## Mapping the microcircuitry of attention

The Salk Institute for Biological Studies

> Jude F. Mitchell Kristy A. Sundberg John H. Reynolds













**Population Average Responses** 











Pyramidal and Fast Spiking Inhibitory Interneuron Action Potentials







Mitchell, Sundberg and Reynolds (2007) Neuron



Mitchell, Sundberg and Reynolds (2007) Neuron



Hartigan's Dip test p=0.015



Mitchell, Sundberg and Reynolds (2007) Neuron



**Broad Spiking Neurons** 

Mitchell, Sundberg and Reynolds (2007) Neuron



Mitchell, Sundberg and Reynolds (2007) Neuron



### **Attentional Modulation of Firing Rate**



Attention Modulation Index









Fano Factor = 
$$\frac{\sigma^2}{\mu}$$

# Fano Factor

















Some Properties of Poisson Spiking:





### Flat Autocorrelation Function:







### Flat Autocorrelation Function:







### Flat Autocorrelation Function:







## Flat Autocorrelation Function: Prob( Spike(t) | Spike(0) ) = $\lambda$ Probability λ 123 .. Interspike-Interval (ISI) **Probability of Firing is Independent of History** Spikes Time (ms)



### Flat Autocorrelation Function:









# Some Properties of Poisson Spiking:

### Flat Autocorrelation Function:

Prob( Spike(t) | Spike(0) ) =  $\lambda$ 









Spike(t) =  $-\begin{bmatrix} 1 & \text{with probability } \lambda \\ 0 & \text{else} \end{bmatrix}$ 

Some Properties of Poisson Spiking:

### Flat Autocorrelation Function:

Prob( Spike(t) | Spike(0) ) =  $\lambda$ 









Spike(t) =  $-\begin{bmatrix} 1 & \text{with probability } \lambda \\ 0 & \text{else} \end{bmatrix}$ 

Some Properties of Poisson Spiking:

### Flat Autocorrelation Function:

Prob( Spike(t) | Spike(0) ) =  $\lambda$ 









Spike(t) =  $-\begin{bmatrix} 1 & \text{with probability } \lambda \\ 0 & \text{else} \end{bmatrix}$ 

Some Properties of Poisson Spiking:

### Flat Autocorrelation Function:

Prob( Spike(t) | Spike(0) ) =  $\lambda$ 







Poisson Spiking:



$$\sigma^2 = \lambda$$





## Poisson Spiking:



# Spike(t) = $-\begin{bmatrix} 1 & \text{with probability } \lambda \\ 0 & \text{else} \end{bmatrix}$

Poisson Approximation has been found to be a relatively good description of neuronal responses:

(Softky & Koch, 1993) (Shadlen & Newsome, 1998) (McAdams & Maunsell, 1999) Question 1: Do narrow and broad spiking neurons behave like Poisson processes?

Question 2: Can attention be described as scaling the rate of a Poisson process?



#### **Broad Spiking Neurons**









FS cell



## **Summary/Conclusions**





**Broad Spiking Neurons** Largely Pyramidal Attention causes increases and decreases in response Attention reduces Fano Factor

**Narrow Spiking Neurons** 

Largely Inhibitory Interneurons Attention increases response Attention strongly reduces Fano Factor



