving to the left or 
right and colored in one of the two 
colors (red or green). Subject's task 
is to determine whether the sample 
conjunction of color and direction of 
motion is present in the array. 
Humans had to press one key if the 
target is present, and another key if 
absent. Monkeys were required to 
make a saccade to the target. RF 
indicates the locus of a receptive 
field. The arrows, indicating the 
direction of motion inside apertures 
are not shown during experiments. 

serial allocation of attention, which recruits posterior parietal cortices in humans 
suggested by PET data; Corbetta et al, 1995). 

Human 

W -target present - b target absent 

Monkey 

I +target present 

5 10 15 20 0 5 10 
Set size (# apertures) Set size (# apertures) 

Fig. 2. Searching for conjunction of color and motion by a human (left) and a monkey 
(right). Both search slopes for target present (TP) and target absent (TA) conditions are 
shown for humans, and TP only shown for a monkey. The intercepts for humans and 
monkeys vary because of differences in behavioral response (humans press a button, 
monkeys make a saccade to the target). 
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We recently reported that the responses of many neurons in area MT are 
modulated by attention during a period of tentative target detection by a monkey 
performing the search task (Fig. 3) (Buracas & Albright, 1995). Invariably, all neurons 
~ i g ~ c a n t l y  affected by modulation increased their firing rates during the period of target 
detection (a small fraction of neurons decreased their firing rates when attention was 
withdrawn from the RF). This new evidence that area MT neurons are strongly affected 
by attention lays the foundation for our hypothesis that MT neurons, like neurons in other 
"feature maps" ( e g  V4, V2), are influenced by top-down selection mechanisms. 

The effect of attention on discriminability of target's direction of motion is 
revealed by the receiver operating characteristic (ROC) for an individual neuron: our 
analysis shows that an ideal observer, by using attentional modulation, can substantially 
increase it's chance of correct inference of target's direction (e.g., from 68% to 93% 
correct for a representative neuron). This result suggests that attention might increase 
information rates about stimulus associated with MT spike trains. 

In conclusion, our neurophysiological experiments have revealed a highly 
consistent and novel attentional modulation in area MT (cf. Treue & Maunsel, 1995) 
which may be interpreted as the effect of attention gating information rates in area MT. 
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Fig. 3. Saccade-aligned histograms with corresponding estimated baselines (gray line -- 
responses, estimated from target-absent trials) for target in receptive field condition (left) 
and target outside receptive field condition (right). When target is inside RF and the 
target is correctly detected, the neuron, which encoded the motion of the target, invariably 
increased its firing rate by an average of 30% in about one third of MT neurons. No such 
response facilitation was observed for target outside receptive field (right). The estimated 
baseline (gray lines) was calculated fi-om neuronal responses during target absent trials 
during which monkeys were fixating eyes for one second. 
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MODELING 

These experimental results set the stage for a model whose goal is to explain (i) 
how various brain regions interact to produce the search behavior; and (ii) identlfy the 
neuronal mechanisms responsible for the attentional modulation observed by us in area 
MT and reported by other laboratories. 

THE SYSTEMS-LEVEL MODEL OF VISUAL SEARCH: THE ARCHITECTURE 

The temporal sequence of neuronal events in the model starts with activation of 
feature maps and proceeds up to decision stages as follows: Fist, the search array 
consistsing of a set of apertures containing a colored moving texture inside them is 
presented, and activates neurons selective for color and motion in feature maps (Fig.4). 
Each of the two feature maps contains two "retinotopic" submaps for two different feature 
values (8x8 unit array with torus topology, which prevents undesirable edge effects). The 
neuronal representations of stimuli is highly simplified at thls point: neurons are assumed 
to be feature detectors, responding only to their preferred feature values, i.e. a neuron's 
response Iii is defined 

Fig. 4. The flow of neuronal 
events in the large-scale model 
of visual search. See text for 
details. 

I I 
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with stimulus values u satisfying either u = u, , or lu - u, I> 30 ,where o i; determines the 

width of a tuning curve, i = [ x ,  y] is a position vector, and j~ [l..N] indexes preferred 
feature values (a more elaborate treatment will be presented in the next subsection). 

