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Adaptive Decision Making

Spiking Network Model

Reward Gated Plasticity

Simulation Results

Conclusion

e Network Architecture

e Full Network

e Introducing Changeover Delay
e Optimal Solution in General

e Robustness

e Type 1

Alireza Soltani and Xiao-Jing Wang July 24, 2004

et an

o

Satdads k) AR
sactads g of AF

B cravks

=

g
£«
£
& Fﬂ-ﬁﬁ““—ﬂwﬁﬂ I""’""'-""f—n-'m.n.-“""""'-r“‘“‘l
? 1] 05 =05
T {05}
Tarpals an

=
o

=
&

=
P

Response {peak normalzed)
=]
P

=

Time {seconds)

Reward Based Decision Making - p. 30/32




A‘ obustness

e Outine Model is able to perform the task for different network

Adapiive Decision Making parameters and different overall reward rates.
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Type 1

« Outine Not so robust.
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