PHASE LOCKING OF SINGLE NEURON ACTIVITY TO THETA OSCILLATIONS DURING WORKING MEMORY IN MONKEY EXTRASTRIATE VISUAL CORTEX

Gregor Rainer Max Planck Institute for biological cybernetics Tübingen,Germany

gregor.rainer@tuebingen.mpg.de

Working memory and *delay activity* in prefrontal cortex

Behavioral task

Performance varied systematically with sample contrast

Neurophysiological recordings

Up to 6 single Tungsten electrodes (1 $2M\Omega$ at 1kHz) Electrode Separation 1 to 5 mm

1 2single neurons per channel

Example single trial multisite recordings from V4

Estimation of θ -power

θ -power timecourse at example V4 site

Memory-specific elevation in θ -power at example site

 5%

θ_{Fix}

Summary for all recorded sites

Single trial θ phase locking of SUA

$\boldsymbol{\theta}$ oscillation structured SUA

average of 300 repetitions at high contrast (>10%)

Sample object selectivity

Conclusions

- We observed working memory related θ (4 8-b) oscillations of the local field potential in monkey extrastriate visual cortex.
- θ oscillations structured single unit activity, such that neurons tended to preferentially fire at particular phases of the oscillation.
- These findings suggest an involvement of extrastriate visual cortex in working memory.