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A. Surrogate Data

To estimate levels of confidence for DTF, dDTF, and Granger
causality the procedure proposed by Theiler et al. [22] was
used. It consists of the following steps. First, the data are
transformed by FFT to the frequency domain, then their phases
are replaced by the phases drawn from a random distribution of
the range , and finally, the surrogate data are obtained
by transforming the randomized data back to the time domain.
The datasets generated in such a way should have the same
spectrum as the original data, but should not exhibit any
phase relation between signals. This is strictly true only for
infinite-length data epochs. In reality, we may expect some
nonzero values of the DTF, dDTF, and PDC functions even in
this case, coming from some random correlations [23]. In order
to estimate the thresholds for the functions values indicating
lack of transmission, the procedure of surrogate data generation
was repeated many (250) times, and the above-mentioned
functions were calculated.

III. SIMULATIONS

The simulations included construction of patterns of flows,
with the aim of understanding the effects observed for experi-
mental data. In order to make our simulations similar to real sit-
uations, as an input signal we used EEG from scalp electrode P3,
of 20 s duration (2560 points), high-pass filtered with a cutoff
frequency at 3 Hz. In each step, the signal was successively de-
layed by one sample; also in each step a random Gaussian noise
was added and obtained in this way time series were transmitted
to another channel with a weight 0.8. The amplitude of noise,
added in each step, was 0.5 of the amplitude of the original
EEG signal. The scheme of the simulation is shown in Fig. 1.
The signal from channel 1 was propagated to channel 3 through
channel 2 and to channels 5 and 6 through channel 4. Channel
7 was uncoupled to the other channels.

In Fig. 2(a), the ordinary coherences calculated pair-wise are
shown; their amplitude spectra are presented at the upper tri-
angle of the picture and phases at the lower triangle. From the
phase spectrum of coherences, we have chosen values corre-
sponding to the frequency of the maximum of amplitude spec-
trum, namely 11 Hz. Then we have found the corresponding
delays (in samples)1 . The obtained effective pattern of propaga-
tions together with the input diagram of flows are illustrated in
Fig. 2(c). We can observe that besides the simulated flows we
obtain some additional propagations, e.g., from channel 2 to 6,
from 2 to 5, and from 4 to 3. This result comes from the fact, that
in a case of the difference in the delays for bivariate estimates
we obtain a flow from a less-delayed channel to a channel more
delayed, even if they are not connected [Fig. 2(d)]. This effect
is absent for multivariate estimates.

Fig. 3 presents the results obtained by means of the Granger
causality measure calculated pair-wise. Again, we obtain too
many flows. In the case of pair-wise estimates, we have high
values of Granger causality for each pair of electrodes differing
in the delay value between them.

1Phases can be determined also in the time domain. Pairwise estimation of
phases e.g., by the Hilbert transform gives the same results as the ones obtained
from (pairwise) coherences.

Fig. 1. Scheme of simulation I. Signal in channel 1 is generated by addition of
white noise to the experimental EEG signal. denotes time delay of 1 sample.

Fig. 2. Pair-wise coherences and resulting flow scheme for simulation I.
(A) Coherence amplitude (solid filled graphs above diagonal) and coherence
phase (graphs below diagonal). Each graph represents the function for pair of
channels marked on the left of the row and above the column. Horizontal axis:
frequency . Vertical axis: coherence amplitudes ( range) or
phases ( range). Delay values (in samples) are estimated from phases,
marked by the numbers shown over the phase graphs. (B) Simulated pattern of
flows. (C) Pattern of flows estimated from coherence values (strength of the
connection) and phases (direction). (D) Pattern of flows obtained from bivariate
coherence estimate for different delays between channels. Black arrows: true
(simulated) flows. Gray arrows: indirect flows revealed by the applied method.
Dotted arrows: false flows found by the applied method.
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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×



X(t) = A(k )
k=1

p∑ (t)X(t − k) + E(t)
A( f ,t) = − A(k ) (t)e− i2π fk

k=0

p∑ ;   A(0) = I
X( f ,t) = A( f ,t)−1E( f ,t) = H( f ,t)E( f ,t)
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A. Surrogate Data

To estimate levels of confidence for DTF, dDTF, and Granger
causality the procedure proposed by Theiler et al. [22] was
used. It consists of the following steps. First, the data are
transformed by FFT to the frequency domain, then their phases
are replaced by the phases drawn from a random distribution of
the range , and finally, the surrogate data are obtained
by transforming the randomized data back to the time domain.
The datasets generated in such a way should have the same
spectrum as the original data, but should not exhibit any
phase relation between signals. This is strictly true only for
infinite-length data epochs. In reality, we may expect some
nonzero values of the DTF, dDTF, and PDC functions even in
this case, coming from some random correlations [23]. In order
to estimate the thresholds for the functions values indicating
lack of transmission, the procedure of surrogate data generation
was repeated many (250) times, and the above-mentioned
functions were calculated.

