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COGNITIVE NEUROSCIENCE hinges on the doctrine
that the brain represents the world in patterns of

neuronal activity. Recently, this ‘representationalist’
credo was forcefully restated by Blakemore and
Movshon1. ‘The task of sensory systems is to provide a
faithful representation of biologically relevant events
in the external environment… These representations
are [rich] because they contain representations of
objects, states, and events that are abstracted from the
primitive sensory signals; they are [simple] because
they represent the distillation of the vast quantities of
raw measurement information offered to the central
nervous system by each sensory surface.’ As early as
four decades ago Lettvin et al.2 anticipated this credo in
the classical paper ‘What the frog’s eye tells the frog’s
brain’, which phrased the neuronal sensitivities of
amphibian tectum neurons in terms of biological, or
ecological, relevance of the represented stimuli.

The advent of the system-theoretic approach in the
1960s with its stimuli motivated by system identifi-
cation and signal-filtering considerations, however,
pushed the ecological relevance of the stimuli aside 
as a poorly defined idea. Needless to say, the system-
theoretic approach has proven to be of great value in
deciphering many important aspects of early sensory
processing, albeit at the price of missing the key 
question: how do sensory systems function when con-
fronted with stimuli that exist in their ecological niches?
Probably the most profound difference between con-
ventional impoverished laboratory stimuli and eco-
logically relevant stimuli is that the parameters of the
former stimuli are kept constant for extended periods
of time (>1 s), while the latter stimuli are in perma-
nent flux caused by changes either in the environment
or the observer. Recent experiments involving the stimu-
lation of neurons in insect, amphibian and mam-
malian sensory systems on ecologically relevant time
scales revealed not only that response properties were
predictable from responses to conventional constant
stimuli, but also some exciting hitherto overlooked
properties, which, thus, highlighted the importance of
the temporal factor in sensory signaling.

This article gives a cursory update on the advances
in studies of sensory representations that vary on eco-
logically relevant time scales (reviewed previously by

Bialek and Rieke3). These advances have been stimu-
lated by novel information-theoretic approaches that
can be used to gauge the ‘richness’ and ‘simplicity’ of
neuronal representations of rapidly varying stimuli4–7,
and by accumulation of neurophysiological data from
a wide variety of species.

From spikes to representations

Before embarking on a survey of recent developments
in mapping neuronal representations of ‘eco-relevant’
stimuli, an explanation of the basic assumptions em-
ployed in these studies is necessary. The information-
theoretic approaches referred to in the previous para-
graph aim to provide a rigorous evaluation of the
statistical relationship between a stimulus set and neur-
onal response. One might argue that the conventional
mapping of tuning curves and the measuring of neur-
onal sensitivities by means of various selectivity indices
are directed towards the same goal. Indeed, these meas-
ures have proved to be of great value when neurons
exhibit smooth tuning curves with a single maximum
(preferred stimulus values) and the response-probability
distributions can be satisfactorily characterized by the
first two moments (see also Ref. 8). No obvious exten-
sions of these measures appear to be available for time-
varying stimuli. More importantly, these measures are
descriptions of a neuronal signal as a function of stimu-
lus. The idea of neuronal ‘representation’ of a stimulus,
however, invokes the inverse relationship: that of stimu-
lus as a function of neuronal response. Indeed, from
the organism’s perspective, only the latter relationship
is meaningful as, unlike an experimenter, who is pre-
occupied with describing neuronal responses to stimuli
drawn from a domain of some sensory feature space,
an organism is routinely engaged in the inverse task:
inference of stimulus value from a neuronal response9.

The commonplace measure that comes closest to cap-
turing this type of inference is the discriminability analy-
sis [that is, receiver operating characteristics (ROC)]
derived from the signal-detection theory (see Box 1),
which evaluates how well an ‘ideal’ observer would tell
apart two alternative stimulus values by only looking
at a response of a single neuron. While this method
provides an explicit measure of discrimination per-
formance, which is very useful in comparisons of 
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neuronal responses with responses of the whole animal
(see, for example, Ref. 10), the main limitation of this
method is that it does not generalize readily to cases
when stimulus sets are large or infinite, as in the case
of continuous stimuli, or when discriminant functions
are highly nonlinear or not specified at all (or both).
The natural generalization of this discriminability
measure appears to be Shannon’s mutual information,
which is a well-understood measure that captures
stimulus–response correlations of all orders and has a
number of very appealing properties (see Box 1 for a
direct comparison of ROC and mutual information).
Most importantly, this measure addresses the question
that is of key interest to most neurophysiologists: how
much information about my stimulus set does the neur-

onal response carry? Furthermore, Shannon information
offers tools for tracing information about what is being
computed and what information is being discarded as
the raw sensory information proceeds to downstream
cortical areas.

