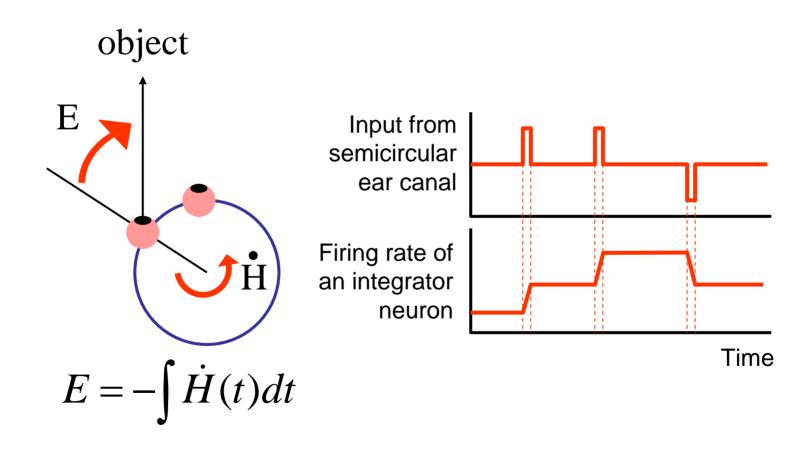
# Hysteretic models for a neural integrator

Maxim Nikitchenko

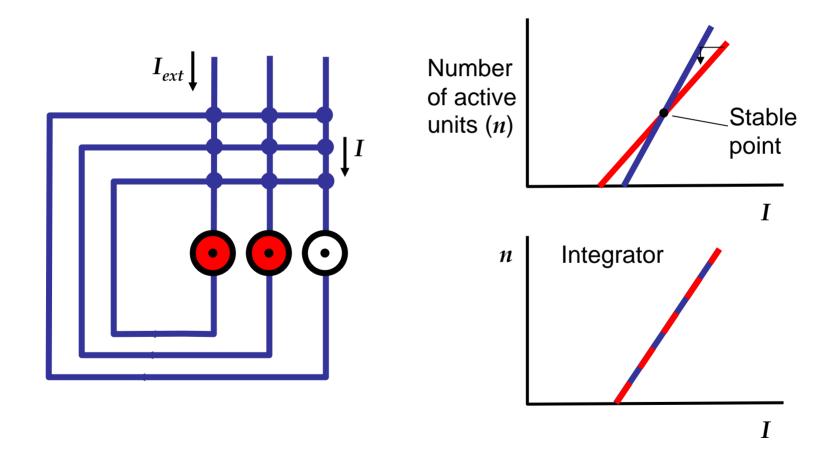
Alex Koulakov

Cold Spring Harbor Laboratory

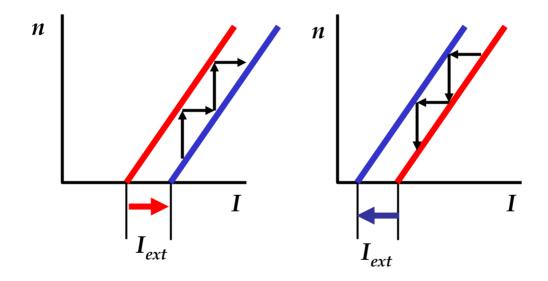
#### **Oculomotor Integrator**



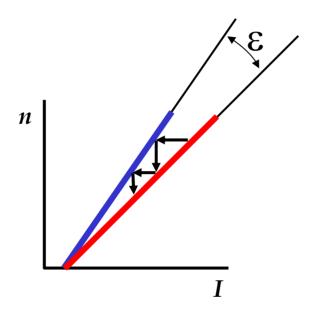
#### **Positive Feedback Mechanism**



#### **Temporal Integration**



#### **Leaky Integrator**



$$\tau = \tau_f N = \tau_f / \varepsilon$$

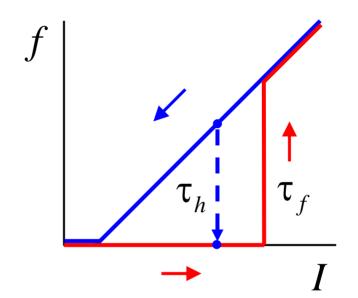
$$\tau_f = 0.1 \text{sec}$$

$$\tau = 30 \sec$$

$$\varepsilon \sim 0.003$$

## Hysteretic units solve the problem of robustness

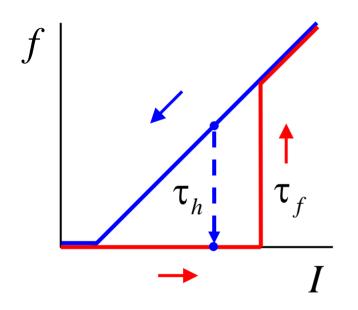




Rosen (1972) Koulakov, Raghavachari, Kepecs, and Lisman (2002)