III. SIMULATIONS

The simulations included construction of patterns of flows,
with the aim of understanding the effects observed for experi-
mental data. In order to make our simulations similar to real sit-
uations, as an input signal we used EEG from scalp electrode P3,
of 20 s duration (2560 points), high-pass filtered with a cutoff
frequency at 3 Hz. In each step, the signal was successively de-
layed by one sample; also in each step a random Gaussian noise
was added and obtained in this way time series were transmitted
to another channel with a weight 0.8. The amplitude of noise,
added in each step, was 0.5 of the amplitude of the original
EEG signal. The scheme of the simulation is shown in Fig. 1.
The signal from channel 1 was propagated to channel 3 through
channel 2 and to channels 5 and 6 through channel 4. Channel
7 was uncoupled to the other channels.

In Fig. 2(a), the ordinary coherences calculated pair-wise are
shown; their amplitude spectra are presented at the upper tri-
angle of the picture and phases at the lower triangle. From the
phase spectrum of coherences, we have chosen values corre-
sponding to the frequency of the maximum of amplitude spec-
trum, namely 11 Hz. Then we have found the corresponding
delays (in samples)1 . The obtained effective pattern of propaga-
tions together with the input diagram of flows are illustrated in
Fig. 2(c). We can observe that besides the simulated flows we
obtain some additional propagations, e.g., from channel 2 to 6,
from 2 to 5, and from 4 to 3. This result comes from the fact, that
in a case of the difference in the delays for bivariate estimates
we obtain a flow from a less-delayed channel to a channel more
delayed, even if they are not connected [Fig. 2(d)]. This effect
is absent for multivariate estimates.

Fig. 3 presents the results obtained by means of the Granger
causality measure calculated pair-wise. Again, we obtain too
many flows. In the case of pair-wise estimates, we have high
values of Granger causality for each pair of electrodes differing
in the delay value between them.

1Phases can be determined also in the time domain. Pairwise estimation of
phases e.g., by the Hilbert transform gives the same results as the ones obtained
from (pairwise) coherences.

Fig. 1. Scheme of simulation I. Signal in channel 1 is generated by addition of
white noise to the experimental EEG signal. denotes time delay of 1 sample.

Fig. 2. Pair-wise coherences and resulting flow scheme for simulation I.
(A) Coherence amplitude (solid filled graphs above diagonal) and coherence
phase (graphs below diagonal). Each graph represents the function for pair of
channels marked on the left of the row and above the column. Horizontal axis:
frequency . Vertical axis: coherence amplitudes ( range) or
phases ( range). Delay values (in samples) are estimated from phases,
marked by the numbers shown over the phase graphs. (B) Simulated pattern of
flows. (C) Pattern of flows estimated from coherence values (strength of the
connection) and phases (direction). (D) Pattern of flows obtained from bivariate
coherence estimate for different delays between channels. Black arrows: true
(simulated) flows. Gray arrows: indirect flows revealed by the applied method.
Dotted arrows: false flows found by the applied method.
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 6. (A) PDC functions for simulation I. (B) Resulting pattern of flows.
Organization of the picture is the same as in Fig. 3.

since they reveal the direct coupling between them [20]. For
scalp electrodes, the overall picture of propagations found
by DTF is usually sufficient. Both estimators can be easily
computed from the MVAR transfer matrix. Inspection of both
gives unequivocal information about the pattern of propagation
and makes the distinction between direct and indirect flows
possible.

In Fig. 6, the results obtained by the PDC method for the
same simulation scheme (Fig. 1) are illustrated. One can see that
they are quite similar to those obtained by dDTF. The spectral
properties of PDC and DTF are different—the PDC measure
depends on frequency very weakly.