The information rates that are cited in subsequent
sections for time-varying stimuli are calculated using
methods (‘direct’ and ‘reconstruction’ methods) that
are merely special cases of Shannon’s formula (Box 1)
for mutual information applied to time-varying signals.
The key modification in these special cases is that one
has to deal with the probability distribution of spike-
train vectors rather than simply a probability distribu-
tion of the scalar spike count over a particular fixed
time window. This modification could be costly with
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Box 1. Prolegomena of information theory

Shannon’s mutual informationa,b can be considered as a gen-
eralized measure of stimulus discriminability. The following
thought experiment underscores the analogy between this
measure and the conventional measure of signal discrimi-
nability – the receiver operating characteristics (ROC) of the
signal detection theory, which is applicable in the context of
two-alternative-forced-choice tasks. Imagine an observer
who relies on responses of two perfect neurons, the visual
neuron is capable of perfect discrimination between red and
yellow, and the tactile neuron is capable of perfect discrimi-
nation between apple and cherry shapes. Our stimulus set
consists of four possible combinations of fruit and color
(Fig. IA). If all stimuli have equal probability of appearance
(P 5 1/4), then this stimulus set offers H(stimulus) 5 H(color,
shape), that is, log24 5 2 bits of potential information, or in
Shannon’s terms – uncertainty (also called ‘entropy’). If the
observer obtains only a response rshape of the ‘shape neuron’
to a randomly drawn stimulus, all uncertainty associated
with shape is resolved, but uncertainty about color remains:
H(color | rshape) 5 log22, that is, 1 bit. The gained total
mutual information is I(stimulus; rshape) 5 H(stimulus) 2

H(color | rshape), which equals 1 bit (Fig. IA, bottom). Hence,
the mutual information is equal to the amount by which
uncertainty about the stimulus is reduced after observing
a responsea,b. Note that one bit is equivalent to the perfect
discrimination between two possibilities, which corresponds
to a ROC area of 1 (100% correct discrimination). Likewise,
I(stimulus; rshape) 5 0 corresponds to chance performance
(ROC 5 0.5, that is, 50% of correct discriminations). If the
shape neuron is noisy and the distributions of responses
to the two shapes are unimodal, mutual information, like
ROC, increases as the distance between the medians of the
two distributions grows (Fig. IB, left). If these distributions
are bimodal, as in Fig. IB (right), the ROC measure breaks
down, while the mutual information reflects the best poss-
ible discriminability of the two stimuli correctly, which
decreases as the overlap of the two distributions increases
(Fig. IB, right). Mutual information becomes especially valu-
able when judging discriminability of large stimulus sets.

In general, the mutual information can be written as a
function of both the conditional and marginal stimulus
and response probability distributions:

Here p(x) is the a priori distribution of the stimulus (s) para-
meter x, and p(x|r) is the a posteriori conditional distribu-
tion of the parameter x for a given response r. This equation
implies that in order to evaluate the conditional entropy
H(x|r), one first has to convert back from the neuronal

response distribution, to stimulus probability distribution
by means of Bayes rule (see Fig. IC):

p(x|r) 5 c . p(r|x)p(x)

where c 5 1/p(r). Estimation of the above equation is a sim-
ple task for constant-stimulus sets as their size only rarely ex-
ceeds 27 stimuli (for an equiprobable stimulus set of this size
the uncertainty is 7 bits). By contrast, time-varying stimuli
might offer uncertainty rates of 100 bits/s, which implies that
the stimulus ensemble could be composed of 2100 (~1030) dif-
ferent stimuli of 1 s duration! These rich stimulus ensembles
are much closer to the ‘real-world’ stimuli, but they require
a special approach, such as optimal linear reconstruction
(reconstruction method), which was developed by Bialek and
colleaguesc,d. This method can be used to estimate a lower
bound on information about the stimulus parameter x.

