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Project in computational neuroscience:
Detection and Recognition of objects in visual 

cortex

NIH Conte Center 
with

J. DiCarlo, E. Miller, D. Ferster, C. Koch, M. Riesenhuber, T. Poggio
(MIT, CalTech, Northwestern, Georgetown)

A theory of visual recognition is used as a  tool to 
integrate and drive multidisciplinary research 
in different experimental neuroscience labs.
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Many different images can 
correspond to the same type of 
object…

…while similar activation 
patterns can correspond to 
different objects

Thanks to Ezra Rosen for images

Object Recognition (for biology and for machines)
is difficult:

trade-off between selectivity and invariance
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The first 100 msec of visual recognition…

Movie courtesy of Jim DiCarlo

…these are the kind of visual tasks we would like to explain with a 
feedforward model, extending Hubel and Wiesel

from V1 to PFC
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Ventral stream in visual cortex

Simon Thorpe



CalTech, July 2005

Mapping the ventral stream into a theory

Serre, Kouh, Cadieu, Knoblich, Poggio, 2005

PFC
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Ventral stream in visual cortex
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IT is the final visual stage in the theory…
thus let us give a (new) look at the representation in IT:

classifiers (eg learning algorithms) 
for read-out from IT

Chou Hung, Gabriel Kreiman, Tomaso Poggio, James DiCarlo
(with help from Rodrigo Quiroga and and Alexander Kraskov

and from DARPA)

The McGovern Institute for Brain Research, Department of Brain Sciences 
Massachusetts Institute of Technology, Cambridge MA
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Goal 1 
(Read-out eg analysis):
Can we “read-out” the 
subject’s object percept?

Goal 2 
(Write-in eg synthesis):
Can we “write-in”
(induce) an object percept?
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• number of sites for reliable, real-time performance
• temporal properties (onset + integration scale) of object information
• neural code for different tasks
• invariance to object position, size, pose, illumination, clutter
• recognition: ‘classification’ vs. ‘identification’ ?
• spatial scale of object information (single unit, multi-unit, LFP)
• stability of these neuronal codes?
• improvement with experience?
• …

Can we “read-out” the subject’s object percept from IT?

Some basic science…



CalTech, July 2005

77 objects, 8 classes
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Rapid assessment of stimulus selectivity at 
each recording site during passive viewing

100 ms 100 ms

• 77 visual objects
• 10 presentation repetitions per object
• presentation order randomized and counter-balanced

time
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Example AIT recording siteNeovision
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Training a classifier on neuronal activity.

INPUT OUTPUTf
From a set of data (vectors of activity of n neurons (x)  and obFrom a set of data (vectors of activity of n neurons (x)  and object label (y)ject label (y)

Synthesize (by training) a classifier Synthesize (by training) a classifier egeg a function a function ff such that such that 

is a is a good predictorgood predictor of object label of object label yy for a for a futurefuture neuronal activity neuronal activity xx

yxf ˆ)( =

{ }),(...,,),(),,( 2211 ll yxyxyx
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trained
classifier
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First result: quite 
reliable object 
categorization 
using ~100 
arbitrary AIT sites

Mean single trial performance

• [100-300 ms] interval

• 50 ms bin size

• 4 bins per site
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Very rapid 
read-out of 
object 
information
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Is the representation in IT selective and invariant
(which is the main goal of ventral stream)?

Minjoon Kouh
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IT representation is invariant to changes in 
position and size
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IT representation is invariant to changes in 
position and size
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IT representation is invariant to changes in 
position and size
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Neural code in IT: time resolution
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Neural code in IT: latency and integration 
time
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Categorization and identification
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Some more details…
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Reading out another type of object info: scale and location
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How are different kinds of information coded?
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Reading out another type of object info: stimulus onset
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Thus IT contains a representation 
which is invariant and selective enough 
to allow very good,fast performance 

by a linear classifier:

at the level of IT the recognition problem –
selectivity and invariance -- is “solved”.

How does the ventral stream do it?



CalTech, July 2005

Now…back to the theory 
of the ventral stream of visual cortex

Thomas Serre, Minjoon Kouh,  Charles Cadieu, Ulf Knoblich
and Tomaso Poggio

The McGovern Institute for Brain Research, 
Department of Brain Sciences 

Massachusetts Institute of Technology
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Mapping the ventral stream into a model

Serre, Kouh, Cadieu, Knoblich, Poggio, 2005
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Feedforward architecture

Two basic operations
--tuning and softmax --
repeated at simple and complex stages
from V1 to V2 to V4 and IT 
underlie selectivity and invariance of recognition

Learning (passive, task independent) at S levels 
and supervised, task dependent at the level 
IT PFC

Poggio, T. and E. Bizzi. Generalization in Vision and Motor Control, Nature, Vol. 431, 768-774, 2004

