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Abstract

Using a model of the heartbeat CPG in the leech we show that cooperative
behavior of a network is more regular and reliable than the behavior of indi-
vidual neurons. We showed that the bifurcations inside synchronization regime
are the same as for two coupled model neurons. The synchronization regime
exists in a wider region for heartbeat network than for a pair of neurons. The
frequency regulation is more steep in the network than in pairs.

1 Introduction

Reciprocally inhibitory coupled neural pairs are an important part of any small neural
networks like central pattern generators (CPG). As is well known the typical mode of
behavior of such a pair is out-of-phase oscillation (see, for example, [Sherman 1994,
Skinner 1994]). It is an important issue to find out how these pairs behave inside a
CPG. We address this question studying the dynamics of a model of the heartbeat in
the leech.

We took into account that each element of this CPG is a spiking-bursting chaotic
neuron (see for example [Aihara and Matsumoto 1986, Hayashi and Ishizuka 1992]).
For neural pairs the presence of mutually inhibitory coupling suppresses chaos and
the model neurons get in out-of-phase [Abarbanel et al., 1996]. In a CPG network we
wonder how the modes of behavior are modified as the the strength of the coupling
is changed and how stable the synchronization regime remains. We perform this
studying the local bifurcation between the different regimes.

We modeled the heartbeat CPG in the leech using Hindmarsh-Rose chaotic oscil-
lators [Rose and Hindmarsh, 1985] wherein we found that all the nearest neighbors
oscillate in out-of-phase. As the strength of the coupling is raised we revealed the
types of bifurcations that underlie the change of the CPG period.
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2 The model for heartbeat CPG 1in the leech
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We consider the heart beat generated by the network shown in Fig. 1 [Calabrese et al., 1995].

The individual neurons are modeled by

dz; 2 3 z;+ Ve z; + V.
= yitazx; —z;—z+1—c¢ — — —
dt Y : 1 4 exp 2=1== X 14exp S X
dy;
= = 1-ba?—y;
dt xt y’
dz;
dzt = —rzi +rS(z; — cz),

(1)

where z; is the membrane potential, y; is the recovery variable and z; is the slow
adaptation current. In our calculation we took a = 3, b =5, ¢; = —1.6 and S = 4.
I = 3.281 is the external current, and r = 0.0021 is the slow recovery parameter. For
these parameter values each Hindmarsh-Rose model neuron exhibits chaotic behavior.

The coupling parameters are: ¢ is the strength of the coupling, ¢ = 0.01, V., = —1.4
and X = 0.8.

Figure 1: Network diagram that shows the synaptic connectivity between the in-
terneurons of the heartbeat CPG of the leech. The filled circles indicate inhibitory
connections. Odd numbers correspond to left cells and even numbers to right cells.

The results of the modeling can be seen in Fig. 2 where the period of the oscillation
is plotted as a function of the strength of the coupling in the regime of out-of-phase
oscillations. What we find is an stairstep change in the period of the oscillation with
a particular bifurcation from one step to another one. This frequency regulation
represents a collective regularization of the oscillations of the individual neurons in
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Figure 2: The period of the oscillation generated by a CPG as a function of the
strength of the coupling.

the CPG. Left to themselves the individual neurons would be chaotic. Even more
interesting is the fact, as displayed in Fig. 3 that nearest neighbor neurons oscillate
completely regularly and out-of-phase. This permits the pumping of blood for the
leech by alternating voltage signals to the appropriate motor functions from alternate
neurons. The leech CPG is able to regulate blood flow to the heart with this assembly
of neurons in a robust fashion since the same frequency of pumping is achieved for a
range of coupling values among the CPG members. If the synaptic coupling strengths,
.which we assume are altered by neuromodulators, are not precisely on target, the leech
is still able to pump at a selected rate. By varying the coupling, again through the
action of neuromodulators, the leech is able to change the pumping rate to meet the
need for increased or decreased blood flow presumably in response to sensory signals
from external conditions.

3 Bifurcations inside synchronization

Let us consider the behavior of the system of coupled Rose-Hindmarsh cells (see
Figure 1) as a function of the strength of the coupling from a mathematical point
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Figure 3: Simulated membrane potential oscillations in the six heartbeat interneurons
in the leech. It can be seen that left and right cells oscillate in antiphase.

of view. A periodic orbit in the phase space corresponds to any periodic regime
discussed in the previous section. The transition from one periodic regime to another
one means that the system “switch” from one periodic orbit to another. The values
of the strength of the coupling where it happens are called the bifurcation points.
We will consider these bifurcations using the so-called Poincare map. Let us
‘explain shortly this approach. The trajectories of our system belong to the N-
dimensional phase space with coordinates z;,y;, 21, Z2,...,2n. The condition & =
& = Const (where ¢; is any coordinate) determines the (N — 1)- dimensional sub-

space. Generally the phase trajectories of our system intersect this subspace in some

points: & = §,¢; = J(k), where ¢; is one of the remaining coordinates and k is the

number of the intersections. The Poincare map gives the dependence of the coordi-