Recently, a number of researchers have produced an
alternative method for the estimation of information
rates, which is based on the fact that mutual information
is symmetrical with respect to stimulus and response
uncertainties (Fig. ID):

The symbol s represents the stimulus as a function,
probably stochastic, of parameters x and y: s 5 f(x,y). The
rightmost expression suggests that one can evaluate infor-
mation rates by using two types of stimuli: (1) for the evalu-
ation of the first term H(r) –(total spike-train uncertainty)
one needs a large range of stimuli drawn randomly from
a given stimulus ensemble, because these stimuli have to
test the limits of response variability; and (2) the second
term H(r|s) reflects the variability of the response when the
stimulus is fixed, and can be evaluated from responses to
a typical stimulus instance repeated many times (for details,
see Ref. e). As this method (the ‘direct method’) is not lim-
ited by the quality of stimulus reconstruction, it can yield,
given a sufficient amount of data, an accurate estimate of
information that is associated with the stimulus ensemble.
In addition, because this method does not use information
about stimulus parameters, it evaluates the total information
that a neuron carries about all aspects of the stimulus.
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respect to data needed for obtaining reliable estimates
of mutual information, but it permits the rigorous
treatment of the temporal aspect of stimulus-response
correlations. Understanding details of these methods
is not necessary for subsequent sections in this article.
More-detailed descriptions of the temporal reconstruc-
tion method and the general stimulus-reconstruction
approach are covered in Refs 3 and 11, respectively; and
the direct method is discussed in detail in Refs 12 and 13.

Neuronal representations of time-varying stimuli

Until recently, beliefs about how information in a
neuronal response is encoded were influenced by an
early observation that multiple presentations of iden-
tical stimuli yielded highly variable numbers of action

potentials14. In order to obtain a good estimate of aver-
age firing rates in response to a particular stimulus, the
duration of stimulus presentation had to be extended
to lengths in the order of 1 second. Implanted in this
manipulation is the assumption that information about
exact spike arrival times is largely irrelevant.

A decade ago this assumption was challenged by a
series of experiments that exploited a newly developed
method to estimate how well sensory systems could
discriminate between stimuli that varied at rates com-
monly found under natural conditions (see, for example,
Ref. 3). This method, based on the organism’s perspec-
tive, reconstructed the stimulus solely from the observed
spike train. The results of experiments, which employed
this stimulus-reconstruction method, demonstrated
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Fig. I. Mutual information is the reduction of uncertainty after observing a signal. (A) The stimulus set consists of four different stim-
uli. Each stimulus appears with equal probability of 0.25. Hence, the initial stimulus uncertainty [H(x,y)] is 2 bits. The subject possesses neur-
ons that convey the signal, r, about the color (x) and about the shape (y), which permits a perfect discrimination of the feature. After observ-
ing (feeling) the stimulus shape the observer is left with uncertainty about the unobserved feature (cartoon). The gained information [I(s;r)]
is the difference between the initial uncertainty and uncertainty after the signal was observed. Observing the responses of both neurons
conveys 2 bits about the stimulus s. This is equivalent to a perfect discrimination among all 2I(s;r) 5 4 stimuli. (B) The receiver operating char-
acteristics (ROC) and mutual information are monotonically related when probability distributions are unimodal (left), but not when they
are bi- or multi-modal (right). The top panels plot the distributions of responses to two different stimuli. Vertical lines represent the criterion
value for optimal discrimination by a linear ideal observer (ROC). The bottom curves show the relationship between ROC and mutual infor-
mation as the distance between the modes of the two distributions vary from zero to infinity. (C) Calculation of mutual information from stim-
ulus uncertainties involves reconstruction of the stimulus probability distribution. s0 is the parameter of a presented stimulus. The probability
distribution of neuronal responses associated with this stimulus [p(r|s0)] is plotted on the left. It can be obtained from the joint stimulus and
response probability [p(s,r)] depicted in the center. The top panel shows the stimulus probability distribution [p(s0|r)] inferred from the
response to stimulus, s0. (D) Mutual information is symmetrical with respect to stimulus and response uncertainties. The circles are diagrams
that depict the uncertainty of the stimulus and response sets [H(s) and H(r), respectively]. The area of their intersection corresponds to the
mutual information. Hence, the mutual information [I(s;r)] can be estimated from the total response uncertainty [H(r)] (that is, the range
of possible neuronal responses) and the uncertainty [H(r|s)] that remains after presenting a specific stimulus (noise).
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that sensory neurons of invertebrates and amphibians
could faithfully track stimuli that varied on an eco-
logically relevant time scale [~30 ms (Ref. 9)] with
high efficiency. Surprisingly, the stimulus could be
estimated with a reliability that approached physical
limits, despite the fact that its rate of change exceeded
that of spike generation. As these neurons did not pro-
duce enough spikes in sufficiently short intervals for
firing rate to be judged, a code based on mean firing
rate could be ruled out for these particular nervous
systems (see Table 1). More recently, experiments with
rapidly varying stimuli were performed in tiger sala-
mander and rabbit retinas (Fig. 1A). The results were
comparable: in all of these systems individual spikes
were strikingly informative (conveying in the range of
1–3 bits of information about the stimulus), suggest-
ing that this might be a property shared by all sensory
systems (see Table 1; see also Ref. 15). It remained to
be seen, however, whether spikes recorded from the
mammalian neocortex would be capable of matching
the discrimination power of retinal spikes upstream.

