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1. Main hypothesis:
The computational task of a typical cortical microcircuit is to support

(as a general preprocessor, e.g. via temporal integration and nonlinear
operations) diverse computational goals of a variety of readout
neurons.

Traditional (and more common) hypothesis:  The computational task of a cortical
microcircuit is to carry out a specific computational operation (e.g. multiplication, 
extraction of orientation).



What types of computations should we consider ?
Classical models for computation (Turing machines, attractor neural networks) do 
not capture well the actual computational tasks that a biological organism has to 
perform in order to survive: 
It receives continuously new pieces of information arrive, and demands for results of 
computations may arise at any time   ("anytime algorithm", "real-time computing"):

Hence from a mathematical point of view, neural readouts have to 
implement filters (operators), i.e. they map input streams to output streams
(rather than implementing a static function, such as multiplication).



Resulting computational model for a generic cortical 
microcircuit: [joint work with Natschlaeger and Markram] :
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Insert: What is a kernel  (in the terminology of machine learning) ?

A kernel provides many nonlinear combinations of input variables, in order 
to boost the expressive power of any subsequent linear readout.

Example:  If a circuit precomputes all products xi · xj of  n  input variables 
x1,...,xn, then  every subsequent linear readout can compute any
quadratic function of the original input variables x1,...,xn.

Remark 1: A clear theoretical advantage of linear readouts:    their learning 
cannot get stuck in local minima of the error function. 

This fact suggests that it is advantageous for nature to restrict learning to 
linear devices.

Remark 2: Because of Vapnik’s “kernel trick” one can use in machine 
learning big kernels without additional computational cost. This is 
different for neural circuits that have to implement a kernel explicitly !



neurons: leaky integrate-and-fire neurons, 20% of them inhibitory, neuron a
is synaptically connected to neuron b with probability 

synapses: dynamic synapses with fixed parameters w, U, D, F
chosen from distributions based on empirical data from the Lab of Markram

input spike trains injected into 30% randomly chosen neurons, with fixed 
randomly chosen amplitudes
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2. Testing the hypothesis through computer
simulations of generic cortical microcircuits
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synapses
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synapse  F1
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synapse  F2

Models for neural microcircuits differ strongly from artificial neural networks,
since biological neurons produce spike trains as outputs, and synapses 

respond to these spike trains in diverse nonlinear ways

Shown here are the amplitudes of EPSP’s for two common types of synapses, 
for the same spike train    (F1 is facilitating and F2 is depressing):



according to
[Markram, Wang, Tsodyks,   PNAS 1998]:

The amplitude Ak of the PSP for the kth spike
in a spike train with interspike intervals
∆1, ∆2,…,∆k-1 is modeled by the equations

Ak = w · uk ·Rk
uk = U + uk-1 (1-U) exp(- ∆k-1 /F)
Rk = 1 + (Rk-1  - uk-1 Rk-1 -1) exp(- ∆k-1 /D)

We model synapses in our circuit simulations with parameters w, U, D, F

0.32, 0.144, 0.060.25, 0.7, 0.02I

0.05, 0.125, 1.20.5, 1.1, 0.05E

IEto
from

Mean values of U, D, F according to experimental 
data from the Lab of Henry Markram (in dependence
of the type of  pre-and post-synaptic neuron):



A simple model for a neural readout:
a  linear weighted sum with adaptive weights  w

Each readout neuron receives as 
input a vector x(t), which has as 
many components as it has
presynaptic neurons in the circuit.

The  i-th component  of x(t) 
results from the spike train 
of the  i-th presynaptic neuron by 
applying a low-pass filter, which 
models the low-pass filtering 
properties of receptors and 
membrane of  the readout neuron.

We assume that a readout neuron has 
at time  t  a firing rate proportional to  w · x(t) .



7 linear readouts

with adjustable

weights

What can a generic cortical microcircuit compute in this way ?
Circuit input: 4 Poisson spike trains with 
firing rates f1(t) for spike trains 1 and 2 and 
firing rates f2(t) for spike trains 3 and 4, 
drawn independently every 30 ms from the 
interval [0, 80] Hz
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This is even possible if the circuit has a spontaneous
dynamics (which is not related to its input):

Spike raster resulting from spike input

Spike raster resulting from a separate 
periodic input

Spike raster resulting from the
superposition of both types of inputs.