It is well established that receptive fields of many neurons in visual cortical feture 
maps are surrounded by inhibitory surrounds which could enhance feature contrast (e.g., 
V1 -- Knierirn & Van Essen, 1992; MT -- Miezin et al., 1985; V4 -- Desimone et al., 
1993). Thus type of contrast enhancement is introduced by convolving each feature 
submap with a kernel L of lateral inhibition: 

where the ratio of positivelnegative weight volume for the kernel L(i) is 2:l (thus, the 
kernel is not balanced; cf. Wolfe, 1994). The N feature detectors from one map (e.g. red 
and green detectors within a color map) with overlapping receptive fields then undergo 
further competition as discussed at length in the following section. 

Neuronal responses in primate extrastriate visual areas can undergo dramatic 
modulation in animals performing tasks that demand allocation of attention. It is well 
established that neurons in parietal, inferior temporal cortices, area V4, and, to a lesser 
degree, V2 and V1, can be eected by attention (Wurtz et al, 1980; Haenny et al, 1988; 
Moran & Desimone, 1985; Motter, 1993, 1994a,b; Spitzer et al, 1988). New evidence 
obtained by us and others has added area MT to the list of cortical areas affected by 
attention (Buracas & Albright, 1995; Treue & Maunsel, 1995). In the following 
discussion the analysis is constrained to attentional modulation in cortical "feature maps" 
relevant (to a first approximation) to the color/motion conjunction search task, i.e. areas 
MT and V4, thought to represent motion and color respectively (e.g. Zeki, 1978; Albright, 
1984). 

Attentional modulation in the two cortical feature maps appear to share m y  
common features. When a single stimulus is projected into a receptive field (Re of a V4 
neuron, responses to it may significantly increase when the stimulus is used in a behavioral 
task (Fisher & Boch, 1985; Haeny and Schiller, 1988; Haeny et al, 1988; Motter, 1993). 
A similar moderate enhancement is observed in area MT when attention is directed to a 
stimulus in a receptive field (Buracas & Albright, 1995; Treue & Maunsel, 1995). 
Furthermore, if an animal is subject to a difficult orientation or color discrimination task, 
tuning curves of V4 neurons acquired during this task appear narrower and taller when 
comyred to tuning curves from an easy discrimination task (Spitzer et al, 1988). 

A somewhat different picture emerges when two stimuli are projected into a 
receptive field of a neuron in a feature map. In general, if the two stimuli posses 
antagonistic features along some dimension, the neuronal response to the composite 
stimulus usually is less than to a single optimal stimulus. For example, in V1, which has an 
orientation map, if an orthogonal bar is overlaid on top of a bar eliciting an optimal 
response, the response will decrease -- a phenomenon, known as cross-orientation 
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inhibition. Similarly, two random-dot fields moving in preferred and null direction inside a 
RF of an MT (motion map) neuron elicits weaker response than a single random dot field, 
moving in the neuron's preferred direction (Snowden et al., 1991). Preliminary data from 
area V4 also suggests a similar antagonistic mechanism (Reynolds et al, 1995). These 
data suggest a universal mechanism operating in cortical feature maps -- local competitive 
circuits. When attention is applied to a receptive field containing two stimuli, the 
modulatory effect seems to be consistent with suppressing the interfering effect of the 
second, non-optimal, stimulus (Moran & Desimone, 1985; Reynolds et al, 1995). Similar 
effects were observed in area MT with stimuli moving inside a receptive field in opposite 
directions (Treue & Maunsel, 1995). Thus, it seems likely that attentional modulation can 
affect not just individual neurons but the outcome of local competitive interactions as well. 

The attentional modulation discussed above are spatially localized, and thus are 
controlled by some top-down mechanism of spatial selection. In addition, human data 
(e.g. Anllo-Vento & Hillyard, 1996; Buracas & Albright, 1996; Egeth et al, 1984;) and 
neurophysiological evidence (Motter, 1994a,b) points to the existence of a spatially global 
but feature-specific mechanism of selection. Most convincingly, Motter (1994a,b) has 
reported that neurons in V4 can be modulated by the relevance of stimulus color without 
specifying the location for spatial allocation of attention. These findings suggest that 
responses of V4 neurons, tuned to a behaviorally relevant stimulus value, can be biased by 
a feature-specific top-down influence. Interestingly, we did not find such a feature specific 
biasing (color- or direction-specific) in area MT (Buracas & Albright, 1995). 

