Spike-timing dependent plasticity in balanced random networks

M. Diesmann^{1,2}

¹Computational Neurophysics, Institute of Biology III, Albert-Ludwigs-University ²Bernstein Center for Computational Neuroscience, Albert-Ludwigs-University

Computational Approaches to Cortical Functions Banbury Center, 2-5 April 2006

Thanks

- Abigail Morrison
- Ad Aertsen
- Guo-qiang Bi (for providing original data)
- NEST Initiative

A. Morrison, A. Aertsen, & M. Diesmann (2005) Spike-timing dependent plasticity in balanced random networks Neural Computation, under review

Consistency of cortical network model

Is the network model compatible with the data?

Outline

Choice of STDP model

Plastic Networks

Development of structure

Robustness

Outline

Choice of STDP model

Plastic Networks

Development of structure

Robustness

Outline

Choice of STDP model

Plastic Networks

Development of structure

Robustness

Choice of STDP model

Plastic Networks

Development of structure

Robustness

Choice of STDP model

Plastic Networks

Development of structure

Robustness

Choice of STDP model

- Additive, multiplicative, ... ?
- All to all, nearest neighbor, ... ?

Can the existent experimental data help to reduce the plethora of possible models?

Back to the original data

What, if anything, does this tell us about the weight dependency of the STDP update?

900

Image: A matrix

Weight dependency of STDP

- pale gray additive
- dark gray multiplicative
- power law with $\mu = 0.4$
- depression multiplicative

Weight dependency of STDP

- \blacktriangleright darker for higher initial w
- variability may result from different initial w
- depression multiplicative \rightarrow no dependence on w

Weight dependency of STDP

additive (Song, Miller, & Abbott) multiplicative (Rubin, Lee, & Sompolinsky) in between (Gütig, Aharonov et al.)

$$\begin{aligned} \Delta & \omega_{-} (w,t) &= -\lambda \alpha w^{\mu} K \left(t, \theta_{\mathsf{post}} \right) \\ \Delta & w_{+} (w,t) &= \lambda \left(1 - w \right)^{\mu} K \left(t, \theta_{\mathsf{pre}} \right) \\ & K \left(T, \theta_{x} \right) &= \sum_{t_{x} \in \theta_{x}: t_{x} < T} e^{-(T - t_{x})/\tau} \end{aligned}$$

power law

$$\begin{array}{lll} \Delta w_{-}\left(w,t\right) &=& -\lambda \alpha w K\left(t,\theta_{\mathsf{post}}\right) \\ \Delta w_{+}\left(w,t\right) &=& \lambda w^{\mu} K\left(t,\theta_{\mathsf{pre}}\right) \end{array}$$

solid: potentiation dashed: depression

Spike pairing scheme

- self-consistent rate necessary for stability
- nearest neighbor scheme amplifies rate disparity
- all to all spike scheme counteracts rate disparity

Image: A mathematical states of the state

Weight distribution in a fully plastic network

Given a desired w^* of a static BRN, α_p can be calculated.

- $\alpha = 1.057 \alpha_p$ to compensates for correlation
- weight distribution settles to Gaussian within 200 s

Activity in a fully plastic network

- Al dynamics
- rate slightly higher (8.8 Hz) than in static network (7.7 Hz)
- similar Fano factor and coefficient of variation

Individual weight trajectories

- weight distribution settles fairly quickly ...
- ... but individual weight trajectories remain dynamic
- neither spontaneous development of structure nor withering

Survival time of strong synapses

- exponential decay with $\tau \approx 55$ s of top 10%
- time shift invariant statistics, steps of 200s shown

no development of structure

Sensitivity to scaling of depression

- at higher α (stronger depression), here 2%, a new stable state emerges at a lower rate
- but, if α chosen 2% too low, the network explodes
- new regime displays strongly patterned activity interspersed with silence

Sensitivity to scaling of depression

- at higher α (stronger depression), here 2%, a new stable state emerges at a lower rate
- but, if α chosen 2% too low, the network explodes
- new regime displays strongly patterned activity interspersed with silence

Sensitivity to scaling of depression

- at higher α (stronger depression), here 2%, a new stable state emerges at a lower rate
- but, if α chosen 2% too low, the network explodes
- new regime displays strongly patterned activity interspersed with silence

- current injected into 500 neurons irregularly at 3 Hz
- injection times for each neuron drawn from Gaussian (σ = 0.5 ms)
- moderate effect on high-connectivity group (K_{synch} ≥ 69)
- weak effect on rest of network

Synchronous stimulation

- current injected into 500 neurons irregularly at 3 Hz
- injection times for each neuron drawn from Gaussian (σ = 0.5 ms)
- ► moderate effect on high-connectivity group (K_{synch} ≥ 69)
- weak effect on rest of network

・ コ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Synchronous stimulation

- current injected into 500 neurons irregularly at 3 Hz
- injection times for each neuron drawn from Gaussian (σ = 0.5 ms)
- ► moderate effect on high-connectivity group (K_{synch} ≥ 69)
- weak effect on rest of network

naa

Development of activity during stimulation

- ► intra-group connections amplify stimulus → explosion
- removing intra-group connections permits stable network activity for N_{synch} = 500

rate of stimulated group plummets

Development of weights

- ► incoming synapses to stimulated group decrease → rate drop
- ▶ outgoing synapses increase as K_{synch} increases
- effect does not transfer to high connectivity group

Development of correlation

- expect increase in correlation due to weight increase (A→B)
- decrease in correlation observed (A→C)
- reduction of input to stimulated group lowers responsiveness to stimulus
- development of structure counteracted

Summary

- power law description fits STDP data
- predicts small changes for small weights
- compatible with balanced random networks
- equilibrium weight distribution is unimodal
- weights fluctuate on time scale of minutes
- no spontaneous development of structure
- stimulation creates structure, but (oversimplified?) network counteracts

