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(Dimensionality Reduction) 

• Should be able to “see” these single-trial 
neural state trajectories, from data

• But need array recordings
• Many neurons simultaneously
• Activity from various neurons correlated
• Implies lower D system (than # neurons)
• So reduce D to de-noise (e.g., 10-15D)

• Note: calculate correlates here
• Lower D even more to plot (e.g., 3D)

• Note: do not calculate correlates here
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• Static: PCA, LLA, FA
• Dynamic: GPFA (Yu et al. 2009 JNP)
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Where to Start?      Can we “see” decision making?

• Resulaj, Kiani, Wolpert & Shadlen (2009) Changes of mind in decision-making. Nature

• “A decision is a commitment to a proposition or plan of action based on evidence and 
the expected costs and benefits associated with the outcome.”

• “... Although they received no additional information after initiating their movement, their 
hand trajectories betrayed a change of mind in some trials.”

• “... advance the understanding of decision-making to the highly flexible and cognitive 
acts of vacillation and self-correction.”

• We wondered if monkeys change their minds before initiating movement (during delay / 
plan period), which is a fully covert cognitive process.     If so, when, how, and why?
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Churchland, Kiani, Chaudhuri, Wang, Pouget & Shadlen (2011) Variance as a signature of neural computations 
during decision making. Neuron.

Direct Observation of Single-Trial Neural Behavior
may help further elucidate mechanisms of decisions

“This observation suggests that the lower average firing rate on the four-
choice task belies a broader mixture of firing rates from trial to trial, 
most of which are lower in the four-choice task.

The lower average rate is probably not explained by a mechanism that 
invokes less excitation or greater suppression on all trials, owing perhaps 
to greater uncertainty (Basso and Wurtz, 1998), or normalization (Tolhurst 
and Heeger, 1997), or surround inhibition (Balan et al., 2008).”
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Summary

• Understanding structure of neural variability appears to be 
increasingly important (sensory, cognitive, behavioral studies)

• Single-trial neural trajectories may offer new insights

• Single-trial neural trajectories may help when investigating:

• Subtle sources of variability (e.g., speed, RT correlates)

• Large sources of variability (e.g., decision making)

• Rare events (e.g., what happened on that trial?)
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Can This Lead to a Better Single-Trial Correlate of RT?

Afshar, Santhanam, Yu, Ryu, Sahani & Shenoy. Single-trial neural correlates of arm movement preparation. Submitted
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