Structure of Neuronal Correlation: Distance, Dynamics and Depth

Matthew A Smith

Department of Ophthalmology & Center for the Neural Basis of Cognition University of Pittsburgh

Acknowledgements

- •Adam Kohn
- •Xiaoxuan Jia
- Amin Zandvakili
- •Ryan Kelly
- Marc Sommer

Albert Einstein College of Medicine

Carnegie Mellon Duke University

Zohary, Shadlen & Newsome (1994)

Zohary, Shadlen & Newsome (1994)

Averbeck, Latham & Pouget (2006)

•Distance

Distance

Spatial extent Tuning similarity

Distance

Spatial extent Tuning similarity

•Dynamics

Distance

Spatial extent Tuning similarity

•Dynamics

Spontaneous vs Evoked Transition between states

Distance

Spatial extent Tuning similarity

Dynamics

Spontaneous vs Evoked Transition between states

•Depth

Distance

Spatial extent Tuning similarity

Dynamics

Spontaneous vs Evoked Transition between states

•Depth

Distance

Spatial extent Tuning similarity

Dynamics

Spontaneous vs Evoked Transition between states

•Depth

Distance

Spatial extent Tuning similarity

•Dynamics

Spontaneous vs Evoked Transition between states

•Depth

Methods

•

- Opiate-anesthetized, paralyzed macaque monkeys
- V1 array implants superficial layer recordings
 - Stimulus: 12 directions spatial frequency: 1.3 cpd temporal frequency: 6.25 Hz size: 8-10 degrees

Slow timescale

Slow timescale

Slow timescale

Spatial scale of functional connections Fast timescale

Spatial scale of functional connections Fast timescale

Distance between electrodes (mm)

Spatial scale of functional connections

What about distances > 4 mm?

What about distances > 4 mm?

Smith & Kohn (2008)

What about distances > 4 mm?

Slow timescale (long distance)

Distance between electrodes (mm)

Smith & Kohn (2008)

(range from -1 to 1)

(range from -1 to 1)

Smith & Kohn (2008)

Does this structure extend outside V1?

Does this structure extend outside V1?

Monkey BU

Monkey DA

Distance

•Dynamics

Spontaneous vs Evoked Transition between states

•Depth

Distance

• rsc extends over long distances; synchrony only short range

•Dynamics

Spontaneous vs Evoked Transition between states

•Depth
Distance

- r_{sc} extends over long distances; synchrony only short range
- at all distances, correlation higher with similar orientation preference

•Dynamics

Spontaneous vs Evoked Transition between states

•Depth

Distance

• r_{sc} extends over long distances; synchrony only short range

• at all distances, correlation higher with similar orientation preference

Dynamics

Spontaneous vs Evoked Transition between states

•Depth

Spike count correlation (rsc)

Spike count correlation (r_{sc})

Spontaneous

many seconds

Spike count correlation (rsc)

1.28 s 10 s 1.28 s

 $1.28 \text{ s} \qquad 10 \text{ s} \qquad 1.28 \text{ s}$

1.28 s

1.28 s

1.28 s

1.28 s

Time (seconds)

Time (seconds)

Time (seconds)

Distance

- rsc extends over long distances; synchrony only short range
- at all distances, correlation higher with similar orientation preference

Dynamics

•Depth

Distance

• r_{sc} extends over long distances; synchrony only short range

• at all distances, correlation higher with similar orientation preference

•Dynamics

• correlation is higher in spontaneous activity than evoked

•Depth

Distance

- r_{sc} extends over long distances; synchrony only short range
- at all distances, correlation higher with similar orientation preference

Dynamics

- correlation is higher in spontaneous activity than evoked
- sharply reduced at stimulus onset, returns slowly to higher levels at stimulus offset

•Depth

Distance

- r_{sc} extends over long distances; synchrony only short range
- at all distances, correlation higher with similar orientation preference

•Dynamics

• correlation is higher in spontaneous activity than evoked

 sharply reduced at stimulus onset, returns slowly to higher levels at stimulus offset

•Depth

Smith & Kohn (2009, SfN Abstract)

Smith & Kohn (2009, SfN Abstract)

Figure 13. NissI stain of the visual cortex reveals the different layers I through VI quite clearly.

Figure 13. NissI stain of the visual cortex reveals the different layers I through VI quite clearly.

Figure 13. NissI stain of the visual cortex reveals the different layers I through VI quite clearly.

Current Source Density

Smith & Kohn (2009, SfN Abstract)

Average of 4 penetrations

Spike count correlation (rsc)

0.2

Smith & Kohn (2009, SfN Abstract)

Are the input layers of V1 special?

Example penetration

Input layers

Not input layers

Structure of neuronal correlation

Distance

- r_{sc} extends over long distances; synchrony only short range
- at all distances, correlation higher with similar orientation preference

•Dynamics

• correlation is higher in spontaneous activity than evoked

 sharply reduced at stimulus onset, returns slowly to higher levels at stimulus offset

Depth

Structure of neuronal correlation

Distance

- r_{sc} extends over long distances; synchrony only short range
- at all distances, correlation higher with similar orientation preference

•Dynamics

- correlation is higher in spontaneous activity than evoked
- sharply reduced at stimulus onset, returns slowly to higher levels at stimulus offset

Depth

• Correlation high in superficial & deep layers, near zero in input layers

Structure of neuronal correlation

Distance

- r_{sc} extends over long distances; synchrony only short range
- at all distances, correlation higher with similar orientation preference

•Dynamics

- correlation is higher in spontaneous activity than evoked
- sharply reduced at stimulus onset, returns slowly to higher levels at stimulus offset

Depth

- Correlation high in superficial & deep layers, near zero in input layers
- No evidence for such drastic layer differences in V2

Conclusions

- Correlation has different properties on different time scales
- Correlation in spontaneous activity exceeds evoked
- Correlation varies dramatically with layer in V1, but not V2
- Similar structure exists in V4

• Adam Kohn (NIH EY016774)

• Matt Smith (NIH EY018894)