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"The whole 1s greater than the sum of its parts."

Aristotle
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"The whole 1s greater than the sum of its parts."
Aristotle

Emergent phenomena in complex systems:

 Many strongly interacting degrees of freedom
e Multiple scales/levels

e Nonlinear

e Noisy

e Phase transition/bifurcation

e Surprising/unexpected

e Spontaneous, self-organized, pattern formation, adaptive,...
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Outline

1. Associative Memory 1n Attractor Networks

2. All-Or-None Rule Discovery

3. Emergence of Chaos in Large Scale Networks

4. Emergence of Excitation-Inhibition Balance

5. Emergence of Sensory Selectivity in Cortical Circuits
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1. Associative Memory 1n Attractor Networks
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Hopfield Model of Associative Memory

Leamlng: When two cells fire together
the synapse between them strengthens
Hebb Rule ynap I

Retrieval:
Convergence to the memory attractor

Memory Capacity:
Maximum Number of Stored Memories = 14% of
the number of synaptic connections per neuron.

Amit, Gutfreund, HS , 1985
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Phase Diagram of Associative Memory Network
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Discontinuous Emergence of Memory Attractors
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Effect of Random Pruning of Cell/Synapses
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Cortical Column in the Human Brain

¢ 100,000 neurons

e 10,000 synapses per neuron
e 4 km of wiring

e 1,400 memories

e 100,000 cells per memory

Monday, November 14, 11

10




Memory and the Human Brain

e 100 years = 36, 000 days

e 100 episodes per day

e 3,600,000 episodes=2,600 columns
e Human Cortex = 200,000 columns
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2. All-Or-None Rule Discovery
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Sudden Rule Discovery

Binary Perceptron

Input Layer

e Error-based noisy rule learning
e Rule 1s threshold linear
e Binary modifiable weights

Output

Seung, Tishby, HS, 1990
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Typical Learning Curve
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Binary Rule Learning-Phase Diagram

0.5 (a)
o Generalization
i o Training
—
o | . .
= Nonlinear constraints on
the weights give rise to
a sudden transition to
001 TR

o ez e Tos e o perfect generalization.

Number of examples per synapse

-
o

o
o

- Over-fitting

©
o

o©
»

Rule Discovery

Noise in learning
—|
o
N

o
o

1.5 2.0 25 3.0

—
o

Monday, November 14, 11 15




3. Emergence of Chaos in Large Scale Networks
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Emergence of Chaos in Large Scale Networks

dV

d—l=—V+2 8(V)

V. = Synaptic potential in a local column

N
Equal Strength of Excitatory and Inhibition ZW =

J=1

N
Synaptic Gain=g lei =

J=1 HS, Crisanti, Sommers, 1988
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low gain, 1nactive

Activity of Sample Neurons, N =500g =0.9

intermediate gain, oscillations

Activity of Sample Neurons, N =500g=1.2
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Phase Diagram of Onset of Chaos
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Chaotic Fluctuations Are Slow
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Dimensionality of Chaotic Fluctuations

Principal Component Analysis
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Rajan, Abbott, HS, 2010
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Entrainment by External Periodic Stimulation

Activity of Sample Neurons, N =1000 g = 2
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Network Gain Suppression by External Sparse Tonic Stimulation
N=2000, g = 1.5

A NS AN NN A time 2.5 s

15W random external

NN LN~ Input 1s applied on
o\ SV S e —~o~— 5% of the neurons.

20

HS, 2011
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Suppression of Fluctuations by External Stimulation
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J

Fano factor

200 ms 200 ms

Churchland MM, Yu BM, Cunningham JP, Sugrue LP, Cohen MR, Corrado GS, Newsome WT, Clark AM, Hosseini P, Scott BB, Bradley DC,

Smith MA, Kohn A, Movshon JA, Armstrong KM, Moore T, Chang SW, Snyder LH, Ryu, Sl, Santhanam G, Sahani M, and Shenoy KV

