Project in computational neuroscience:
Detection and Recognition of objects in visual

cortex

NIH Conte Center
with
J. DiCarlo, E. Miller, C. Koch, M. Riesenhuber, T. Poggio
(MIT, CalTech, Georgetown)

A theory of visual recognition is used as a tool to
integrate and drive multidisciplinary research
in different experimental neuroscience labs.

CalTech, July 2005



Object Recognition (for biology and for machines)
is difficult:
trade-off between selectivity and invariance

Many different images can
correspond to the same type of
object...

...while similar activation
patterns can correspond to
different objects

CalTech, July 2005 Thanks to Ezra Rosen for images



The first 100 msec of visual recognition...

...these are the kind of visual tasks we would like to explain with a
feedforward model, extending Hubel and Wiesel

from V1 to PFC

CalTech, July 2005 Movie courtesy of Jim DiCarlo



Ventral stream in visual cortex

CalTech, July 2005 Simon Thorpe
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Mapping the ventral stream into a theory
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Ventral stream in visual cortex
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IT is the final visual stage in the theory...
thus let us give a (new) look at the representation in IT:
classifiers (eg learning algorithms)
for read-out from IT

Chou Hung, Gabriel Kreiman, Tomaso Poggio, James DiCarlo
(with help from Rodrigo Quiroga and and Alexander Kraskov
and from DARPA)

The McGovern Institute for Brain Research, Department of Brain Sciences
Massachusetts Institute of Technology, Cambridge MA

CalTech, July 2005



Goal 1

(Read-out eq analysis):
Can we “read-out” the
subject’s object percept?

CalTech, July 2005
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* number of sites for reliable, real-time performance

- temporal properties (onset + integration scale) of object information
- neural code for different tasks

- invariance to object position, size, pose, illumination, clutter

* recognition: ‘classification' vs. ‘identification’ ?

* spatial scale of object information (single unit, multi-unit, LFP)

- stability of these neuronal codes?

- improvement with experience?
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Rapid assessment of stimulus selectivity at
each recording site during passive viewing

time — 100 ms{100 ms

o 77 visual objects
* 10 presentation repetitions per object
 presentation order randomized and counter-balanced
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Training a classifier on neuronal activity.
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INPUT =— —p QOUTPUT
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From a set of data (vectors of activity of n neurons (x) and object label (y)

(X0 Y1) (Xa0 Yo )oen (X0, YD) }

Synthesize (by training) a classifier eg a function Fsuch f (X) =y

is a good predictor of object label y for a future neuronal activity x
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First result: quite 100 % 1
reliable object
categorization
using ~100
arbitrary AIT sites
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Single 12.5 ms time windows

Very rapid
read-out of
object
Information
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IT representation is invariant to changes in
position and size
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IT representation is invariant to changes in
position and size
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IT representation is invariant to changes in
position and size
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Neural code In IT: time resolution

= categorization
identification
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Neural code In IT: latency and integration
time

70%

8 0.8 - at125 ms

% N\

S 3 X

€ o6 - [3K)

g ) LA

-

S 0.4 t3 ;

o [} + 3

= 13

s 0.2 itizrgg

O tLiddicagenflecnaana = - - I
OPLIIIIIE ______________ I_E_% I
0 100 200 300

Time from stimulus onset (ms)

CalTech, July 2005



Categorization and 1dentification
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Some more details...
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Reading out another type of object info: scale and location

Classification performance
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How are different kinds of information coded?

SNR (scale or location)

CalTech, July 2005
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Reading out another type of object info: stimulus onset
A «= (lassifier predictions
— Stimulus on/off
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Thus IT contains a representation
which is invariant and selective enough
to allow very good,fast performance
by a linear classifier:

at the level of IT the recognition problem -
selectivity and invariance -- is "solved"”.

How does the ventral stream do it?

CalTech, July 2005



Now...back to the theory
of the ventral stream of visual cortex

Thomas Serre, Minjoon Kouh, Charles Cadieu, Ulf Knoblich
and Tomaso Poggio

The McGovern Institute for Brain Research,
Department of Brain Sciences
Massachusetts Institute of Technology

department of brain and

gnitivesciences MIT

CalTech, July 2005
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Mapping the ventral stream into a model
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Main assumptions of theory

J Feedforward architecture

O Two basic operations
- - funing and softmax - -
repeated at simple and complex stages

from V1 to V2 to V4 and IT
underlie selectivity and invariance of recognition

0 Learning (passive, task independent) at S levels
and suger'vised, task dependent at the level
IT> PFC

Poggio, T. and E. Bizzi. , Nature, Vol. 431, 768-774, 2004
CalTech, July 2005


http://cbcl.mit.edu/projects/cbcl/publications/ps/nature03014.pdf

Two basic operations

Tuning in simple Soft-max in complex
cells for selectivity: cells for invariance:
n n 41
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Extra sigmoid transfer function can
control the sharpness of tuning to
approximate full RBF tuning



Two basic operations

Tuning in simple Soft-max in complex
cells for selectivity: cells for invariance:

Combine units with same

preferred stimulus but at
slightly different scale
and position n
q+1
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Two basic operations

How could those two types of receptive field
be learned from visual experience?