176  3rd Joint Symposium on Neural Computation Proceedings

4.0
38 | %
3.6
3.4
3.2
3.0
28

NN

|

26 P R TR RN NS AN R R |
00 02 04 06 08 10 12 14 16 18 20
€

Figure 4: The Poincare map z; = 0 for the system of six coupled elements as a
function of the inhibitory coupling

nates fj(-k), k =1,2,... of the these points on some control parameter. )

In Fig.4 we present the Poincare map for the system of six coupled elements as a
function of the parameter e¢. The vertical axe shows the z; (2 coordinate of the first
cell) in the discrete instants of the time: ..., ¢;,¢i41, ..., where ¢; - the time instant when
‘the phase trajectory intersect the plane z; = 0 (z, is the membrane potential of the
first cell) from the z; < 0 half space to z; > 0 half space. It is clear that the system
demonstrates periodic behavior with NV spikes if the number of these intersections is
finite and equals N. If the sequence of the points where the trajectory intersect the
Poincare map is not repeated the trajectory belongs to the strange attractor and the
system demonstrates the chaotic behavior.

In Fig.4 we clearly show that for small values of the coupling € < e, the system
behavior is generally chaotic. More detailed analysis leads us to find that there exist
the narrow intervals of the strength of the coupling ¢ where the system behavior is
regular. Inside this intervals the elements demonstrate the “in-phase” synchronized
oscillations. The behavior of the system is changed completely for € > ¢... Starting
from the point € = ¢, the system demonstrate the regular oscillations with “out-of-
phase” synchronization between the elements. The increasing of the strength of the
‘coupling for € > ¢, produces a sequence of bifurcations. In every bifurcation point
€ = €}, the periodic orbit with N spikes losses the stability and the system evolves
to a periodic orbit with N 4+ 1 spikes. If € is decreased then the opposite behavior is
observed (in the point € = €y the periodic regime with N + 1 spikes losses stability).
Let us remark that €y < €} for all N. That means that in the neighborhood of
the bifurcation point the stable periodic orbits with different number of spikes (and
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Figure 5: The Poincare map z; = 0 for the system of two coupled elements as a
function of the inhibitory coupling

consequently with different periods) coexist and the initial conditions determine which
regime is realized, that is, an hysteresis process.

We must emphasize that for € > ¢, the bifurcations do not break the regime out-
of-phase synchronization. So it is possible to name such a behavior as a bifurcation
inside synchronization.

In Fig.5 we present the Poincare map for two coupled Rose-Hindmarsh cells. One
can see that this system demonstrates a behavior very similar to the one considered
above if € < €; and exactly the same sequence of bifurcations if ¢ > €;. The
bifurcation points changing the number of the spikes are satisfied by the relation
€& = (1/2)egx. The last is clear if to remember that each element of the loop is
connected with two neighbors.

Generally the arbitrary loop of M (where M is even) coupled cells demonstrates
the similar sequence of bifurcations. To understand the origin of such a behavior let
us consider the dynamics of the isolated Rose-Hindmarsh cell.

The Poincare map as a function of the external current I for an isolated cell is
presented in Fig.6. One can see that increasing of the value of the external current
I produce the sequence of the bifurcations. Generally all this bifurcations provide
the change of the number of spikes. In the most points such a “switch” takes place
"directly (without transition to the chaos). In the neighbors of these points the system
behavior is very close to the behavior of the coupled cells near the bifurcation points
for large coupling € > €... In some cases transition from the regime with N spikes to
the regime with V41 spikes occurs more completely. After the first bifurcation where
the N-cycle losses the stability the system demonstrates a sequence of bifurcations
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Figure 6: The Poincare map z; = 0 of one Rose-Hindmarsh model as a function of
the current,.

as the result of which the chaotic attractor shows up. After, the chaotic attractor
disappears and, then, a stable N + 1-cycle arises.

Therefore, one can say that the phenomena demonstrated by the loop of coupled
cells have the origin in the dynamics of the isolated neuron. However, generally, the
behavior of coupled cells is more regular.

4 Conclusions

The model of the heartbeat CPG of leech that we used as an example of cooperative
behavior of spiking-bursting neurons leads us to observe that the behavior of the
neuron in the network is more regular (even periodic) than the individual neuron’s
dynamic. Even chaotic neurons are synchronized and behave in absolutely regular
way. We revealed that this synchronized regime is very stable and the changing
of the control parameter (strength of the coupling in our case) does not break the
regular cooperative behavior but change the period of oscillations. We showed that
the bifurcations inside the synchronized behavior of the whole CPG has the same
origin that the bifurcations demonstrated by the pair of inhibitory coupled neurons,
" but with other strength of the coupling €& = (1/ 2)%

The mostly important message that we understand after the study of the whole
CPG behavior, the neural pair behavior and individual neuron’s dynamic is the follow-
ing. The adaptivity and flexibility of the CPG dynamics is the result of the complex
dynamic of individual neuron. The coupling between neurons plays a role of the
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auto-controlling and tuning different modes of behavior depending on the strength of
the coupling.
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