Studies of the informativeness of neocortical neurons
that were conducted using constant stimuli yielded
about 0.5–2 bits/s routinely, suggesting that these neur-
ons could discriminate between only 2–4 stimulus val-
ues (Table 1). In effect, an average neocortical spike, in
contrast to its non-cortical relatives, was deemed to be
worth very little – only about 0.01–0.2 bits/spike. It
has long been known, however, that neurons in the
visual cortex, especially those in the middle temporal

area (MT), respond promptly to rapid variations in stimu-
lus motion (see, for example, Refs 28,29). Encouraged
by this evidence and inspired by the results from non-
mammalian neural systems, two laboratories12,25,30

recently embarked upon experiments designed to test
the limits of the informativeness of motion-sensitive
neocortical neurons by applying stimuli that varied on
an ecologically relevant 30–300 ms time scale. Indeed,
while saccadic eye movements occur at the rate of 2–5
per second (and, hence, have a duration of ~300 ms),
hyperacuity experiments suggest that temporal differ-
ences that are less that 30 ms are perceived as simul-
taneous31. In addition, there are neurons in the MT
that are tuned to such speeds (for example, ~2508/s)
that optimal stimuli pass their receptive fields (which,
for example, have a diameter of 88) in about 30 ms
(Ref. 32). When the MT neurons of primate (rhesus
monkey) visual cortex were presented with these stim-
uli and the stimulus-reconstruction approach was
applied, the net worth of a neocortical spike increased
by nearly two orders of magnitude to ~0.6 bits/spike.
This was true, despite the fact that one laboratory used
anesthetized monkeys and the linear stimulus-recon-
struction method25, and another used alert monkeys
and a nonlinear stimulus-reconstruction method12. A
casual inspection of the response histogram in the
bottom panel of Fig. 1B reveals that spikes recorded
from the MT are very well timed when the neuron is
challenged by a rapidly varying stimulus. It is this
faithful tracking of the stimulus characteristics in time
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TABLE I. Information rates and coding efficiency in a number of species

Neural system and species Information Information Coding Best timing Refs
rate rate efficiencya precision and
(bits/spike) (bits/s) variance:mean

Constant stimulusb

Cat retinal ganglion cells ~0.04–0.10 0.4–0.8c – – 15
Primary visual cortex (V1) of rhesus monkeys – 0.62d 16
Middle temporal area (MT) of rhesus monkeys 0.025 0.89 6 0.29 – ~1.3 12
Inferior temporal area (IT) of rhesus monkeys ~0.13 0.9d – – 17–19
Hippocampus of rhesus monkeys ~0.18e 0.32 – – 20

(maximum 5 1.2)f

Variable stimulus: reconstruction method
H1 motion-sensitive neuron of a fly 0.75 64 30% 21
Frog auditory afferents 0.66 23 11% ~2 ms 22
Vibratory receptors of the bullfrog sacculus 2.6 155 50–60% – 22
Cricket mechanoreceptors 0.6–3.2 75–294 50–60% ~0.4 ms 22,23
Salamander retinal ganglion cells 1.9 3.7 (up to 10 for 26% (.79% – 24

a population of for .10 cells)
>10 cells)

The MT of anesthetized rhesus monkeys ~0.65 6.7 – 2– 4 ms 25
(maximum 5 12.3)