It is shown in [Kaske and Maass, 2006]
that this ongoing activity does not destroy
the generic computational properties of 
the circuit.



Linear readouts from a generic microcircuit model can also 
be trained to classify a spoken word (encoded by spike 
trains), even before the spoken word ends.  Hence generic 
circuit models can implement   “anytime algorithms“.

Example:  anytime recognition of  "one“ :
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yesusually no 
(exception: 
Bertschinger et 
al, Neural 
Comp. 2004)

yesnononowith online 
input?

yesnousually nonononowith noise?

yesyesusually nonoyesyeshigh-
dimensional
?

yesnoyesnononocontinuous 
time?

yesnoyesyesnonoanalog?

cortical 
microcircuits

threshold 
circuits

differential 
equations

iterative 
maps

cellular 
automata

Turing 
machines

Unfortunately most traditional models and theoretical approaches are
designed for other types of computations :

3. Theoretical analysis
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Note that any such filter F has fading memory:
In order to determine the output (Fu(·))(t) with a given 
precision ε it suffices to know the values of              up to 
some finite precision δ for all     from some finite time interval 
[0, T ].

Question: Might cortical microcircuits be able to approximate 
any filter F that can be defined by a Volterra series?
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A common mathematical framework for characterizing filters:

Volterra series (or Wiener series)



• if there is a rich enough pool B of basis filters (time invariant, 
with fading memory) from which the basis filters B1,…,Bk in 
the filterbank can be chosen
(B needs to have the pointwise separation property)       and

• if there is a rich enough pool  R from which the readout 
functions f can be chosen
(R needs to have the universal approximation property).

Def: A class B  of basis filters has the pointwise separation 
property if there exists for any two input functions  u(•), v(•)
with  u(s) ≠ v(s) for some  s ≤ t a basis filter B ∈ B with 
(Bu)(t) ≠ (Bv)(t).

A possible functional interpretation of ongoing activity:  
Ongoing activity in a recurrent circuit (“cortical songs”, 
synfire chains, “avalanches”, etc) contributes in a cortical 
circuit to the realization of this separation property. 

A basic mathematical results:    Any filter F which is defined by a 
Volterra series can be approximated with any desired degree of precision by 
a  circuit of the type shown on the r.h.s.:
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Hence this model suffices to guarantee theoretically that 
any computation with fading memory (i.e., any Volterra

series) can be approximated:
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Can such model also carry out computations that require 
persistent memory, or other long-lasting internal states  ?

[Maass, Joshi, Sontag, 2006] :  
Yes, if one allows in addition feedback from trained readouts… 
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... or if one trains neurons within the circuit for specific tasks:



Underlying mathematical theory: There exists a large class Sn of analog 
circuits C with fading memory (described by systems of n first order 
differential equations) that gain through feedback universal computational 
capabilities for analog computing. 

This holds in particular for neural 
circuits C defined by DEs of the formNote: Any Turing machine can be 

simulated by such dynamical 
system [Branicky, 1995], 

hence all digital computations 
(including those that require a non-
fading memory).

(under some conditions on the λi, aij, bi).



Note: The required feedback functions K and readout functions h 
are always continuous (and memory-less), hence they provide 
suitable targets for learning.

If the circuit C has sufficient kernel-capability, then K and h can be 
chosen to be linear.  



Application of this theoretical result for a particular
computational task

(that cannot be carried out with a fading memory):



What is different in the training procedure for a 
readout that provides feedback ?

• Each such readout was trained by linear regression to map vectors x(t)
to specific target values K(x(t))
(their feedback was injected as an extra input current into a randomly
chosen subset of neurons in the generic circuit)

• During training their actual feedback was replaced by a noisy version
of their target output K(x(t)) („teacher forcing“)

Note: In this way they were automatically trained to correct errors
resulting from noise and imprecision in their previously given feedback



Computer simulation with 600 noisy HH-neurons (and dynamic 
synapses) :
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Results shown are for test inputs that had not been used for training



To implement a continuous attractor is quite non-trivial for such circuit, 
because of its  in-vivo like high trial-to-trial variability (due to realistic 

background noise applied to each neuron):

This is the firing activity of a single (randomly selected) neuron in the circuit  
for 10 trials with the same circuit input:



4.  Does a more detailed cortical microcircuit
model perform better ?

[Haeusler and Maass, Cerebral Cortex 2006]



We have built a computer model of a cortical
microcircuit, where the connection probabilities
and connection strenghts between
6 populations of neurons
are chosen according to 
the data by
Alex Thomson et al., 
Cerebral Cortex, 2002

(who carried
out intracellular
recordings from
998 identified
pairs of neurons).

