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Variability in single neurons & in neuronal circuits

Holt et al., J. Neurophys. 1996

10 mV
0.5 s

Anderson et al., Science, 2000 

•Temporal variability in single neurons is inherited from their inputs

•Neurons do not ‘generate’ large amounts of noise

CV (ISI) ~ 1

Var Count ~ Mean Count

Shadlen et al., J. Neurosci. 1998
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No correlations correlation r = 0.1

The population-averaged temporal correlation is related to the
variance of the temporal fluctuations in global activity
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No correlations correlation r = 0.1

Asynchronous Network 
r ~ O(1/N) 

(Ginzburg & Sompolinsky ‘94) 
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Ginzburg & Sompolinsky, PRE, 1994

r ~ 1/N

The population-averaged temporal correlation is related to the
variance of the temporal fluctuations in global activity
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No correlations correlation r = 0.1

Asynchronous Network 
r ~ O(1/N) 
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r ~ 1/N

The population-averaged temporal correlation is related to the
variance of the temporal fluctuations in global activity

Input Output

Can asynchronous activity self-consistently propagate across circuits with “realistic” connectivity ?
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Are correlations due to shared input amplified 
by the connectivity ?



“The finding contradicts the common assumption 

that synchronous spikes must exert an exaggerated 

influence on networks of neurons…” 

40% shared E and I inputs

Post-synaptic neurons

Pre-synaptic neurons
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A “densely” connected balanced network

•Neurons are randomly connected with probability p
   Pairs of neurons share a fraction p of their inputs (on  average)

•Neurons are “strongly” coupled, i.e., PSP ~ O(1/!N)"
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A “densely” connected balanced network

•Neurons are randomly connected with probability p
   Pairs of neurons share a fraction p of their inputs (on  average)

•Neurons are “strongly” coupled, i.e., PSP ~ O(1/!N)"
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What is the effect of shared input on
the dynamics of the balanced network?
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...even small “random” fluctuations in activity are 

big enough to recruit inhibitory feedback
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The densely connected balanced network implements an extremely efficient 
negative feedback loop (~ an Op. Amp.) ... so efficient that it tracks the noise!!
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The densely connected balanced network implements an extremely efficient 
negative feedback loop (~ an Op. Amp.) ... so efficient that it tracks the noise!!

PSP ~ O(1/!N)"
...even small “random” fluctuations in activity are 

big enough to recruit inhibitory feedback

mE (t) = AE mX (t)
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... but what about shared input ?
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which cancel positive correlations due to shared input



FeedForward Network (1) Many weakly correlated synaptic inputs lead 
  to strongly correlated synaptic currents !!   

(2) E-I tracking generates (very weak) positive
correlations between E and I neurons

z-
sc

or
ed

 
po

pu
la

tio
n 

ac
tiv

ity

E 
I 

(3)  Weak positive correlations between E and I neurons 
generate strong negative correlations in synaptic currents 

which cancel positive correlations due to shared input



FeedForward Network (1) Many weakly correlated synaptic inputs lead 
  to strongly correlated synaptic currents !!   

(2) E-I tracking generates (very weak) positive
correlations between E and I neurons

z-
sc

or
ed

 
po

pu
la

tio
n 

ac
tiv

ity

E 
I 

(3)  Weak positive correlations between E and I neurons 
generate strong negative correlations in synaptic currents 

which cancel positive correlations due to shared input



FeedForward Network (1) Many weakly correlated synaptic inputs lead 
  to strongly correlated synaptic currents !!   

(2) E-I tracking generates (very weak) positive
correlations between E and I neurons

z-
sc

or
ed

 
po

pu
la

tio
n 

ac
tiv

ity

E 
I 

(3)  Weak positive correlations between E and I neurons 
generate strong negative correlations in synaptic currents 

which cancel positive correlations due to shared input

c ~ p + N(JEE rEE + JII rII -2JEI JIErEI)
Shared Input

2 2



FeedForward Network (1) Many weakly correlated synaptic inputs lead 
  to strongly correlated synaptic currents !!   