The MT of alert rhesus monkeys 0.6 5.5 ,30% – 12

Variable stimulus: direct method
H1 motion-sensitive neuron of a fly 2.43 80 50% 1.5–3 ms; ,0.1 13
Salamander and rabbit retinal ganglion cells 3.7 16.3 59% $0.70 ms; $0.05 26
The MT of alert rhesus monkeys 1.5 12 Up to 45% ,2 ms; ~1.4 12

(maximum 5 29)

aEvaluated for the bin size used in estimating the information rate.
bInformation rates are based on spike counts in time windows of duration $400 ms.
cThe information rate is given in bits/stimulus. The stimulus was a 5 ms flash but the integration time was a few hundred milliseconds.
dEstimated for the stimulus presentation period of 400 ms and the first three principal components of the average firing rate. 
eObtained by dividing 1.2 by the reported firing rate of 6.5 spikes in 0.5 s (see Ref. 19).
fEstimated in a period of 500 ms.
Abbreviation: ‘–’, not known.



TINS Vol. 22, No. 7, 1999 307

that endowed the MT neurons, much like retinal gan-
glion neurons of Fig. 1A, with high information content
(nearly one bit per spike), despite the fact that the spike-
count variability elicited by time-varying stimuli was
as high (variance:mean 5 1.4; 10 ms and 100 ms time
windows used) as that elicited by a stimulus moving at a
constant rate (variance:mean 5 1.3).

Neurosemantics: content in spikes

What is the content of the information conveyed by
these informative spikes? When asked to make fine dis-
crimination about the exact stimulus value (the ‘what’
of the stimulus), the spikes of the neocortical neurons
failed miserably12 but became very informative when
challenged with time-varying stimuli. Indeed, the
spikes produced in response to varying stimuli were
generated with high temporal precision (0.9–5.0 ms;
cf. timing precisions of other neural systems in Table 1),
which supports the idea that most of the information
carried by spikes is about stimulus timing. The same
preference of ‘when’ over ‘what’ was reported for sala-
mander retinal ganglion cells27 and motion-sensitive
neurons of the fly13, suggesting that this preference
might reflect a fundamental principle that underlies
the design of sensory systems. Indeed, this preference
for ‘when’ over ‘what’ is a strategy that maximizes
transmitted information33. For example, if a neuron
doubles the precision with which it represents stimu-
lus orientation (stimulus ‘what’), information increases
by only one bit (that is, information grows logarithmi-
cally with message precision). By contrast, if the same
neuron doubles its timing precision, which effectively
halves its transmission time, the information rate dou-
bles (information grows linearly with transmission
speed). This biased allocation of channel bandwidth in
favor of timing is especially useful for sensory systems
that rely on large populations of neurons to convey the
signal: one can readily increase the precision of the
stimulus estimate by simply pooling more neurons
(for a review of population coding see Ref. 11). By con-
trast, the temporal precision of responses cannot be
increased easily in this way.

In conclusion, when sensory systems confront stim-
uli that vary on ecologically relevant time scales, indi-
vidual neuronal spikes convey in the range of 1–3 bits
of information. It appears that the information conveyed
is primarily about the timing of abrupt variations in
the stimulus.

Gauging efficiency of neuronal representations

The high information rates in most of the tested
neural systems could have resulted solely from the fact
that transmission speed was being maximized. The other
factor that could contribute to high information rates
is the use of an efficient code to represent information
(see Box 2; Refs 9,22). Indeed, the coding efficiencies
as estimated from information rates obtained using
the reconstruction method, were rather high for all
tested systems (11–60%), meaning that a large percent
of variability in the spike trains was caused by stimu-
lus rather than noise. This was also true for neocortical
neurons (up to 45%), despite their comparatively high
trial-to-trial variability.

The reconstruction method discussed above addresses
information about a specific stimulus parameter. Re-
cently, a number of researchers have developed algo-
rithms for calculating the total information available

in a spike train4–6. This ‘direct’ method has two advan-
tages over the reconstruction method: (1) it does not
suffer from information loss that might be caused by
an imperfect reconstruction algorithm and it is capable
of providing a rather accurate estimate of information
rate (provided that there are enough data); and (2) it
makes no assumptions about what stimulus parameter
is encoded in the spike train. When applied to the fly13

and monkey data12 these two properties conspire to
yield information rates that exceed the rates obtained
using the reconstruction method substantially (see
Table 1). It seems unlikely that the twofold increase in
information rate reflects only the recovery of infor-
mation lost by imperfect stimulus reconstruction, as
the stimulus employed is simple (could take on only
one of two motion values) and readily reconstructed. A
more likely possibility is that the twofold improvement
in the information rate was at least partially caused by
the fact that the activity of these neurons conveys infor-
mation not only about direction of motion but also
about other stimulus properties, such as spatial phase.