We distribute two spike input streams according to
these data, and train readout neurons from
layers 2/3 and 5, based on these data regarding
the distribution and signs of presynaptic neurons



Loss in computational performance (in percent) if this detailed
biological microcircuit model is replaced by various types of 
control circuits (with the same number of components):

We tested these different types of circuits on 7 computational tasks, 
requiring temporal integration of information from spike patterns, 
nonlinear computations on spike patterns, linear and nonlinear
computations on time-varying firing rates from the two input streams. 

Result: The laminar structure, the dynamics of synapses, and the
biologically found assignment of synapse types are essential for
the computational performance of  the circuit (for these 7 tasks).



5. Is the main hypothesis biologically realistic ?
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Predictions of this model: Generic cortical microcircuits exhibit

a) Temporal integration
b) Nonlinear preprocessing (kernel)
c) Diversity of readouts



Ad a): Temporal integration

Danko Nicolic at the MPI for Brain Research in Frankfurt has recently
started to test  systematically the temporal integration property of 

cat visual cortex:
He used sequences of letters as stimuli for anaestesized cats, 

and recorded from 31 electrodes in area 17 

Typical
distribution
of 
receptive
fields of 
neurons
relative to a 
stimulus



Time course of information about the first letter A/D 
(measured every 20ms) in the recorded spike trains:           
[Data analysis by Stefan Haeusler and WM]



Ad  b) Nonlinear preprocessing (kernel)

It is a somewhat surprising fact that the labs of Nicolelis, Poggio, and 
Schwartz all report just very small performance improvements for
various motor control and object recognition tasks if (artificial) linear 
readouts from multi-unit recordings are replaced by nonlinear
readouts.

Hence one may argue that the neural systems from which they record
have in fact kernel capabilities.



Ad c)  Diversity of readouts

I am not aware of direct experiments which have tested that (one
should for example record simultaneously from two different 
pyramidal cells on layers 2/3 or 5/6 from the same column).

Some unpublished data from recordings with several tetrodes in area V1 of awake
monkeys (natural stimuli) show that the correlation between neurons picked up by the
same tetrode are not more correlated than neurons at a larger distance.



6. Discussion 
My hypothesis from the beginning:

„The computational task of a typical cortical microcircuit is to support
(as a general preprocessor, e.g. via temporal integration and nonlinear
operations) diverse computational goals of a variety of readout neurons“

I have shown in this talk that

• Generic cortical microcircuit models do in fact have such general 
preprocessing qualities;  in particular they support anytime computing, and 
they even can support many different computations simultaneously

• This approach yields a new method for analyzing the computational 
function of specific details of cortical microcircuits  (such as laminar 
structure; specific synapse types) 

• The resulting computational model is in principle powerful enough to carry 
out all computations that a brain might need to execute; including real-time 
computations that combine internal states with external information



I have also shown

• results of a first direct test of 
the predicted temporal 
integration property (data by
Danko Nicolic)

Remark: One can in principle use a 
similar set-up to track the temporal 
dynamics of information
simultaneously in several brain
areas, and in communication
streams between them. Such 
experiments are likely to provide
insight into the large-scale
computational organization of the
brain.



We need:

Further biological experiments which directly test  predictions of our
model for the computational role of a generic cortical microcircuit
(temporal integration, kernel capability, and diversity of readouts);
both for isolated cortical circuits and for multiple brain areas. 



We also need:

---Theoretical (and simulation) studies which examine how 
unsupervised learning and self-organization in generic cortical 
circuits can optimize the function of a generic cortical microcircuit as 
generic preprocessor for multiple neural readouts.

New results of Robert Legenstein and WM show that more realistic models 
for neural readouts (with sign constraints) require additional preprocessing 
qualities of the circuit  (e.g. sparse activity in a small dynamic range).

--- Studies which examine whether further details of cortical 
microcircuits (such as those collected in the European FACETS-Project)
enhance their generic preprocessing capabilities

--- A theoretical result which clarifies under what conditions intrinsic 
activity patterns of cortical circuits (“cortical songs”, synfire chains, 
avalanches) can implement the “separation property” which is 
needed to approximate arbitrary Volterra series by such circuits.