Leak time 
$$au = au_h/\epsilon$$
 
$$au_f << au_h$$

## Hysteretic units solve the problem of robustness



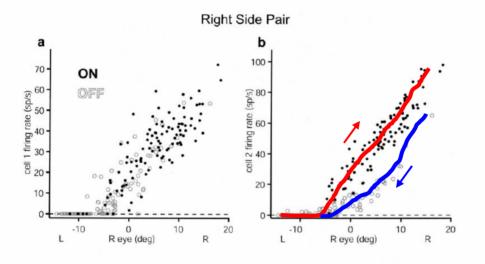
Integration:  $\tau_f \sim 0.1 \text{sec}$ 

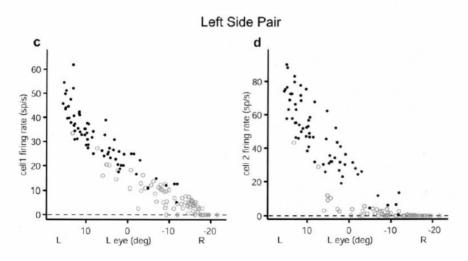
Memory (leak time):  $\tau = \tau_h/\epsilon$ 

$$\tau_h = \tau_f \exp \left[ C \left( f \tau_f \right) N_{syn} \left( \Delta I / I \right)^3 \right] >> \tau_f$$

Koulakov, 1999

# Hysteresis is observed in during fixations in goldfish area I



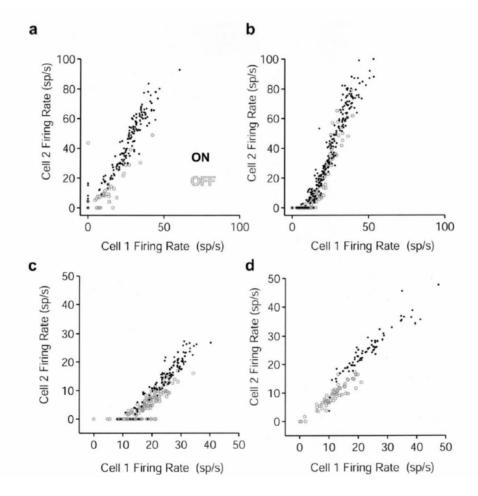


Aksay, Major, Goldman, Baker, Seung, Tank, *Cerebral Cortex*, 2003

#### **CHALLENGES FOR THEORY:**

- 1) Hysteresis is predicted during VOR (not fixations).
- 2) Wrong sign of hysteresis
- 3) Hysteresis in firing of one cell versus the other

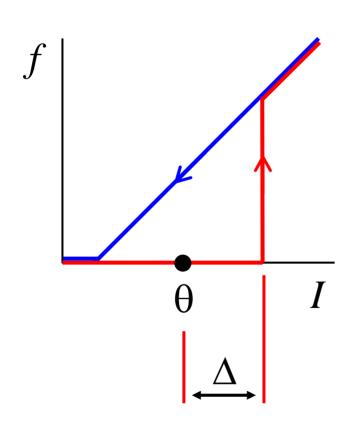
## 3) Hysteresis in firing of one cell versus the other



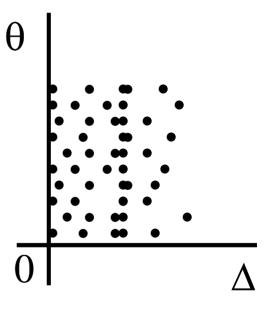
Aksay, Major, Goldman, Baker, Seung, Tank, *Cerebral Cortex*, 2003

