Stimulus-dependent suppression of chaos in recurrent neural networks

Kanaka Rajan

Lewis-Sigler Institute for Integrative Genomics Princeton University

$$\frac{dx_i}{dt} = -x_i + 9\sum_{j=1}^{N} J_{ij} r_j + h_i$$

$$h_i \rightarrow f_j \qquad Synaptic weights$$

$$\langle J_{ij} \rangle_J = 0 \quad \text{and} \quad \langle J_{ij}^2 \rangle_J = \frac{1}{N}$$

Neuronal response function is nonlinear

Neuronal response function is nonlinear

Neuronal response function is nonlinear

N = 1000

Sompolinsky, Crisanti & Sommer, 1988

N = 1000

Sompolinsky, Crisanti & Sommer, 1988

 $C(\tau) = \langle r(t)r(t+\tau) \rangle$

N = 1000

Sompolinsky, Crisanti & Sommer, 1988

Drop in variability with constant input

Drop in variability with constant input

Experiments show evidence of input-dependent drop in response variability

Churchland, Yu, Cunningham, Sugrue, Cohen, Corrado, Newsome, Clark, Hosseini, Scott, Bradley, Smith, Kohn, Movshon, Armstrong, Moore, Chang, Snyder, Ryu, Santhanam, Sahani & Shenoy, 2010

$$C(\tau) = \langle r(t)r(t+\tau) \rangle$$

 $\mathbf{I} = \mathbf{0}$

$$N = 1000, g = 1.5, f = 2.5Hz$$

Rajan, Abbott & Sompolinsky, 2010

$$C(\tau) = \langle r(t)r(t+\tau) \rangle$$

 $\mathbf{I} = \mathbf{0}$

$$N = 1000, g = 1.5, f = 2.5Hz$$

Rajan, Abbott & Sompolinsky, 2010

$$C(\tau) = \langle r(t)r(t+\tau) \rangle$$

$$I = 0 \qquad I < Icrit \qquad I > Icrit$$

$$r(t) \stackrel{1}{\underset{0.5}{\longrightarrow}} \underbrace{\int_{0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad t, s}^{0.5}}_{0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad t, s} \stackrel{1}{\underset{0.5}{\longrightarrow}} \underbrace{\int_{0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad t, s}^{0.5}}_{0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad t, s} \stackrel{1}{\underset{0.5}{\longrightarrow}} \underbrace{\int_{0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad t, s}^{0.5}}_{0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad t, s} \stackrel{1}{\underset{0.5}{\longrightarrow}} \underbrace{\int_{0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad t, s}^{0.5}}_{0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad t, s}$$

$$N = 1000, g = 1.5, f = 2.5Hz$$

Rajan, Abbott & Sompolinsky, 2010

$$N = 1000, g = 1.5, f = 2.5Hz$$

Rajan, Abbott & Sompolinsky, 2010

Rajan, Abbott & Sompolinsky, 2010 & 2011

Rajan, Abbott & Sompolinsky, 2010 & 2011

Abbott, Rajan & Sompolinsky, 2010 Rajan, Abbott & Sompolinsky, 2010 & 2011

Definition of signal and noise

$$N = 1000, g = 1.5, f = 2.5Hz$$

Rajan, Abbott & Sompolinsky, 2010

Definition of signal and noise

$$N = 1000, g = 1.5, f = 2.5Hz$$

Rajan, Abbott & Sompolinsky, 2010

Definition of signal and noise

$$N = 1000, g = 1.5, f = 2.5Hz$$

Rajan, Abbott & Sompolinsky, 2010

Noise drops to 0 as a function of stimulus strength

Thursday, April 7, 2011

 \mathbf{O}

Rajan, Abbott & Sompolinsky, 2010 & 2011

Noise has a more interesting dependence on frequency

Thursday, April 7, 2011

Ο

Noise has a more interesting dependence on frequency

Thursday, April 7, 2011

Ο

What of the additional stochastic noise sources in real circuits?

What of the additional stochastic noise sources in real circuits?

What of the additional stochastic noise sources in real circuits?

signalnoise

Conclusions

External stimulus actively suppresses intrinsic noise in chaotic networks

This suppression is most effective at intermediate frequencies

Thank you

L F Abbott, Columbia University Haim Sompolinsky, Hebrew University & Harvard University

and for insights, advice and experimental direction

Mark Churchland & Krishna Shenoy, Stanford University

Support: Swartz Foundation and the Lewis-Sigler Institute

Spontaneous activity starts at 1 and is chaotic

Figure: Avi Ziskind Sompolinsky, Crisanti & Sommers, 1988