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"The whole is greater than the sum of its parts."
Aristotle
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"The whole is greater than the sum of its parts."
Aristotle

Emergent phenomena in complex systems:

• Many strongly interacting degrees of freedom
• Multiple scales/levels
• Nonlinear
• Noisy 
• Phase transition/bifurcation
• Surprising/unexpected
• Spontaneous, self-organized, pattern formation, adaptive,...
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Outline

1. Associative Memory in Attractor Networks
2. All-Or-None Rule Discovery
3. Emergence of Chaos in Large Scale Networks
4. Emergence of Excitation-Inhibition Balance
5. Emergence of Sensory Selectivity in Cortical Circuits
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1. Associative Memory in Attractor Networks
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Learning: 
Hebb Rule

Retrieval:
Convergence to the memory attractor

Memory Capacity:
Maximum Number of Stored Memories = 14% of 
the number of synaptic connections per neuron.

Hopfield Model of Associative Memory

When two cells fire together 
 the synapse between them strengthens 

Amit, Gutfreund, HS , 1985
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 Phase Diagram of Associative Memory Network
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No. of Stored Episodes
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Memory Amnesia

Discontinuous Emergence of Memory Attractors
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Effect of Random Pruning of Cell/Synapses
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Cortical Column in the Human Brain

• 100,000 neurons
• 10,000 synapses per neuron
• 4 km of wiring
• 1,400 memories
• 100,000 cells per memory 
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Memory and the Human Brain

• 100 years = 36, 000 days
•  100 episodes per day
•   3,600,000 episodes=2,600 columns
•   Human Cortex = 200,000 columns
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2. All-Or-None Rule Discovery
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Binary Perceptron 

Chapter 2

Percepton and Support
Vector Machines

2.1 Perceptron Learning

The simplest type of perceptron has a single layer of weights connecting the
inputs and output.

...

y
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Figure 2.1: The Perceptron

See figure 3.3 for a schematic diagram of a perceptron. Formally, the per-
ceptron is defined by = (

P

=1 ) or = ( · ). is the
threshold parameter. Generally speaking, we will ignore the threshold in the
analysis of the perceptron (and other topics), because we can instead see the
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Input Layer

Output

Sudden Rule Discovery

• Error-based noisy rule learning
• Rule is threshold linear
• Binary modifiable weights 

Seung, Tishby, HS, 1990
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Typical Learning Curve
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Binary Rule Learning-Phase Diagram

Rule Discovery 
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Nonlinear constraints on 
the weights give rise to 
a sudden transition to 
perfect generalization. 
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3. Emergence of Chaos in Large Scale Networks 
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Emergence of Chaos in Large Scale Networks

τ 0
dVi
dt

= −Vi + Wijg(Vj )
j=1

N

∑

Wij ≈ 0
j=1

N

∑

W 2
ij = g

2

j=1

N

∑

Equal Strength of Excitatory and Inhibition 

Synaptic Gain=g

Vi = Synaptic potential in a local column

HS, Crisanti, Sommers, 1988
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N=500, g=2

low gain, inactive intermediate gain, oscillations

High gain, chaos
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Phase Diagram of Onset of Chaos
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In the limit of large network size: a sharp transition from
a ‘rest’ fixed point to chaos at g=1. 
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Chaotic Fluctuations Are Slow
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Onset of Chaotic Fluctuations
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Dimensionality of Chaotic Fluctuations

N=1000 

Principal Component Analysis
po

w
er

number of dimensions

Rajan, Abbott, HS, 2010
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Entrainment by External Periodic Stimulation

Partial 
entrainment, 
low amplitude

Complete 
entrainment, 
high amplitude

Rajan, Abbott, HS, 2010
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25

Network Gain Suppression by External Sparse Tonic Stimulation

At time 2.5 s
random external 
input is applied on 
5% of the neurons.

HS, 2011
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Suppression of Fluctuations by External Stimulation

Churchland MM, Yu BM, Cunningham JP, Sugrue LP, Cohen MR, Corrado GS, Newsome WT, Clark AM, Hosseini P, Scott BB, Bradley DC, 
Smith MA, Kohn A, Movshon JA, Armstrong KM, Moore T, Chang SW, Snyder LH, Ryu, SI, Santhanam G, Sahani M, and Shenoy KV!

Nature Neurosc. 2010
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4. Emergence of Excitation-Inhibition Balance in
    Local Cortical Circuits
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Emergence of Excitation - Inhibition Balance
in Local Cortical Circuits

• A model column with strong sparse 
   recurrent inhibition and excitation

van Vreeswijk and HS, 1996
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Spontaneous Balancing of Excitation and Inhibition

Eo + JEErE − JEIrI ≈ 0
Io + JIErE − JIIrI ≈ 0

The balance equations:
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Conventional 
dynamics 

External 
Input 

Balanced 

Conventional 
dynamics 

Balanced 

I

Em
m

−
−

Finite K 
Infinite K 

E rates
I rates

Functional Advantages of Balanced Networks

Linearizing network 
response

Ultra fast response
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5. Emergence of Sensory Selectivity in Cortical Circuits: 
         A. tuned connectivity
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Emergence of Sensory Selectivity in Cortical Circuits

LGN 
cells 

Hubel-Wiesel Model for the Generation of Receptive Field Properties 

עמודה בקליפת המוח 
1(  מ"מ מעוקב( 

100,000 נוירונים 
 

מיליארד סינפסות 
 

4 ק"מ חיווט 
 

צריכת אנרגיה:  
1/50,000 ואט 

?
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Text

Cor$cal(neurons(respond(to(specific(orienta$ons(

Electric(s$mula$on(

(Hubel(and(Wiesel,(1958)(

Contrast Invariant
Orientation Selectivity
of Single Cortical Neurons

Orientation Columns in Visual Cortex
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Pinwheel Architecture of Orientation Tuning 
in V1 in Cats and Primates

Orientation Selectivity in Visual Cortex

•What is the relation between cortical maps and connectivity?