However, there are situations where PDC results may be mis-
leading to a certain extent. In order to clarify the differences be-
tween DTF and PDC, the series of simulations were performed.
In simulation II (Fig. 7), the signal in channel 1 is the same as
the signal in channel 1 of simulation I. This signal is transmitted
with the weight 0.8 and the delay of 1 sample to channels 2,
3, and 4, but with the noise components drawn from different
distributions. The time series in channel 5 is constructed in the
same way as channel 1 in the simulations I and II, but the input
EEG comes from a different subject. This signal plus a noise
component is transmitted with the delay of one sample and vari-
ance four times smaller than the variance of signal 1: in simu-
lation II to channel 4 and in the simulation III to channels 2,
3, and 4 (with different noise components). In simulation IV,
the scheme is similar to simulation III, except that the strengths
of all the transmitted activities are equal. The results of these
simulations are illustrated in Fig. 7. It is easy to see that DTF
and PDC show the same correct directions of flows, however
there are differences in their intensities. For simulation II, the
pattern of flows is well reproduced by DTF; however, for PDC,

Fig. 7. DTF (left) and PDC (right) results for simulations II, III, IV
(described in the text). Below the pictures representing the DTF and PDC
functions, deduced flows are presented for each simulation. The schemes of
the simulations are shown in the middle column.

the weak propagation from channel 5 becomes predominant in
the absence of other flows from that channel. In simulation III,
PDC shows similar intensities of flows from electrodes 1 and 5,
although originally the flows from electrode 5 are much weaker.
In the case of simulation IV, when the intensities of flows are the
same for both sources, the results for DTF and PDC are very
similar. These results follow from the different normalizations
in DTF and PDC. DTF is normalized in respect of the inflows to
the destination channel and PDF in respect to the outflows from
a given channel. Therefore, for PDC, it is difficult to estimate the
strengths of the flows. As the authors of the PDC method [19]
admit, PDC portrays the relative strengths of direct pair-wise
structure interactions, while DTF represents a balance of signal
power that spreads from one structure to different destinations.
Simulations II, II, and IV will help to understand some discrep-
ancies obtained by application of different methods to the same
experimental data.

IV. RESULTS FOR EXPERIMENTAL DATA

A. Alpha Rhythm

A MVAR model was fitted simultaneously to 21 channels
of EEG (10–20 system) of a normal adult in an awake state
with their eyes closed. The epoch length was 20 s. The signal
was high-pass filtered above 3 Hz. The filtering procedure in-
volved filtering forward and backward in order to avoid any
phase disturbance. The model order found by means of the AIC
criterion was 4. The estimates describing transmissions DTF,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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NFT toolbox EEGLAB SIFT

28 user plugins

EyeTracker

Wii remote

Mocap

EEG

Tactile stream

Video stream

Audio stream

Producer

DataRiver

MatRiver

BCILAB

HeadIT

ERICA framework

Analysis

Analysis plugins

Data archive

Data sync and handling

Interactive tools

Stimulus control

Figure 1: Complete electrophysiological experiment control, data collection, analysis, archiving, and meta-analysis suite: the EEGLAB
environment for data analysis; the ERICA framework for data recording, online analysis, and stimulus control; the BCILAB toolbox for
online and offline classification and BCI; the SIFT toolbox for information flow modeling; HeadIT, an archival data and tools resource
under development for laboratory or archival data storage, retrieval and meta-analysis; dashed lines indicates planned interfaces under
construction.

Table 1: Components of the extended SCCN software suite.

Software Since Vers. Licence Open Src. Platform Web link

EEGLAB 2002 10.0 GNU GPL Yes Matlab http://sccn.ucsd.edu/wiki/EEGLAB
NFT toolbox 2009 2.0 GNU GPL Yes† Matlab† http://sccn.ucsd.edu/wiki/NFT
SIFT 2010 0.1a GNU GPL Yes Matlab http://sccn.ucsd.edu/wiki/SIFT
BCILAB 2010 0.9 GNU GPL Yes Matlab http://sccn.ucsd.edu/wiki/BCILAB
ERICA 2009 1.0 Mixed∗ Mixed∗ Windows†† http://sccn.ucsd.edu/wiki/ERICA
∗

DataRiver, a central compiled C++ ERICA component, is free for noncommercial use. It is not open source.
†Contains a large number of precompiled C and C++ routines, all of them being open source.
††Many components also run under Linux and Mac OSX.

removing artifacts. Once these data sets have been pre-
processed, users then have to import the subject data sets
into a STUDY. Creating a STUDY design for analysis then
allows statistical group comparison of data measures for
different conditions (e.g., time locked to specific event types)
for each subject. For example, in an oddball paradigm
comprised of trials time locked to target, distractor, and
standard stimuli, users might want to contrast these three
types of trials using a 3× 1 design. Alternatively, they might
want to contrast distractor and target stimulus-locked trials,
considered together, with responses to standard stimuli. The
STUDY design feature of EEGLAB allows users to easily
investigate such contrasts. In a STUDY with N subject
groups, the STUDY design scheme also allows users to look
at group effects for each condition using a 2×N design.

