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Matching Law

The animal allocates its time between competing
choices in a manner that it matches the relative

return from those choices.

Ci

C1 + C2 + ... + Cn

=
Ri

R1 + R2 + ... + Rn

return = (reward magnitude) × (rate)

Herrnstein R.J., “The Matching Law, Papers in Psychology and Economics”
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■ What is the local choice rule?

What is the neural basis of the matching behavior?
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Matching Task in Monkeys

■ reward assignment is stochastic

■ reward is persistent

■ changeover delay

Sugrue L.P., Corrado G.S., Newsome W.T., Science 2004
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Matching Behavior

Monkeys show approximate matching.

Sugrue L.P., Corrado G.S., Newsome W.T., Science 2004
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Network Behavior

A decision-making network with winner-takes-all property.

Stim A Stim B

A B

The network choice is determined by:
1. Strength of the inputs
2. Intrinsic noise in the neurons spiking

Stim A Stim B

A B

Wang X.J., Neuron 2002
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Stochastic Response

The stochastic network behavior as a function of
synaptic strengths is approximately sigmoidal.

Π = 1

1+exp(− pA−pB
σ )
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pA : Probability of afferent synapses to population A being in potentiated state.

σ : Sensitivity of the network to the biased inputs
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Reward Gated Plasticity
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Three-factor Rule

Three factors for dopamine-dependent plasticity:

presynaptic activity, postsynaptic activity, dopamine (reward signal).

■ (pre ↑ post ↑)+ Dopamine → LTP

■ (pre ↑ post ↑)+No Dopamine → LTD

■ (pre ↑ post ↓)+ Dopamine → LTD/LTP

■ (pre ↑ post ↓)+No Dopamine →No

change

Reynolds J.N., Hyland B.I., Wickens J.R., Nature 2001

Reynolds J.N., Wickens J.R., Neural Network 2002
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Learning Rule

Assumptions:
Presynaptic side is always active.

Postsynaptic side is active only for the winner population.

Reward

No Reward

A B

A B A B

BA

LTP

LTD No change

A

A

AB

B B

B

A

No change
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Stochastic Learning

If the condition for learning is met, only a fraction of
synapses are changed.

■ Potentiation: ∆pA = (1 − pA)q+

■ Depression: ∆pA = −pAq
−

Amit D.J., Fusi S., Neural Comp. 1994

Fusi S.,Biol. Cybernetic 2002
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Simulation Results
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Global Behavior

Model mimics the monkey’s matching behavior.
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Local Behavior

Model is able to track changes in the reward
schedule.
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Reward Tracking

Model tracks random changes in the reward delivery.
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Choice-Triggered Averages

Model is able to replicate the CTA curve.
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Robustness

Model shows matching behavior and high reward
harvesting rate for a wide range of parameters.



● Outline

Adaptive Decision Making

Spiking Network Model

Reward Gated Plasticity

Simulation Results

● Global Behavior

● Local Behavior

● Reward Tracking

● Choice-Triggered Averages

● Robustness

Conclusion

Alireza Soltani and Xiao-Jing Wang July 24, 2004 Reward Based Decision Making - p. 21/32

Robustness

Model shows matching behavior and high reward
harvesting rate for a wide range of parameters.
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Robustness

Model shows matching behavior and high reward
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Robustness

Model shows matching behavior and high reward
harvesting rate for a wide range of parameters.

Model is able to perform the matching task for
different overall reward rates.
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Conclusion

■ An adaptive decision-making network can be modeled using
the main characteristics of working memory circuits.

■ Our model is able to replicate all of the behavioral data.

■ Functional form of choice dependence on reward history can
be captured using particular values of parameters.

■ The simplest form of learning rule is very robust against
changes in the network and environment.

■ Prediction ...
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Network Architecture

Decision-making network with winner-take-all property.

Decision Making NetworkExternal Input

Background

StimA

StimB B

A

InhibitoryNonselective

Wang X.J., Neuron 2002



● Outline

Adaptive Decision Making

Spiking Network Model

Reward Gated Plasticity

Simulation Results

Conclusion

● Network Architecture

● Full Network

● Introducing Changeover Delay

● Optimal Solution in General

● Neuronal Recordings

● Robustness

● Type 1

Alireza Soltani and Xiao-Jing Wang July 24, 2004 Reward Based Decision Making - p. 27/32

Full Network

A model which is able to perform remapping.

rL

L R

gL gR rR Color−Location Neurons

Color Neurons

Decision−Making Network

External Input
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Introducing Changeover Delay

Introducing changeover delay, results in steeper total reward
harvesting rate.
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Optimal Solution in General

In any matching task where the reward assignment on targets
are independent of each other, a form of matching is an
optimal solution.

∂R1

∂p1
=

∂R2

∂p2

popt

1 − popt

=

√

T ′
1

T ′
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×
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Neuronal Recordings

Neurons in area LIP encode the local reward income.
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Robustness

Model is able to perform the task for different network
parameters and different overall reward rates.
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Robustness

Model is able to perform the task for different network
parameters and different overall reward rates.
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Robustness

Model is able to perform the task for different network
parameters and different overall reward rates.
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Type 1

Not so robust.
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Type 1

Not so robust.
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Type 1

Not so robust.
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