Main assumptions of theory

http://cbcl.mit.edu/projects/cbcl/publications/ps/nature03014.pdf


Tuning in simple 
cells for selectivity:

Soft-max in complex 
cells for invariance:

Extra sigmoid transfer function can 
control the sharpness of tuning to 

approximate full RBF tuning

Two basic operations



Tuning in simple 
cells for selectivity:

Soft-max in complex 
cells for invariance:

Extra sigmoid transfer function can 
control the sharpness of tuning, 

approximate RBF tuning

Combine units with 
different preferred 

stimulus

Combine units with same 
preferred stimulus but at 

slightly different scale 
and position

Two basic operations



Tuning in simple 
cells for selectivity:

Soft-max in complex 
cells for invariance:

Extra sigmoid transfer function can 
control the sharpness of tuning, 

approximate RBF tuning

Combine units with 
different preferred 

stimulus

Combine units with same 
preferred stimulus but at 

slightly different scale 
and position

How could those two types of receptive field 
be learned from visual experience?

Two basic operations
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Mapping the ventral stream into a model

Serre, Kouh, Cadieu, Knoblich, Poggio, 2005



Learning a large universal and overcomplete dictionary of 
visual shape-components (a version of trace rule)

Passive exposure of patches of natural images
Imprinting of the synaptic weights
~100,000 units 
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Lampl, Ferster, Poggio, Riesenhuber, 
J. Neurophys, 2004.

Experimental support for a Max operation in 
complex cells (cat area 17) and in V4? 

Gawne & Martin, J. Neurophys., 2002
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Gawne et al., J. Neuro., 2002

Under appropriate conditions…Max operation in V4 cells? 
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There is also evidence for Gaussian-like tuning in V1, V2 
and IT cortex….

Logothetis et al., Cur. Bio., 1995
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Summary I: support for the model

• Several complex cell-like neurons (in V1 and V4) seem to perform a 
softmax operation

• Quantitative generalization properties in IT 

• IT response to scrambling , presence of distractors and clutter.

• Learning a categorization task (cats vs. dogs) in IT and PFC units.

• Model learns from natural images and generates a vocabulary of C2 units 
consistent with V4 data.

• At the cognitive level model predicts several aspects of  the face

inversion effect. 
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Now a surprise (for us)…

…comparison of the updated model 

with machine vision performance



Sample Results on the 101-object dataset



The model performs at the level of the best 
computer vision systems
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Sample results on the CBCL StreetScenes database

Texture-based objects  (e.g., trees, road, sky, buildings)

Shape-objects  (e.g., pedestrians, cars)

Segmented Image
Classification

Windowing
Classification

Output

Input Image

carcarped
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…and another surprise…

… was the comparison with human performance
(Thomas Serre with Aude Oliva) 

on rapid categorization of complex natural images



Comparison with Humans



Comparison with Humans



Model vs. Human Subjects



Furthermore…model S2 units are 
congruent with V4 neural data



Learned Model Units are Congruent with V4 data

[Pasupathy & Connors, 2001]

Response to a V4 neuron to a 
parameterized space of shapes

r = 0.78

Best model unit from a pool of 109 
units learned from natural images

[Cadieu et al., 2005]



Summary II

A simple learning rule generates a large dictionary of 
visual shape-components

With this learning rule, the model competes with the best 
computer vision systems on all the categorization 
datasets we have compared it to (so far)

The model performs at the same level of performance as 
humans on an ultra-rapid animal / non-animal 
categorization task

The S2 units learned from natural images are consistent 
with the tuning properties of V4 neurons



CalTech, July 2005

Remarks

• The stage that includes [V4-PIT] AIT PFC 
represents a learning network of the 
Gaussian RBF type that is known (from 
learning theory) to generalize well 

• In the theory the stage between IT and 
‘’PFC” is a linear classifier – like the one used 
in the read-out experiments
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Chicago, November 2004

Model performance compares well with recordings 
from monkey Prefrontal Cortex

D. Freedman + E. Miller + M. 
Riesenhuber+T. Poggio (Science, 
2001)



Comparison of firing rates to cats/dogs during task and 
passive viewing. 

ITC: PFC:

ITC activity similar between task and passive viewing.
PFC responses were more task-dependent. 

How was category selectivity modulated by task demands?
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Remarks

• The stage that includes (V4-PIT)-AIT-PFC 
represents a learning network of the 
Gaussian RBF type that is known (from 
learning theory) to generalize well 

• In the theory the stage between IT and 
‘’PFC” is a linear classifier – like the one used 
in the read-out experiments

• The inputs to IT are a large dictionary of 
selective and invariant features



FUTURE: extension of the model to include…



…top-down and attention and CalTech (Walther+Koch)



…but what if…

it may just be that if the mind were simple 
enough for us 

to understand it 
then we may be too simple 

to understand it
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