All of the above design concepts may be implemented
within a single STUDY using multiple STUDY.design specifi-
cations. Finally, use of multiple designs may also be useful for
testing different signal processing options. For instance, one
might create two identical STUDY designs, one computing
time/frequency measures using fast fourier transforms (FFT)
and the other using wavelets. Once computed, the user can

toggle between designs to compare results using the two
types of time/frequency decomposition.

EEGLAB uses statistical tools including surrogate and
parametric statistics to perform hypothesis testing on
STUDY designs. Surrogate tests involve bootstrap or permu-
tation methods. Depending on the design type, statistical
hypothesis testing using t-test, one-way ANOVA or two-
way ANOVA—or their surrogate-data equivalents—are per-
formed for paired data or unpaired data designs. Finally,
the False Discovery Rate (FDR) algorithm is applied to
correct for multiple comparisons [9]. Using these simple
yet powerful statistical tools, EEGLAB allows comparison
of multiple experimental designs applied to a given data
STUDY.

When working with data from multiple subjects using
the STUDY design framework, users may analyse either
IC, scalp channel, or other types of component activities
associated with individual subjects. Decomposition of the
data into ICs allows inclusion of source localization infor-
mation, since many ICs strongly resemble the projection
of a single equivalent current dipole, presumably reflecting
their origin in a single locally synchronized cortical patch.
The neuroelectromagnetic forward head modeling toolbox

Delorme, Mullen, Kothe, Akalin Acar, Bigdely-Shamlo,Vankov, Makeig, Computational Intelligence and Neuroscience, vol 12, 2011

BCILAB

EEGLAB Software framework



An Application

Spatiotemporal modeling of seizure 
causal hubs and propagation dynamics 
from intracranial EEG

error event

Causal 
source

Causal 
sink

dDTF (3-25 Hz)

Mullen et al, IEEE EMBC, 2011



Seizure Data
• Pre-Surgical Evaluation
• Rest Data
• 78 ECoG electrodes, 29 Scalp
• Provided by Dr. Greg Worrell, Mayo Clinic



Seizure Data
• Pre-Surgical Evaluation
• Rest Data
• 78 ECoG electrodes, 29 Scalp
• Provided by Dr. Greg Worrell, Mayo Clinic

16 minutes ECoG data, 500 Hz
2 seizures (1.9 min + 1.5 min)
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ICA Decomposition

X = AS

channel
voltages

• Extended Infomax ICA Decomposition
• 16 seizure components (ICs) selected

com
ponent 

activations



Forward Modeling

BEM modelBEM model
• Plastic sheet (grids)
• Skull (with craniotomy hole)
• Scalp

80 000 source vertices

• Cortex



ICA topographic 
maps on BEM model

On subdural ECoG grid On cortical surface mesh 

Akalin Acar, et al (2008a,2009) IEEE EMBC

frontal

left

On Scalp

IC1

IC2

BEM model



Multi-scale patch-basis 
source localization with 
Sparse Bayesian Learning

Three truncated Gaussian patches of different scales 
radius 10 mm 6 mm 3 mm

σk 3.33 mm 2 mm 1 mm

LegendLegend

symb number of...

m channels (78)

v source voxels (80K)

c ICs (16)

T time points (120K)

Dij = geodesic_distance(i, j)
Dij = Inf  if Dij > scale
Wij
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Ramirez, et al, HBM, 2007
Akalin Acar, et al (2008a,2009) IEEE EMBC
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Three examples:

SBL simulation study with 
MNI model (SNR=50)

Source (x 15)Source (x 15) Max. dis. (mm) Energy dif. DF (%)
Type Scale (mm)

Max. dis. (mm) Energy dif. DF (%)

Gyral 10 0 1.5 103.8

Sulcul 10 1.01 29.8 101.4

Sulcul 5 2.12 4.1 37.6

Dual 10 11.6 29.3 89.2

Gyral 5 1.01 4.7 41.3

Sulcul 12 1.8 10.6 125.5

original reconstructed

G
yr

al
S

ul
ca

l
S

ul
ca

l

Akalin Acar, et al (2009) IEEE EMBC

Term Definition

max displacement
geodesic distance between original and 

reconstructed patch centers

energy difference |original energy - reconstructed energy|

degree of focalization (DF) reconstructed energy / original enegy



SBL Localization of 
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SBL Localization of 
Epileptogenic IC Sources
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1 sec

IV. RESULTS

Figure 1 shows the time course of activations of the
selected ICs around the scattered onset (left) and abrupt
offset (right) of the first seizure. IC12 exhibits earliest onset
of ictal activity, followed closely by ICs 1, 11 and 13.