The data presented above serve as the foundation for a model of attentional 
modulation in feature maps (Fig.5). A dynamic' network model for competition in feature 
maps is given by: 

where inputs x0{t) compete for representation by the outputs y d t )  by means of shunting 
inhibition, the indices i and j refer to spatial location and preferred feature value 
respectively, the exponent ai determines the strength of competition controlled by the 
degree of spatial focusing (correlated with task difficulty) at a site i, the feature specific 

Fig. 5. A hypothetical soft competition 
mechanism in feature maps: Inputs, 
before reaching the output units are 
affected by nonlinearity. This nonlinearity 
might be implemented as a postsynaptic 
membrane property of the summating and 
output units (e.g. voltage gated Ca* 
channels). Note, that the recurrent 
influence fiom output yi is local and can, 
again, be implemented by shunting ion 
channels (like C1 channels). 
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Fig. 6. Temporal evolution of 
solutions to the competition 
network, Eq. (3). Horizontal axis 
represents preferred feature 
values, vertical axis plots 
responses of a set of neurons with 
overlapping receptive fields. The 
input profile portrays a response 
of a population of neurons, tuned 
to different values, when a single 
stimulus is presented. The feature 
bias profile portrays top-down 
feature-specific gating strength as 
a function of neurons preferred 
feature, Gi. Right: Evolution of 
responses for two different values 
of a. Gi is set to 1 for all I. Left: 
The effect of feature-specific bias 
to the outcome of competition. 

and spatially global factors Gj bias the response in one or another direction, and the 
constants c  and w  allow to define how the competition affects the height and width of 
tuning curves. Summation is over the set P of all neurons tuned to different values at a 
single retinotopic location. Typical behavior of the (I) is presented in Fig.6. The steady- 
state solution of Eq. (3) is given by: 

- G, cx,: 
Yij - 

C + ~ G ,  (wx, 
~ E P  

For a fixed Gaussian input pattern, as a, increases from 1 to 1.5 the tuning curve 
undergoes a change matching closely to simple scaling, but with larger ai the tuning curve 
grows and narrows until its height reaches the saturation point, but the width keeps 
shrinking (Fig.7). This kind of behavior accounts for apparently contradictory reports on 
tuning curves in area V4: Relatively easy tasks only scale tuning curves (e.g., Motter, 
1993), while a hard discrimination task, besides upscaling can also significantly narrow the 
tuning curve. 

These two aspects of spatial attentional modulation -- scaling and narrowing -- 
may be a reflection of its two different computational goals: (i) Spatial selection of objects 
in a visual scene for further processing in the ventral stream Simple boosting of relevant 
neuronal responses would suffice for this purpose, since higher tiers of visual processing in 
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Fig. 7. The effect of attentional focus on tuning curves. Left: with increasing a a 
Gaussian tuning curve grows first and then starts narrowing. Right: comparison of a 
tuning curve at value a=1.5 with a scaled version of the original tuning curve. The subtle 
difference between scaling and increasing a is hard to detect experimentally for l a 4 . 5 .  

this stream possess competitive mechanisms not unlike the one discussed here (Chellazi et 
al, 1993). (ii) Refining representations of stimuli for scrutiny or h e  discrimination, since 
attention can facilitate performance of discrimination tasks (e.g. Palmer, 1990). 
Narrowing of tuning curves is an efficient way of increasing the resolution power of a 
neuronal population code. 

Eq. (4) can also account for data obtained with competing stimuli inside a 
receptive field: If a nonpreferred stimulus is added to the preferred stimulus in the 
receptive field when ai is set to 1 (attention removed), the response of a neuron will 
decrease significantly. Increasing the value of ai (i.e. the degree of spatial focusing) will 
bring the response back to the original level, as observed in MT and V4 (Treue & 
Maunsell, 1995; Reynolds et al., 1995). 

In conclusion, a broad variety of attentional modulation affecting neuronal 
responses in cortical maps necessitate multiple selection mechanisms subserving different 
behavioral ends. 

The feature maps are affected by spatial and feature selection mechanisms (cf. 
Nowlan & Sejnowski, 1995). Based on electrophysiological evidence on modulatory 
effects of both spatially-focused and feature-based attention in visual cortical areas, we 
propose that spatial attention (or attentive effort) controls the strength of local 
competition, but feature-based attention serves to bias feature representations in direction 
of values currently stored in the working memory (Fig.4). We elaborate on the 
mechanism of spatial selection in the next section. 
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In the second step of processing, responses in different feature maps project into a 
common topographic saliency map (Koch & Ullrnan, 1985), implemented as weighted 
averaging: 

where wfl.25 in our simulations, j ranges over all feature values, and n(t) is zero-mean 
Gaussian noise; the discrete time t refers to the ordinal number of a search cycle. In 
addition there is an adjunct topographic "inhibition of return" map which keeps track of 
visited locations by activating units, pointing to locations of current maximum saliency. 
This map controls disengagement of attention. Visited locations have a short-term 
memory, determined by the decay factor y: The inhibition-of-return map is updated at 
every time step, i.e. IR, (t + 1) = y IR, (t) , with y < 1 . Thus, attention is shifted to the 
second highest saliency peak by setting an inhibition-of-return map's unit, which points to 
the current peak of saliency, to IRi=l. This procedure is similar to that, originally 
proposed by Koch & Ullrnan (1985), and used, among others, by Wolfe (1994) and 
Pouget & Sejnowski (1996). 