# 1) Model with differential hysteresis

# Model based on inhomogeneous ensemble of hysteretic units

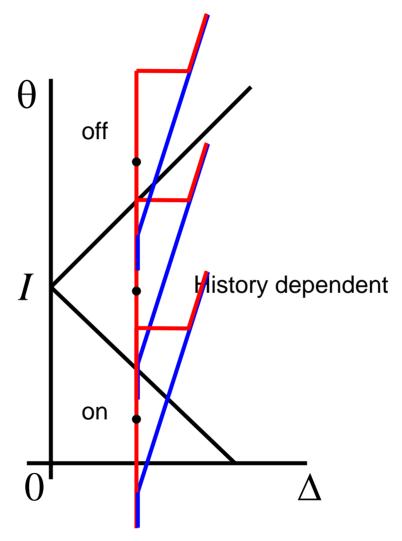


Beformeis(Knonowcheckov et. al., 2002)

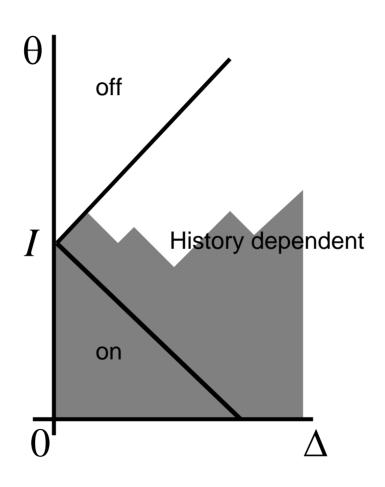


$$\rho(\Delta) = \rho_0 \exp\left(-\Delta/\overline{\Delta}\right)$$

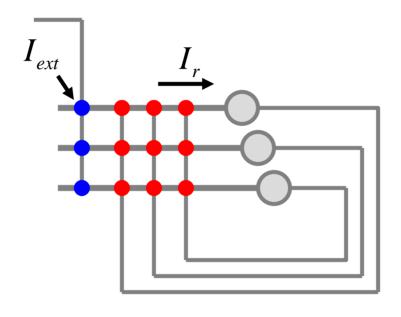
# The distribution function of active units is history-dependent



### Possible activation profile

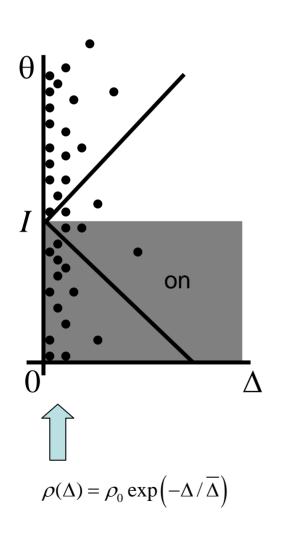


#### Model with feedback can act as integrator



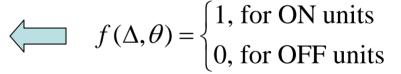
$$I = I_r + I_{ext}$$

#### Additional constraint: Stability condition

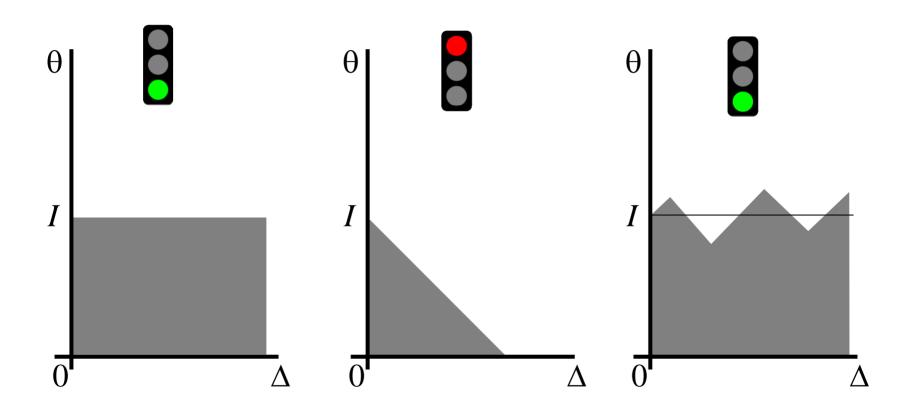


#### **During fixations:**

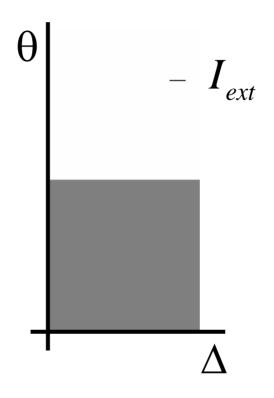
$$\begin{split} I_{ext} &= 0 \\ I &= I_r = I_0 n_{on} = I_0 \int f(\Delta, \theta) \rho(\Delta) d\Delta d\theta = \\ &= I_0 \rho_0 \overline{\Delta} \cdot I = CI \end{split}$$