Fig. 1. Time course of activations of selected ICs during first seizure onset
(left) and offset (right). Time units are in seconds. ICs with red labels are
those with SBL source solutions shown in Figure 2

IC12 accounted for prominent inter-ictal discharges (IEDs)
at the epileptogenic focus, but did not appear to be a strong
causal outflow hub during the seizure. Our analysis revealed
significant spectral power and SdDTF interactions between
IC processes during the seizure in the theta, alpha, and beta
frequency ranges (Figure 2). To visualize the time course and
distribution of sub-networks potentially involved in seizure
propagation (causal hubs), at each time point and for each IC
the spectrum and graph-theoretic measures were integrated
from 4-30 Hz (theta through beta bands) and projected onto
the cortical surface mesh as described in section II-E.

Fig. 2. SBL Solutions for selected components. A representative SdDTF
time-frequency image shown on bottom right. Note the mid-seizure burst
of connectivity in theta, alpha, and beta bands.

Figure 3 shows a sequence of frames from animations
visualizing the projections of outflow, causal flow, causal
asymmetry, and spectral perturbation (all integrated from 4-
30 Hz) during the first seizure. The time-varying amplitudes
of the measures are also plotted for all ICs. At least three
distinct stages appear during each seizure(s). IC1 (blue trace,
Fig. 3(b-d)) and (transiently) IC9 (brown trace) appear to
be the dominant causal sources during the first stage of
the seizure (particularly driving frontopolar IC5, pink trace).
IC5 dominates in the second stage (with some feedback into
IC1,9) and finally joined by other frontal sources in the third,
final stage. This final stage of the seizure is characterized by
strong dorsofrontal → precentral (e.g., IC4, dark blue trace)

synchronization. While the causal flow measure more clearly
delineates the driving causal hubs throughout the seizure, it
does not distinguish between zero flow (network decoupling)
and balanced flow (symmetric information flow) and thus
should be examined in combination with another measure
such as outflow.

The causal asymmetry ratio metric revealed an interesting
spatial motif involving two clusters of dorsal frontal and
precentral sources close to the electrodes identified clinically
as exhibiting epileptiform activity. This motif, involving a
strong positive dorsal frontal causal asymmetry and negative
dorsal parietal asymmetry, is evident throughout the pre-
seizure period in the causal flow measure and then reappears,
more saliently, in the final stage of the seizure, possibly
indicating a susceptibility of cortex in these areas to dynamic
interdependency. In a parallel analysis using adaptive mixture
ICA, these same frontal and parietal regions appear as two
quasi-independent component subspaces, suggesting they are
functionally distinct local processes that may interact as seen
here near seizure end [2]. The second seizure (not shown)
had quite similar multi-stage dynamics.

V. CONCLUSIONS AND FUTURE WORK

In this paper we analyzed neuronal dynamics during
epileptic seizures using adaptive multivariate autoregressive
models applied to ICA sources of intracranial EEG data
recorded from subdural electrodes implanted in a human
patient for presurgical monitoring. We examined the spatial
distribution of time-frequency information flow dynamics in
the source domain using a novel combination of causal flow
metrics and SBL-based source localization. This revealed
that causal source and sink hubs emerged during the seizure.
We observed distinct stages of alternating feedforward and
feedback information flow between adjacent or overlapping
gyral and sulcal sources in a prefrontal network (elements
of which also expressed the primary epileptogenic focus).
This activity might possibly be maintained through short U-
fiber connections. In the final seizure stage this was followed
by a strong asymmetric spread of sustained theta-alpha-beta
ictal activity from this anterior frontal network to a dorsal
parietal/precentral gyrus network, possibly though cortico-
cortical white matter tracts or subcortical U-fibers.