In the current version of our model, the maximum activation of the saliency map 
determines the spatial locus in feature maps, fiom which feature values are fed into the 
nontopographic "category network", containing four units that correspond to abstracted 
representations of 4 possible feature values. At any given t h e ,  the category units 
represent feature values of an object to which the spatially-focused attention is pointing. 
An alternative feature readout architecture is suggested by data of Chelazzi et al. (1993), 
indicating that the final target selection by a competitive mechanism may occur in the 
category network (i.e. inferior temporal cortex). 

The feature values activated in the category network then can be compared with 
the target feature values in working memory stored while viewing the cue (see caption of 
Fig. 1 for a description of the behavioral paradigm). The results of comparison determine 
further course of action: If the features in working memory match the activated features 
in the category network, the response "target found" is executed (e.g., eyes are moved to 
the target). In case of a mismatch, attention is disengaged by resseting the saliency map as 
described above. The process is repeated until the target is found. 

Computing the comparison of working memory and category network unit 
activations is at heart of the serial search task, since it is the outcome of comparison which 
drives the behavior of the system Thus, it is likely that learning the correct mapping from 
results of comparison to actions is the essential component of learning the feature 
conjunction search task for monkeys. We modeled monkey-like learning behavior by 
adding a module that learned the mapping fiom working memory-category network 
comparison results (matchlno match) to action (move eye1 move attention) solely fiom a 
reinforcement signal. Since the serial search is an inherently sequential behavior, the 
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, Fig. 8. Learning to search for 

temporal difference learning algorithm (Sutton, 1988) was a suitable method for learning 
this task. The learning module (Fig. 4, see also Fig. 10) consisted of an evaluation 
network that learned to predict reward and a policy network that learned to map working 
memory-category network comparison results onto actions (Barto et al, 1983; Sutton, 
1988; Montague et al, 1995). 

The model of visual search described above processes visual information in the 
search array in a selective and serial fashion. Feature-specific bias, propagating from 
working memory constrains the region of potential allocations of spatial attention, while 
the spatially-focused attention determines sites of detailed representation of feature values 
in the category network (note the symmetry of mutual interactions in the two attentional 
systems). 

'* T FeatureS~ecific 
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Fig. 9. Search functions 
generated by the trained 
model. The search 
functions are plotted for 
several values of feature 
specific feedback. The 
numbers on the right are 
gain factors Gi, used to 
boost responses of 
feature detectors 
corresponding to target 
feature values (cf. 
Wolfe, 1994). 
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The systems-level model outlined above is capable of learning to search for 
conjunctions of features. In this section we present some results on learning performance 
and model's behavior during visual search for conjunctions of features. 

We trained the model to perform the conjunction search task by ineans of 
reinforcement learning algorithm (e.g., Montague et al, 1995). Prix to every search trial a 
new random search array was generated and the target feature conjunction was stored in 
the working memory module. Then, for every search cycle the sequence of computations 
was performed as outlined at the beginning of Modeling section. If the Policy Network 
(Fig.10) made a correct decision to "move eyes" when the S-map ("attentional focus") 
was pointing to the target's location, the positive reward was assigned, and the negative 
reward was generated if the "move eyes" command was issued while the attentional 
pointer was pointing to a distractor. Zero reward was assigned after "move attention" 
command. The network learned to perform the search task within 500 trials (Fig.8). 

The trained model was tested on a variety of conjunctive and disjunctive search 
tasks. The search behavior exhibited by the model matched closely the performance of 
monkeys and humans (Buracas & Albright, 1996): while disjunctive (feature) search 
induced search times independent of the search-array size, the search for conjunctions of 
features demands serial examining of the search array, thus, causing search times to 
increase monotonically with the number of distractors (Fig. 9). Increasing the feature- 

WORLD 

Fig. 10. Mapping components of the Visual Search Model onto the brain regions. 
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