Tuning in simple Soft-max in complex
cells for selectivity: cells for invariance:

Combine units with same

preferred stimulus but at
slightly different scale
and position n
q+1

T
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Extra sigmoid transfer function can
control the sharpness of tuning,
approximate RBF tuning



Mapping the ventral stream into a model

Prefrontal
Cortex
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Learning a large universal and overcomplete dictionary of
visual shape-components (a version of trace rule)

Passive exposure of patches of natural images
Imprinting of the synaptic weights
~100,000 units
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Experimental support for a Max operation in
complex cells (cat area 17) and in V47?
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Under appropriate conditions...Max operation in V4 cells?
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There is also evidence for Gaussian-like tuning in V1, V2
and IT cortex....
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Summary I: support for the model

* Several complex cell-like neurons (in V1 and V4) seem to perform a
softmax operation

- Quantitative generalization properties in IT
* IT response to scrambling , presence of distractors and clutter.
- Learning a categorization task (cats vs. dogs) in IT and PFC units.

- Model learns from natural images and generates a vocabulary of C2 units
consistent with V4 data.

- At the cognitive level model predicts several aspects of the face

inversion effect.

CalTech, July 2005



Now a surprise (for us)...
..comparison of the updated model

with machine vision performance

CalTech, July 2005



Sample Results on the 101-object dataset

saxophone : 95.50

camera : 91.20 headphone : 96.70  crocodile : 95.30
“ .

ft | i N T e’

mandolin : 91.40 pigeon : 92.00 hedgehog : 91.50  scissors : 97.90 pagoda : 97.10 scissors : 97.90
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octopus : 94.80 headphone : 96.70




The model performs at the level of the best

computer vision systems

bl I O Ml

Leaves (Calt.)
Cars(Calt.)
Faces(Calt.)
Airplanes(Calt.)
Moto. (Calt.)
Faces(MIT)
Cars (MIT)

Weber Welling andPerona, 2000
Fergus,Perona and Zisserman,2003| 84.8

Fergus,Perona and Zisserman,2003| 96.4
Fergus,Perona and Zisserman, 2003
Fergus,Perona and Zisserman,2003
Heisele, Serre and Poggio, 2002
Torralba,Murphyand Freeman,2004| 75.4




Sample results on the CBCL StreetScenes database

Classification

Input Image Segmented Image

—p |exture-based objects (e.g., trees, road, sky, buildings)

CalTech, July 2005 —> Shape-objects (e.qg., pedestrians, cars)



..and another surprise...
.. was the comparison with human performance

(Thomas Serre with Aude Oliva)
on rapid categorization of complex natural images

CalTech, July 2005



Comparison with Humans

Stimulus (20 ms)

————

ISI (0-30 ms)

Mask (80 ms)

2-AFC (animal present/absent)




Comparison with Humans

Close-up body Medium-far body Far body view &
view view groups




Model vs. Human Subjects

close-body medium-body far-body




Furthermore...model S2 units are
congruent with V4 neural data



Learned Model Units are Congruent with V4 data
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Summary |l

A simple learning rule generates a large dictionary of
visual shape-components

With this learning rule, the model competes with the best
computer vision systems on all the categorization
datasets we have compared it to (so far)

The model performs at the same level of performance as
humans on an ultra-rapid animal / non-animal
categorization task

The S2 units learned from natural images are consistent
with the tuning properties of V4 neurons



Remarks

* The stage that includes [V4-PIT]>AIT>PFC
represents a learning network of the
Gaussian RBF type that is known (from
learning theory) to generalize well

* In the theory the stage between IT and
"PFC" is a linear classifier - like the one used
in the read-out experiments

CalTech, July 2005
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Firing Rate (hz)
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Model performance compares well with recordings

from monkey Prefrontal Cortex
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Comparison of firing rates to cats/dogs during task and
passive viewing.

ITC: PFC:

Population Histogram Population Histogram
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I'TC activity similar between task and passive viewing.
PFC responses were more task-dependent.

How was category selectivity modulated by task demands?



Remarks

* The stage that includes (V4-PIT)-AIT-PFC
represents a learning network of the
Gaussian RBF type that is known (from
learning theory) to generalize well

* In the theory the stage between IT and
"PFC" is a linear classifier - like the one used
in the read-out experiments

* The inputs to IT are a large dictionary of
selective and /nvariant features




FUTURE: extension of the model to include...
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Input image// * /
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NE@\/ISION

iT may just be that if the mind were simple
enough for us

to understand it
then we may be too simple
to understand it
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