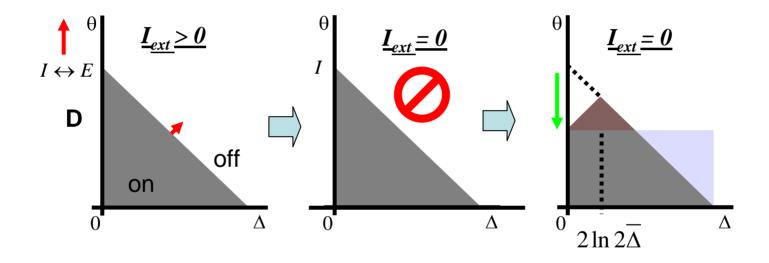
#### Possible solutions



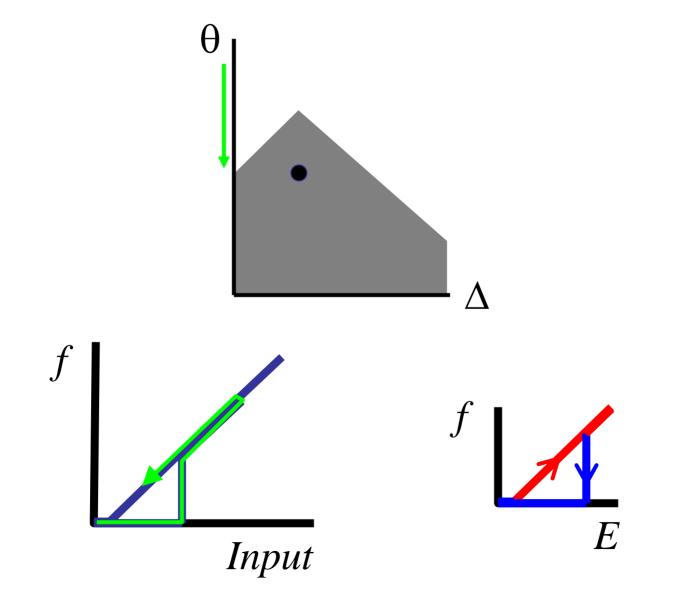
### Integrator in action



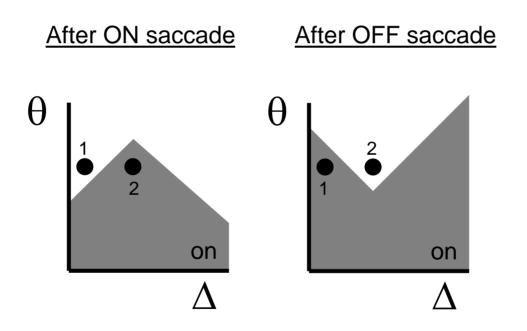
### Drop in recurrent current



### The sign of hysteresis is reversed

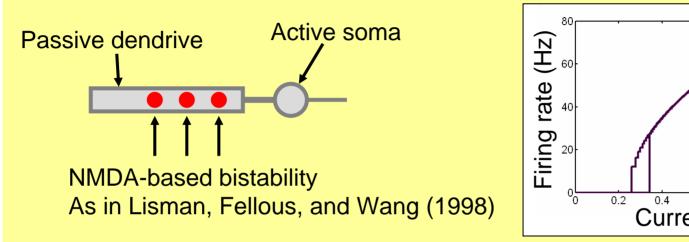


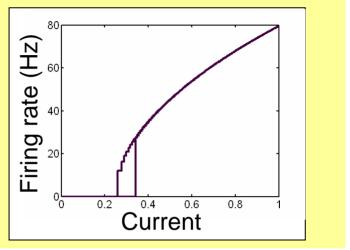
# Firing of one neuron versus the other is history-dependent