•What is the relation between orientation preference and 
connectivity? 
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The Ring Model

-Cortical Amplification
-Cortical Enhancement of Selectivity

Ben Yishai, Lev Bar Or, 
SH, 1995

35Monday, November 14, 11



The Ring Attractor

• Circuit develops a manifold of stable ‘bump’ states. 
• Weakly tuned input selects the matched state
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5. Emergence of Sensory Selectivity in Cortical Circuits: 
         B. random connectivity
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“Salt and Pepper” Orientation Columns

Orientation Coding in V1

Architecture	
  suggests	
  that	
  in	
  rodents	
  connec2vity	
  is	
  
less	
  structured	
  in	
  orienta2on	
  space	
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Random	
  Architecture
in	
  Olfactory	
  Cortex	
  

Cor2cal	
  neurons	
  appear	
  to	
  sample	
  
randomly	
  the	
  ac2vi2es	
  of	
  the	
  
glomeruli	
  in	
  the	
  olfactory	
  bulb

Ste$ler	
  and	
  Axel,	
  Neuron,	
  2009
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• Is “fire together wire together” a necessary 
requirement for sensory selectivity?

Questions

• Can a network with random connectivity generate 
neurons with high, contrast invariant orientation 
selectivity? 
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Model of Sensory Selectivity in Randomly 
Connected Cortical Networks

Popula2on	
  of	
  Excitatory	
  
neurons	
  selec2ve	
  to	
  

orienta2on

Popula2on	
  E
Excitatory	
  IF	
  Neurons

Popula2on	
  I
Inhibitory	
  IF	
  Neurons

Layer 4 

Layer 2/3 

Pehlevan and HS, 2011
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Popula2on	
  E
Excitatory	
  IF	
  Neurons

Popula2on	
  I
Inhibitory	
  IF	
  Neurons

Layer 4 

Layer 2/3 

Each	
  Layer	
  2/3	
  neuron	
  samples	
  a	
  random	
  subset	
  of	
  
Layer	
  4	
  popula2on

sparse, random

sparse, random
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Poorly Tuned Input to Sample 3 Neurons in Layer 2/3

Stimulus Orientation
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Model

• Strong	
  sparse	
  random	
  excitatory	
  inputs	
  
• Strong	
  sparse	
  random	
  recurrent	
  inhibi2on	
  and	
  excita2on
• I&F	
  neurons
• Input	
  neurons	
  are	
  tuned	
  to	
  orienta2on
• Network	
  in	
  a	
  balanced	
  state:
	
  	
  	
  	
  	
  	
  	
  -­‐	
  irregular	
  firing	
  sta2s2cs
	
  	
  	
  	
  	
  	
  	
  -­‐	
  dynamic	
  balancing	
  between	
  excita2on	
  and
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  inhibi2on
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Balanced	
  State	
  Cancels	
  the	
  Large	
  Untuned	
  Component	
  in	
  the	
  
External	
  Input

Contrast Invariant Orientation Selectivity
of Neurons in the Random Balanced Network 
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OSI=Orientation Selectivity Index
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Experimental Predictions

1. Poor stimulus specificity of cortical wiring
2. Neurons are selective to complex patterns.
3. Inhibition co-modulated with excitation

•Conclusion
Dynamical balance between E and I generates 
sensitive to small random biases in sensory inputs.
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Concluding remarks

• Exploring the cellular and molecular mechanisms is not sufficient. One needs to 
understand also the principles of organization and dynamics at the circuit level. 

• Neuronal circuits can exhibit emergent properties, not simply deduced from their 
micro properties. Key factors are: nonlinearity, feedback, and randomness. 

• Nonlinear synaptic plasticity dynamics can also give rise to emergent properties 
in learning. 

• Collective circuit properties are robust to many microscopic details but may 
undergo dramatic phase transitions in the system’s state induced by changes in 
certain critical ‘control’ parameters. 

• The balance between excitation and inhibition is central to the functioning of 
cortical circuitry. However, E/I balance assumes different forms in different 
conditions (e.g., tuned balanced vs. spontaneous balance). 

• Circuit instability can be induced either by an increase in the gain of both E and I 
or by disrupting the E/I ratio.

• External stimulation may control the network state either directly by ‘enslaving’ 
the neurons or indirectly by changing the circuit’s gain. 

48

48Monday, November 14, 11



"The ability to reduce everything to simple fundamental laws does not imply the ability to 
start from those laws and reconstruct the universe.The constructionist hypothesis breaks 
down when confronted with the twin difficulties of scale and complexity. 

At each level of complexity entirely new properties appear. Psychology is not applied 
biology, nor is biology applied chemistry. We can now see that the whole becomes not 
merely more, but very different from the sum of its parts."

(Phil Anderson, 1972)
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