To our knowledge, this preliminary report represents the
first time that these techniques have been combined to an-
alyze spatially-localized information flow dynamics in elec-
trophysiological data. We note that ground-truth validation
of the method will require new multi-resolution electrical
recording methods. We speculate that the temporal resolution
and goodness-of-fit of the VAR model under non-stationary
conditions may be improved through the use of a state-
space representation of the adaptive VAR model. This would
also allow real-time online updating of the VAR coefficient
matrices and thereby possibly improve the robustness of
the method. Finally, our approach may be readily extended
to modeling source dynamics from scalp EEG, broadening
its applicability for clinical monitoring or basic cognitive
neuroscience research applications.
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VAR Model Fitting and 
Multivariate Granger Causality

Seizure IC activations down-sampled to 256 Hz

VAR model of order 7 (selected using Hannan-Quinn information 
criterion) fit to seizure activations using ARFIT algorithm using a 
15-sec sliding window with 1 sec step 

Residual whiteness tests (Portmanteau) and stability analysis

dDTF and spectral density estimated for each window from 
1-70Hz

Significance determined via phase randomization surrogate test
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Localized Epileptogenic IC Sources

Mullen, Akalin Acar, et al (2011), IEEE EMBC
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IV. RESULTS

Figure 1 shows the time course of activations of the
selected ICs around the scattered onset (left) and abrupt
offset (right) of the first seizure. IC12 exhibits earliest onset
of ictal activity, followed closely by ICs 1, 11 and 13.

Fig. 1. Time course of activations of selected ICs during first seizure onset
(left) and offset (right). Time units are in seconds. ICs with red labels are
those with SBL source solutions shown in Figure 2

IC12 accounted for prominent inter-ictal discharges (IEDs)
at the epileptogenic focus, but did not appear to be a strong
causal outflow hub during the seizure. Our analysis revealed
significant spectral power and SdDTF interactions between
IC processes during the seizure in the theta, alpha, and beta
frequency ranges (Figure 2). To visualize the time course and
distribution of sub-networks potentially involved in seizure
propagation (causal hubs), at each time point and for each IC
the spectrum and graph-theoretic measures were integrated
from 4-30 Hz (theta through beta bands) and projected onto
the cortical surface mesh as described in section II-E.

Fig. 2. SBL Solutions for selected components. A representative SdDTF
time-frequency image shown on bottom right. Note the mid-seizure burst
of connectivity in theta, alpha, and beta bands.

Figure 3 shows a sequence of frames from animations
visualizing the projections of outflow, causal flow, causal
asymmetry, and spectral perturbation (all integrated from 4-
30 Hz) during the first seizure. The time-varying amplitudes
of the measures are also plotted for all ICs. At least three
distinct stages appear during each seizure(s). IC1 (blue trace,
Fig. 3(b-d)) and (transiently) IC9 (brown trace) appear to
be the dominant causal sources during the first stage of
the seizure (particularly driving frontopolar IC5, pink trace).
IC5 dominates in the second stage (with some feedback into
IC1,9) and finally joined by other frontal sources in the third,
final stage. This final stage of the seizure is characterized by
strong dorsofrontal → precentral (e.g., IC4, dark blue trace)

synchronization. While the causal flow measure more clearly
delineates the driving causal hubs throughout the seizure, it
does not distinguish between zero flow (network decoupling)
and balanced flow (symmetric information flow) and thus
should be examined in combination with another measure
such as outflow.

The causal asymmetry ratio metric revealed an interesting
spatial motif involving two clusters of dorsal frontal and
precentral sources close to the electrodes identified clinically
as exhibiting epileptiform activity. This motif, involving a
strong positive dorsal frontal causal asymmetry and negative
dorsal parietal asymmetry, is evident throughout the pre-
seizure period in the causal flow measure and then reappears,
more saliently, in the final stage of the seizure, possibly
indicating a susceptibility of cortex in these areas to dynamic
interdependency. In a parallel analysis using adaptive mixture
ICA, these same frontal and parietal regions appear as two
quasi-independent component subspaces, suggesting they are
functionally distinct local processes that may interact as seen
here near seizure end [2]. The second seizure (not shown)
had quite similar multi-stage dynamics.

V. CONCLUSIONS AND FUTURE WORK

In this paper we analyzed neuronal dynamics during
epileptic seizures using adaptive multivariate autoregressive
models applied to ICA sources of intracranial EEG data
recorded from subdural electrodes implanted in a human
patient for presurgical monitoring. We examined the spatial
distribution of time-frequency information flow dynamics in
the source domain using a novel combination of causal flow
metrics and SBL-based source localization. This revealed
that causal source and sink hubs emerged during the seizure.
We observed distinct stages of alternating feedforward and
feedback information flow between adjacent or overlapping
gyral and sulcal sources in a prefrontal network (elements
of which also expressed the primary epileptogenic focus).
This activity might possibly be maintained through short U-
fiber connections. In the final seizure stage this was followed
by a strong asymmetric spread of sustained theta-alpha-beta
ictal activity from this anterior frontal network to a dorsal
parietal/precentral gyrus network, possibly though cortico-
cortical white matter tracts or subcortical U-fibers.

