Hysteretic models for a neural integrator

Maxim Nikitchenko

Alex Koulakov

Cold Spring Harbor Laboratory

Oculomotor Integrator

Positive Feedback Mechanism

Temporal Integration

Leaky Integrator

$$\tau = \tau_f N = \tau_f / \varepsilon$$

$$\tau_f = 0.1 \text{sec}$$

$$\tau = 30 \sec$$

$$\varepsilon \sim 0.003$$

Hysteretic units solve the problem of robustness

Rosen (1972) Koulakov, Raghavachari, Kepecs, and Lisman (2002)

Leak time
$$au = au_h/\epsilon$$

$$au_f << au_h$$

Hysteretic units solve the problem of robustness

Integration: $\tau_f \sim 0.1 \text{sec}$

Memory (leak time): $\tau = \tau_h/\epsilon$

$$\tau_h = \tau_f \exp \left[C \left(f \tau_f \right) N_{syn} \left(\Delta I / I \right)^3 \right] >> \tau_f$$

Koulakov, 1999

Hysteresis is observed in during fixations in goldfish area I

Aksay, Major, Goldman, Baker, Seung, Tank, *Cerebral Cortex*, 2003

CHALLENGES FOR THEORY:

- 1) Hysteresis is predicted during VOR (not fixations).
- 2) Wrong sign of hysteresis
- 3) Hysteresis in firing of one cell versus the other

3) Hysteresis in firing of one cell versus the other

Aksay, Major, Goldman, Baker, Seung, Tank, *Cerebral Cortex*, 2003

1) Model with differential hysteresis

Model based on inhomogeneous ensemble of hysteretic units

Beformeis(Knonowcheckov et. al., 2002)

$$\rho(\Delta) = \rho_0 \exp\left(-\Delta/\overline{\Delta}\right)$$

The distribution function of active units is history-dependent

Possible activation profile

Model with feedback can act as integrator

$$I = I_r + I_{ext}$$

Additional constraint: Stability condition

During fixations:

$$\begin{split} I_{ext} &= 0 \\ I &= I_r = I_0 n_{on} = I_0 \int f(\Delta, \theta) \rho(\Delta) d\Delta d\theta = \\ &= I_0 \rho_0 \overline{\Delta} \cdot I = CI \end{split}$$

Possible solutions

Integrator in action

Drop in recurrent current

The sign of hysteresis is reversed

Firing of one neuron versus the other is history-dependent

2) A more realistic model

Realistic implementation: two-compartmental model neurons with voltage-based dendritic bistability

Hysteresis as a function of eye position is reversed in some units

- ON fixations
- OFF fixations

Ensemble of hysteretic units acts as an integrator

History dependence in the firing rate of one neuron versus the other is observed

- ON fixations
- OFF fixations

Hysteresis in firing of one cell versus the other

Aksay, Major, Goldman, Baker, Seung, Tank, *Cerebral Cortex*, 2003

3) Spontaneous transitions

Kinetic equation (KE)

$$\tau(\Delta, \theta, I)\dot{f}(\Delta, \theta) = f_0(\Delta, \theta, I) - f(\Delta, \theta)$$

Solutions of the KE

PERFECT INTEGRATOR (FINE-TUNING)

LEAKY INTEGRATOR

Leak depends on the rate of spontaneous transitions

$$I_{r} = I_{0}n = C\left(I_{r} + \tau_{h}\left(-\dot{I}\right)\right)$$

$$C\tau_h \dot{I} = (C-1)I$$

$$\tau \approx \tau_h / |C - 1|$$

Conclusion

Different hysteresis -> history dependence in firing

$$\tau = \tau_f / \varepsilon \qquad \qquad \tau = \tau_f \exp(f \tau_f) / \varepsilon$$