(2) E-I tracking generates (very weak) positive
correlations between E and I neurons

z-
sc

or
ed

 
po

pu
la

tio
n 

ac
tiv

ity

E 
I 

(3)  Weak positive correlations between E and I neurons 
generate strong negative correlations in synaptic currents 

which cancel positive correlations due to shared input

c ~ p + N(JEE rEE + JII rII -2JEI JIErEI)
Shared Input

2 2



FeedForward Network (1) Many weakly correlated synaptic inputs lead 
  to strongly correlated synaptic currents !!   

(2) E-I tracking generates (very weak) positive
correlations between E and I neurons

z-
sc

or
ed

 
po

pu
la

tio
n 

ac
tiv

ity

E 
I 

(3)  Weak positive correlations between E and I neurons 
generate strong negative correlations in synaptic currents 

which cancel positive correlations due to shared input

~ - p !!
c ~ p + N(JEE rEE + JII rII -2JEI JIErEI)

Shared Input
2 2
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  to strongly correlated synaptic currents !!   
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(3)  Weak positive correlations between E and I neurons 
generate strong negative correlations in synaptic currents 

which cancel positive correlations due to shared input

~ - p !!
c ~ p + N(JEE rEE + JII rII -2JEI JIErEI)

Shared Input
2 2

E-I tracking

Shared Input
Amplification of weak correlations
         c ~ p + N r

Self-consistent description of irregular and weakly
correlated states in recurrent networks with 

“realistic” connectivity  
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Summary

• Balanced networks of E and I neurons display extremely low global  
  correlations in the steady-state, even when the shared input fraction is large,
  unless inhibition is too slow or too weak.  

• We believe a qualitatively similar phenomenon takes place for spiking (not   
  binary) neurons.

• Temporal correlations produced when the asynchronous state breaks down
   (when inhibitory feedback is weak) have an oscillatory character and are fast
   compared with those measured in many primate experiments.

   It is unlikely that the typically observed slow, non-oscillatory spike-count   
   correlations are the result of the interplay between synaptic excitation and  
   inhibition in simple circuits. We currently don’t have a mechanistic understanding
   of how they are generated. 



Experimental Prediction 1

Strong correlations within and between E and I 
currents should coexist with weak correlations in 

the total synaptic current to the neurons



Network of conductance-based LIF neurons

Renart et al., Science, 2010
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Michael Graupner
(Reyes Lab)

High K+

Low Ca2+ and Mg2+
(Silberberg et al., J. Physiol. 2004)

Testing Experimental Prediction 1 in vitro

‘silent’ slice

‘activated’ slice

P16, T=30 oC



Current Clamp
Vm Vm

Testing Experimental Prediction 1 in vitro

Voltage Clamp
Im Im



The sources of variability in the level of correlation:!

                                          are all                  !

whereas the mean correlation is             in the asynchronous state!

•!Fraction of shared input!
•!Presence/absence of mono-synaptic connection!
•!Variability in the level of correlation of inputs!

Experimental Prediction 2

The distribution of spiking correlations in the asynchronous state is “wide”

STD(rij) >> Mean(rij)

PSP ~ O(1/!N)"

~ O(1/N)
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Brain State changes under Urethane anesthesia

Cortical INACTIVATION
SWS; Drowsiness...

Cortical ACTIVATION
REM; attentive wakefulness...

Renart et al., Science, 2010

•Spontaneous Activity in Rat Auditory and Somatosensory Cortex
•Urethane Anesthesia
•64 Ch. Silicon Probes
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Jittered Surrogates
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Weak correlations on average occur together with significant
positive and negative correlations between some pairs



r = 0.007

•A nearly zero population averaged correlation is
 indicative of an approximately constant global
 population activity

•Long tails appear to be the result of competitive
  interactions between two mutually inhibitory 
  neuronal populations
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