To our knowledge, this preliminary report represents the
first time that these techniques have been combined to an-
alyze spatially-localized information flow dynamics in elec-
trophysiological data. We note that ground-truth validation
of the method will require new multi-resolution electrical
recording methods. We speculate that the temporal resolution
and goodness-of-fit of the VAR model under non-stationary
conditions may be improved through the use of a state-
space representation of the adaptive VAR model. This would
also allow real-time online updating of the VAR coefficient
matrices and thereby possibly improve the robustness of
the method. Finally, our approach may be readily extended
to modeling source dynamics from scalp EEG, broadening
its applicability for clinical monitoring or basic cognitive
neuroscience research applications.
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Figure 1 shows the time course of activations of the
selected ICs around the scattered onset (left) and abrupt
offset (right) of the first seizure. IC12 exhibits earliest onset
of ictal activity, followed closely by ICs 1, 11 and 13.

Fig. 1. Time course of activations of selected ICs during first seizure onset
(left) and offset (right). Time units are in seconds. ICs with red labels are
those with SBL source solutions shown in Figure 2

IC12 accounted for prominent inter-ictal discharges (IEDs)
at the epileptogenic focus, but did not appear to be a strong
causal outflow hub during the seizure. Our analysis revealed
significant spectral power and SdDTF interactions between
IC processes during the seizure in the theta, alpha, and beta
frequency ranges (Figure 2). To visualize the time course and
distribution of sub-networks potentially involved in seizure
propagation (causal hubs), at each time point and for each IC
the spectrum and graph-theoretic measures were integrated
from 4-30 Hz (theta through beta bands) and projected onto
the cortical surface mesh as described in section II-E.

Fig. 2. SBL Solutions for selected components. A representative SdDTF
time-frequency image shown on bottom right. Note the mid-seizure burst
of connectivity in theta, alpha, and beta bands.

Figure 3 shows a sequence of frames from animations
visualizing the projections of outflow, causal flow, causal
asymmetry, and spectral perturbation (all integrated from 4-
30 Hz) during the first seizure. The time-varying amplitudes
of the measures are also plotted for all ICs. At least three
distinct stages appear during each seizure(s). IC1 (blue trace,
Fig. 3(b-d)) and (transiently) IC9 (brown trace) appear to
be the dominant causal sources during the first stage of
the seizure (particularly driving frontopolar IC5, pink trace).
IC5 dominates in the second stage (with some feedback into
IC1,9) and finally joined by other frontal sources in the third,
final stage. This final stage of the seizure is characterized by
strong dorsofrontal → precentral (e.g., IC4, dark blue trace)

synchronization. While the causal flow measure more clearly
delineates the driving causal hubs throughout the seizure, it
does not distinguish between zero flow (network decoupling)
and balanced flow (symmetric information flow) and thus
should be examined in combination with another measure
such as outflow.

The causal asymmetry ratio metric revealed an interesting
spatial motif involving two clusters of dorsal frontal and
precentral sources close to the electrodes identified clinically
as exhibiting epileptiform activity. This motif, involving a
strong positive dorsal frontal causal asymmetry and negative
dorsal parietal asymmetry, is evident throughout the pre-
seizure period in the causal flow measure and then reappears,
more saliently, in the final stage of the seizure, possibly
indicating a susceptibility of cortex in these areas to dynamic
interdependency. In a parallel analysis using adaptive mixture
ICA, these same frontal and parietal regions appear as two
quasi-independent component subspaces, suggesting they are
functionally distinct local processes that may interact as seen
here near seizure end [2]. The second seizure (not shown)
had quite similar multi-stage dynamics.

V. CONCLUSIONS AND FUTURE WORK

In this paper we analyzed neuronal dynamics during
epileptic seizures using adaptive multivariate autoregressive
models applied to ICA sources of intracranial EEG data
recorded from subdural electrodes implanted in a human
patient for presurgical monitoring. We examined the spatial
distribution of time-frequency information flow dynamics in
the source domain using a novel combination of causal flow
metrics and SBL-based source localization. This revealed
that causal source and sink hubs emerged during the seizure.
We observed distinct stages of alternating feedforward and
feedback information flow between adjacent or overlapping
gyral and sulcal sources in a prefrontal network (elements
of which also expressed the primary epileptogenic focus).
This activity might possibly be maintained through short U-
fiber connections. In the final seizure stage this was followed
by a strong asymmetric spread of sustained theta-alpha-beta
ictal activity from this anterior frontal network to a dorsal
parietal/precentral gyrus network, possibly though cortico-
cortical white matter tracts or subcortical U-fibers.