In order to quantify the degree to which a neuronal
response captures a particular stimulus parameter, this
article proposes a metric for representational specificity
SR, which is a ratio of the information about the stimu-
lus parameter in question (obtained by reconstruction
method) relative to total information (obtained by the
direct method; see Box 2). According to this metric, at
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Fig. 1. The high temporal precision response of sensory neurons to stimuli varying on 
ecologically relevant time scales. (A) Electrical responses of salamander (S1) and rabbit (R1)
retinal ganglion cells (lower panels) to rapid full-field variations of luminance (top panel). These
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least 45% of the total information conveyed by spike
trains recorded from individual neurons in the MT
reflects direction of motion. Hence, in the MT, the rep-
resentation of direction, a ‘simple’ representation of a
single stimulus parameter, is ‘rich,’ because at least a
half of the bandwidth of the neuronal signal in this area
is dedicated to this parameter. For retinal ganglion cells
the SR of luminance variations is very close to that of the
MT (51%; see Refs 24,26). The lower bound of the rep-
resentational specificity is even higher in the direction-
selective fly H1 neuron (>80%), which is understand-
able in view of the fact that, in contrast to the MT, the
fly has very few neurons available to estimate direction
of motion.

Progression of information abstraction in 
sensory systems

These newly developed information-theoretic meth-
ods allow one to quantify precisely the degree to which
neuronal representations of sensory information be-
come more abstract, by selective loss of irrelevant infor-
mation, as one proceeds from the periphery to the CNS.
This approach has been taken in recent studies of the
electric fish Eigenmannia34. Peripheral electrosensors,
which sense the structure of the environment reflected
in the electric field, were found to be able to convey

large quantities of raw information (in terms of signal-
to-noise ratio) about the rapid variation of the electric
field. By contrast, pyramidal neurons of the first electro-
sensory central nucleus (lateral-line lobe) were able to
discriminate high-level features with high efficiency.
According to the thesis presented, if explicitly com-
puted, SR should grow for abstract features and not for
low-level features, as more and more low-level infor-
mation is discarded and abstract features are computed
(see Box 2).

Mechanisms that support high information rates

The high information rates observed in a wide spec-
trum of species testify that encoding of sensory infor-
mation could be very rapid and is characterized by a
fast modulation of firing rate. König et al.35 argued
that, on the basis of computer simulations, this fast
modulation is possible if stimuli cause synchronous
synaptic inputs and the neurons involved operate
using coincidence detection. This hypothesis is sup-
ported by recent experiments that used synthetic
synaptic-input currents injected into cortical sensory
neurons in brain slices36 (cf. Ref. 37). This synchronous
mode of signal encoding might explain high timing
precision observed in the primate MT (Refs 29,30), which
is as far as five synapses away from photoreceptors.
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At neuroscientific gatherings it is common to hear that
information theory, which was designed for solving com-
munication problems, is irrelevant for neuroscience, be-
cause the brain is not designed simply to transfer infor-
mation, but rather to perform some sort of computations
that discard irrelevant information. Every computation,
however, including neural computations, uses some infor-
mation that is transferred to the site of computationa. In
addition, information theory can be used to evaluate the
efficiency of neuronal computations. For example, a com-
putational system (that is, a brain area) that extracts a
parameter x (for example, direction of motion) from the
raw data s(x), can be evaluated in terms of its coding effi-
ciency Ec, which is a ratio of information about the param-
eter, x [I(x;r)], and the total uncertainty in the neuronal
response [H(r)]: Ec 5 I(x;r)/H(r). Here r is the signal produced
by the computational system. In addition, it is proposed

that the efficiency with which a certain parameter x is com-
puted from the stimulus s(x) can be measured by repre-
sentational specificity SR in the following way. If the infor-
mation about one parameter x [I(x;r)], is calculated (for
example, by means of the reconstruction method), and
then the total information (using the direct method) about
the stimulus I(s;r) 5 I({x,y};r) is calculated, then the repre-
sentational specificity, SR(x), for the parameter x equals
I(x;r)/I({x,y};r). I(s;r) 5 I({x,y};r) and is written merely to
reflect the fact that information about a stimulus can be
decomposed into information about the parameter x and
all other sources of information y (Fig. I). Note that, because
the reconstruction method estimates the lower bound for
information, when using this method only a lower bound
can be obtained for SR(x).