Nature Neurosc. 2010
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4. Emergence of Excitation-Inhibition Balance in
Local Cortical Circuits
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Emergence of Excitation - Inhibition Balance
in Local Cortical Circuits
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van Vreeswijk and HS, 1996
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Spontaneous Balancing of Excitation and Inhibition

Neuron 1726
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Functional Advantages of Balanced Networks
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5. Emergence of Sensory Selectivity in Cortical Circuits:
A. tuned connectivity
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Emergence of Sensory Selectivity in
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Orientation Columns 1in Visual Cortex
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Orientation Selectivity in Visual Cortex

Pinwheel Architecture of Orientation Tuning
in V1 1n Cats and Primates

*What 1s the relation between cortical maps and connectivity?

What 1s the relation between orientation preference and
connectivity?
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The Ring Model
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The Ring Attractor
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e Circuit develops a manifold of stable ‘bump’ states.

 Weakly tuned input selects the matched state
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5. Emergence of Sensory Selectivity in Cortical Circuits:
B. random connectivity
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Orientation Coding in V|

“Salt and Pepper” Orientation Columns

Architecture suggests that in rodents connectivity is

2-PHOTON

and
~ Calcium Imaging
(Clay Reid’s lab)

less structured in orientation space
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Random Architecture
in Olfactory Cortex

Cortical neurons appear to sample
randomly the activities of the
glomeruli in the olfactory bulb

Stettler and Axel, Neuron, 2009
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Questions

* I[s “fire together wire together” a necessary
requirement for sensory selectivity?

* Can a network with random connectivity generate
neurons with high, contrast invariant orientation
selectivity?
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Model of Sensory Selectivity in Randomly
Connected Cortical Networks

Layer 4 Population of Excitatory
neurons selective to
orientation

Pehlevan and HS, 2011

Layer 2/3
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Each Layer 2/3 neuron samples a random subset of
Layer 4 population

Layer 4

sparse, random

Layer 2/3
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Poorly Tuned Input to Sample 3 Neurons in Layer 2/3
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Model

e Strong sparse random excitatory inputs
e Strong sparse random recurrent inhibition and excitation
e |&F neurons

* Input neurons are tuned to orientation

Network in a balanced state:
- irregular firing statistics

- dynamic balancing between excitation and
inhibition
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Contrast Invariant Orientation Selectivity
of Neurons 1in the Random Balanced Network

Balanced State Cancels the Large Untuned Component in the
External Input
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Network OSl vs. Input OSI
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Conclusion

Dynamical balance between E and I generates

sensitive to small random biases in sensory inputs.

Experimental Predictions

1. Poor stimulus specificity of cortical wiring
2. Neurons are selective to complex patterns.
3. Inhibition co-modulated with excitation
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Concluding remarks

* Exploring the cellular and molecular mechanisms is not sufficient. One needs to
understand also the principles of organization and dynamics at the circuit level.

« Neuronal circuits can exhibit emergent properties, not simply deduced from their
micro properties. Key factors are: nonlinearity, feedback, and randomness.

« Nonlinear synaptic plasticity dynamics can also give rise to emergent properties
in learning.

» Collective circuit properties are robust to many microscopic details but may
undergo dramatic phase transitions in the system’s state induced by changes in
certain critical ‘control’ parameters.

» The balance between excitation and inhibition 1is central to the functioning of
cortical circuitry. However, E/I balance assumes different forms in different
conditions (e.g., tuned balanced vs. spontaneous balance).

 Circuit instability can be induced either by an increase in the gain of both E and I
or by disrupting the E/I ratio.

« External stimulation may control the network state either directly by ‘enslaving’
the neurons or indirectly by changing the circuit’s gain.

Monday, November 14, 11 48




"The ability to reduce everything to simple fundamental laws does not imply the ability to
start from those laws and reconstruct the universe. The constructionist hypothesis breaks
down when confronted with the twin difficulties of scale and complexity.

At each level of complexity entirely new properties appear. Psychology is not applied
biology, nor is biology applied chemistry. We can now see that the whole becomes not

merely more, but very different from the sum of its parts."
(Phil Anderson, 1972)
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