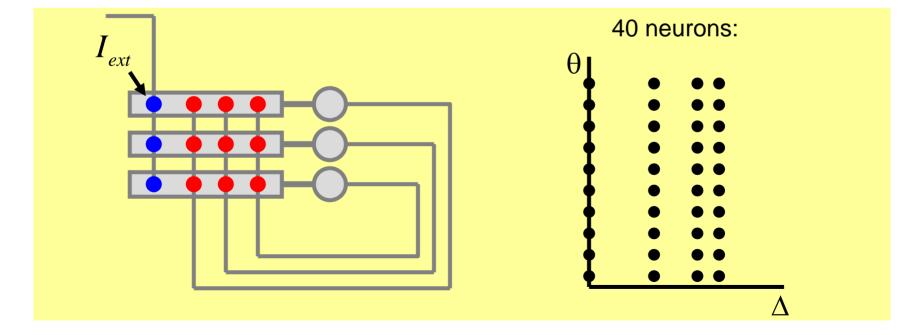


### 2) A more realistic model

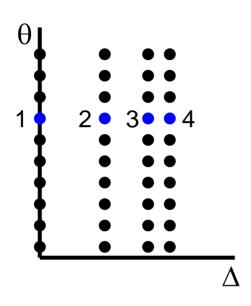
### Realistic implementation: two-compartmental model neurons with voltage-based dendritic bistability

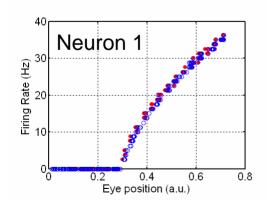


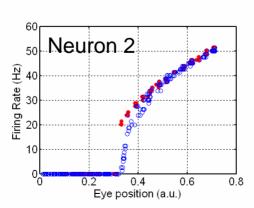


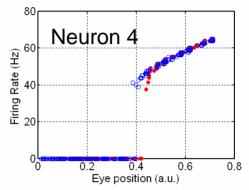


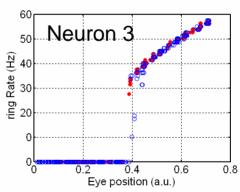
Hysteresis as a function of eye position is reversed in some units