Representational specificity SR(x) might also be used in
evaluating invariance of neuronal representations: when
the stimulus is allowed to vary along an additional dimen-
sion y, then SR(x)5 I[x;r]/I[s(x,y);r] can be used to quantify
the degree to which the representation of the parameter x
is invariant with respect to parameter y.

Reference
a Cover, T.M. and Thomas, J.A. (1991) Elements of Information

Theory, Wiley

Box 2. Information transfer versus computation

H(r|x,y)

I(x;r)

I(y;r)

I({x,y};r) = I(x ;r) + I(y ;r)

SR(x) = I(x ;r)/I({x,y};r)

H(y)

H(x)

Fig. I. The relationship between uncertainties [H(x)] and H(y)] 
of independent stimulus parameters (x and y) and specific infor-
mation a neural response (r) conveys about those parameters.
This relationship suggests an index for the degree to which a neuron
represents a particular parameter (for example, x) [known as the
representational specificity SR(x)], which is a fraction of total infor-
mation dedicated to a specific parameter x. The split circle on the
left depicts stimulus entropies associated with two independently
varying parameters x and y. The uncertainty H(r|x,y) (black), meas-
ures variability in response r, which is not correlated with stimulus
parameters. Information about parameters x and y is indicated by
the two gray regions [I(x;r) and I(y;r), respectively], which in this
case are independent and, hence, their entropies are additive.
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Indeed, local field potentials (LFPs), which index local-
population activity, appear to covary with single-unit
responses in the MT, in a manner that is consistent with
the synchronous stimulus-locked activity needed to
propagate precise timing information to downstream
neurons12. Interestingly, increasing the contrast of a
flickering stimulus increased the timing precision27,
which suggests that stronger stimuli might synchronize
synaptic inputs more efficiently.

The other key factor, which determines the infor-
mation rate, is trial-to-trial response variability. While for
primate MT neurons this variability was found to be
consistent with that predicted by the nonhomogenous
Poisson process model12 (that is, a model of maximum
randomness), both the fly H1 neurons13 and retinal
ganglion cells27 exhibited variability, which was below
that predicted by this Poisson model. Berry and Meister
have found that the trial-to-trial variability is reduced
for stimuli that drive cells more robustly, probably
because for stronger synaptic inputs the frequency of
spike generation approaches limits imposed by the
refractory period, which, thus, causes regular firing26.
In conclusion, current experimental evidence suggests
that, when sensory neurons are stimulated by rapidly
varying stimuli, the observed high information rates
result from synergy between the synchronous synaptic
input and finite refractory period.

Unanswered questions

A parallel line of research on temporal aspects of neur-
onal coding has explored the hypothesis that static
stimuli could be encoded in the temporal distribution
of neuronal responses16,17. Recently McClurkin and
colleagues38 have reported that different temporal
neuronal-response waveforms are used to encode color
and shape in visual-cortex areas V1, V2 and V4. Indeed,
afferents to these areas possess a wide range of response
latencies, which could, in principle, support the encod-
ing of static features in time39. In view of the data indi-
cating that temporal precision and response variability
varies with stimulus intensity26,40, however, it will be
important to determine whether this hypothetical
temporal encoding remains invariant for time-varying
stimuli.

Most of the work reviewed in this article has ad-
dressed the information conveyed by single neurons.
How will information rates be affected by pooling
responses from many neurons? The results of studies
that addressed this question for retinal ganglion
cells24,41 suggest that response pooling could have
non-trivial effects: as the pool of neurons increases,
the contribution of each neuron to the stimulus recon-
struction changes in a complicated way. Furthermore,
noise correlations between neurons11,15, in contrast to
conventional wisdom, might increase signal-to-noise
ratio and information rates.

Most importantly, the measurements of information
rates detailed in this article only address how much
information is available at a given processing level. It
remains to be seen how this information about rapidly
varying stimuli metamorphoses as one progresses to
higher tiers of visual-processing hierarchy and how it
is used in guiding behavior. Thus, while many important
questions still confront us, the approach reviewed here-
in frames the discourse and provides a novel means for
investigating sensory processing under conditions that
approximate the richness of normal sensory experience.
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