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Variability in single neurons & in neuronal circuits
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e Temporal variability in single neurons is inherited from their inputs

*Neurons do not ‘generate’ large amounts of noise




... in neuronal circuits the situation is less clear
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The population-averaged temporal correlation is related to the
variance of the temporal fluctuations in global activity
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The population-averaged temporal correlation is related to the
variance of the temporal fluctuations in global activity
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The population-averaged temporal correlation is related to the
variance of the temporal fluctuations in global activity
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The population-averaged temporal correlation is related to the
variance of the temporal fluctuations in global activity
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Can asynchronous activity self-consistently propagate across circuits with “realistic’ connectivity ?
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The Variable Discharge of Cortical Neurons: Implications for
Connectivity, Computation, and Information Coding

Michael N. Shadlen’ and William T. Newsome?
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Are correlations due to shared input amplified

| MN\WMWWW\/\ by the connectivity ?
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Are correlations due to shared input amplified
by the connectivity ?

'|I 40% shared E and I inputs

Post-synaptic neurons
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Are correlations due to shared input amplified

| MMWWWM by the connectivity ?

||| 40% shared E and I inputs
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A “densely” connected network

=
| *Neurons are randomly connected with probability p

Pairs of neurons share a fraction p of their inputs (on average)




A “densely” connected balanced network

*Neurons are randomly connected with probability p
Pairs of neurons share a fraction p of their inputs (on average)

*Neurons are “strongly” coupled, i.e., PSP ~ O(1/V/N)

Chaos in Neuronal Networks with Balanced
Excitatory and Inhibitory Activity

C. van Vreeswijk and H. Sompolinsky

Van Vreeswijk & Sompolinsky, Science, 1996
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Pairs of neurons share a fraction p of their inputs (on average)
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A “densely” connected balanced network

*Neurons are randomly connected with probability p
Pairs of neurons share a fraction p of their inputs (on average)

*Neurons are “strongly” coupled, i.e., PSP ~ O(1/V/N)

Chaos in Neuronal Networks with Balanced
Excitatory and Inhibitory Activity

What is the effect of shared input on
the dynamics of the balanced network? bee, 1996
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Temporal correlations are very weak in the balanced network

Activity
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...even small “random” fluctuations in activity are
big enough to recruit inhibitory feedback

PSP ~ O(1//N)
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| - Mme (t):AE mX(t)
... asymptotically tracking becomes perfect !! mi (1) = A mx (1)

...even small “random” fluctuations in activity are
big enough to recruit inhibitory feedback

PSP ~ O(1//N)

The densely connected balanced network implements an extremely efficient
negative feedback loop (~ an Op. Amp.) ... so efficient that it tracks the noise!!
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... but what about shared input?

The densely connected balanced network implements an extremely efficient
negative feedback loop (~ an Op. Amp.) ... so efficient that it tracks the noise!!




FeedForward Network (1) Many weakly correlated synaptic inputs lead

= to strongly correlated synaptic currents !!
E inputs only 4 yhap
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Feedronward etwork (1) Many weakly correlated synaptic inputs lead

- rongl rrelated synaptic currents !!
E inputs only to strongly correlated synaptic currents
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(2) E-I tracking generates (very weak) positive
correlations between E and | neurons
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FeedForward Network (1) Many weakly correlated synaptic inputs lead

- rongl rrelated synaptic currents !!
E inputs only to strongly correlated synaptic currents
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(3) Weak positive correlations between E and | neurons
generate strong hegative correlations in synaptic currents
which cancel positive correlations due to shared input
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FeedForward Network (1) Many weakly correlated synaptic inputs lead

1)  -g=0==0—0 to strongly correlated synaptic currents !!
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(1) Many weakly correlated synaptic inputs lead
to strongly correlated synaptic currents !!

(2) E-I tracking generd
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FeedForward Network

(1) Many weakly correlated synaptic inputs lead
1)  -g=0==0—0 to strongly correlated synaptic currents !!

Asynchronous firing

r~1/N
.. Shared Input
(ii) (1) Amplification of weak correlations
c~p+Nr

Weakly asynchronous
total currents
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current components

Self-consistent description of irregular and weakly
correlated states in recurrent networks with
“realistic” connectivity
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* Balanced networks of E and | neurons display extremely low global
correlations in the steady-state, even when the shared input fraction is large,
unless inhibition is too slow or too weak.
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summary

* Balanced networks of E and | neurons display extremely low global
correlations in the steady-state, even when the shared input fraction is large,
unless inhibition is too slow or too weak.

* We believe a qualitatively similar phenomenon takes place for spiking (not
binary) neurons.

* Temporal correlations produced when the asynchronous state breaks down
(when inhibitory feedback is weak) have an oscillatory character and are fast
compared with those measured in many primate experiments.

It is unlikely that the typically observed slow, non-oscillatory spike-count
correlations are the result of the interplay between synaptic excitation and
inhibition in simple circuits.We currently don’t have a mechanistic understanding
of how they are generated.




Current correlation
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Experimental Prediction 1
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Experimental Prediction 1

Network of conductance-based LIF neurons
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Experimental Prediction 1

Network of conductance-based LIF neurons
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Experimental Prediction 1

Network of conductance-based LIF neurons
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Testing Experimental Prediction 1 in vitro

spmes,wn,hn spmes,V%,lm

exciting ACSF P16, T=30 °C

Michael Graupner
(Reyes Lab)

High K+ 1. voltage clamp

Low Ca2*and Mg+
(Silberberg et al., J. Physiol. 2004)
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Testing Experimental Prediction 1 in vitro

Current Clamp Voltage Clamp
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Experimental Prediction 2

The distribution of spiking correlations in the asynchronous state is “wide”
STD(rj) >> Mean(r;)

Firing correlation r

The sources of variability in the level of correlation:
*Fraction of shared input

*Presence/absence of mono-synaptic connection are all ~ O(‘I/\/N)
*Variability in the level of correlation of inputs

whereas the mean correlation is ~ O(1/N) in the asynchronous state




Brain State changes under Urethane anesthesia

Cortical INACTIVATION Cortical ACTIVATION
SWS; Drowsiness... REM; attentive wakefulness...

b Al AN A

0

*Spontaneous Activity in Rat Auditory and Somatosensory Cortex

eUrethane Anesthesia
*64 Ch. Silicon Probes

Renart et al., Science, 2010



Experimental Prediction 2 A

Firing correlation r

Cortical INACTIVATION
Jittered Surrogates
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Experimental Prediction 2

0
Firing correlation r

Cortical INACTIVATION
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Experimental Prediction 2

0
Firing correlation r
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Weak correlations on average occur together with significant
positive and negative correlations between some pairs
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-0.1 0 0.1
Spiking correlation r

*A nearly zero population averaged correlation is
indicative of an approximately constant global
population activity

*Long tails appear to be the result of competitive
interactions between two mutually inhibitory
neuronal populations
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