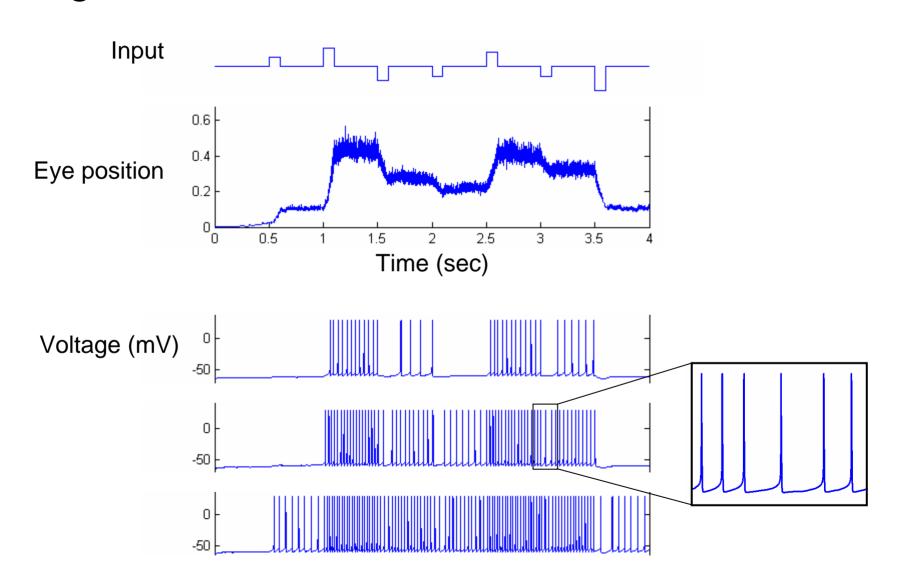




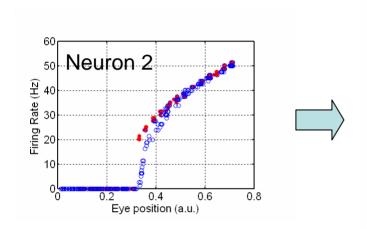


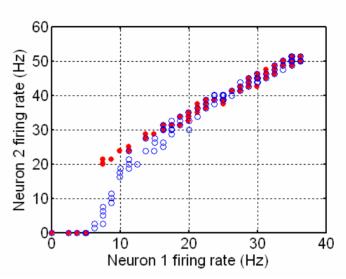
- ON fixations
- OFF fixations

# Ensemble of hysteretic units acts as an integrator

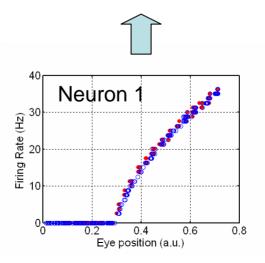


## History dependence in the firing rate of one neuron versus the other is observed

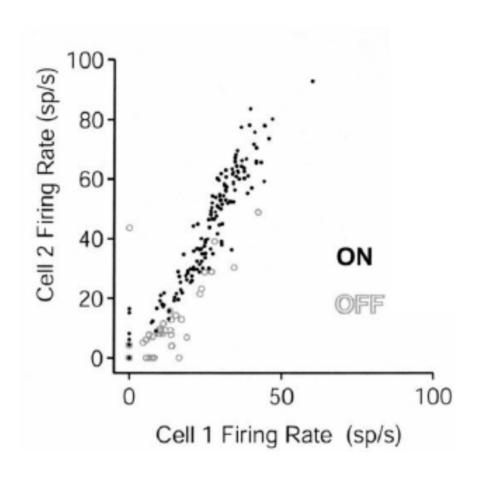




- ON fixations
- OFF fixations

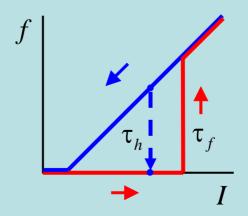


## Hysteresis in firing of one cell versus the other



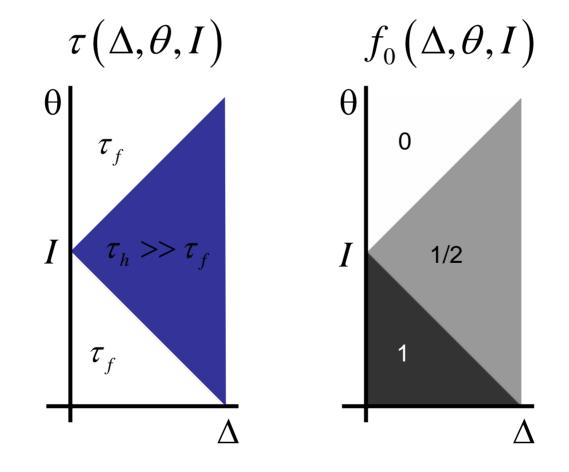
Aksay, Major, Goldman, Baker, Seung, Tank, *Cerebral Cortex*, 2003

### 3) Spontaneous transitions



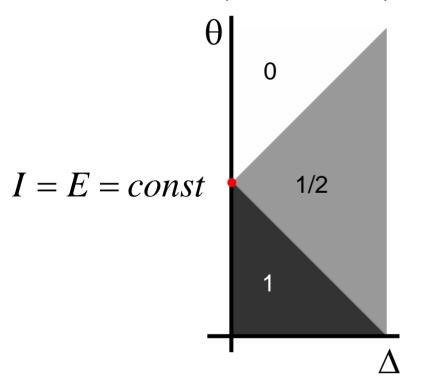
### Kinetic equation (KE)

$$\tau(\Delta, \theta, I)\dot{f}(\Delta, \theta) = f_0(\Delta, \theta, I) - f(\Delta, \theta)$$

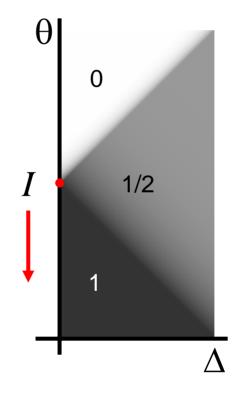


#### Solutions of the KE

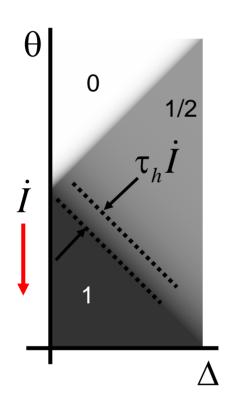
PERFECT INTEGRATOR (FINE-TUNING)



LEAKY INTEGRATOR



# Leak depends on the rate of spontaneous transitions



$$I_{r} = I_{0}n = C\left(I_{r} + \tau_{h}\left(-\dot{I}\right)\right)$$

$$C\tau_h \dot{I} = (C-1)I$$

$$\tau \approx \tau_h / |C - 1|$$

#### Conclusion

Different hysteresis -> history dependence in firing

$$\tau = \tau_f / \varepsilon \qquad \qquad \tau = \tau_f \exp(f \tau_f) / \varepsilon$$