To our knowledge, this preliminary report represents the
first time that these techniques have been combined to an-
alyze spatially-localized information flow dynamics in elec-
trophysiological data. We note that ground-truth validation
of the method will require new multi-resolution electrical
recording methods. We speculate that the temporal resolution
and goodness-of-fit of the VAR model under non-stationary
conditions may be improved through the use of a state-
space representation of the adaptive VAR model. This would
also allow real-time online updating of the VAR coefficient
matrices and thereby possibly improve the robustness of
the method. Finally, our approach may be readily extended
to modeling source dynamics from scalp EEG, broadening
its applicability for clinical monitoring or basic cognitive
neuroscience research applications.

+

-

w
ei

gh
t 

(p
ol

ar
ity

)

0



Localized Epileptogenic IC Sources

Mullen, Akalin Acar, et al (2011), IEEE EMBC

IC5 IC3

IC1 IC9 IC12

IC13 IC11 IC10

IC8 IC6 IC4

IC2

IC7

IV. RESULTS

Figure 1 shows the time course of activations of the
selected ICs around the scattered onset (left) and abrupt
offset (right) of the first seizure. IC12 exhibits earliest onset
of ictal activity, followed closely by ICs 1, 11 and 13.

Fig. 1. Time course of activations of selected ICs during first seizure onset
(left) and offset (right). Time units are in seconds. ICs with red labels are
those with SBL source solutions shown in Figure 2

IC12 accounted for prominent inter-ictal discharges (IEDs)
at the epileptogenic focus, but did not appear to be a strong
causal outflow hub during the seizure. Our analysis revealed
significant spectral power and SdDTF interactions between
IC processes during the seizure in the theta, alpha, and beta
frequency ranges (Figure 2). To visualize the time course and
distribution of sub-networks potentially involved in seizure
propagation (causal hubs), at each time point and for each IC
the spectrum and graph-theoretic measures were integrated
from 4-30 Hz (theta through beta bands) and projected onto
the cortical surface mesh as described in section II-E.

Fig. 2. SBL Solutions for selected components. A representative SdDTF
time-frequency image shown on bottom right. Note the mid-seizure burst
of connectivity in theta, alpha, and beta bands.

Figure 3 shows a sequence of frames from animations
visualizing the projections of outflow, causal flow, causal
asymmetry, and spectral perturbation (all integrated from 4-
30 Hz) during the first seizure. The time-varying amplitudes
of the measures are also plotted for all ICs. At least three
distinct stages appear during each seizure(s). IC1 (blue trace,
Fig. 3(b-d)) and (transiently) IC9 (brown trace) appear to
be the dominant causal sources during the first stage of
the seizure (particularly driving frontopolar IC5, pink trace).
IC5 dominates in the second stage (with some feedback into
IC1,9) and finally joined by other frontal sources in the third,
final stage. This final stage of the seizure is characterized by
strong dorsofrontal → precentral (e.g., IC4, dark blue trace)

synchronization. While the causal flow measure more clearly
delineates the driving causal hubs throughout the seizure, it
does not distinguish between zero flow (network decoupling)
and balanced flow (symmetric information flow) and thus
should be examined in combination with another measure
such as outflow.

The causal asymmetry ratio metric revealed an interesting
spatial motif involving two clusters of dorsal frontal and
precentral sources close to the electrodes identified clinically
as exhibiting epileptiform activity. This motif, involving a
strong positive dorsal frontal causal asymmetry and negative
dorsal parietal asymmetry, is evident throughout the pre-
seizure period in the causal flow measure and then reappears,
more saliently, in the final stage of the seizure, possibly
indicating a susceptibility of cortex in these areas to dynamic
interdependency. In a parallel analysis using adaptive mixture
ICA, these same frontal and parietal regions appear as two
quasi-independent component subspaces, suggesting they are
functionally distinct local processes that may interact as seen
here near seizure end [2]. The second seizure (not shown)
had quite similar multi-stage dynamics.

V. CONCLUSIONS AND FUTURE WORK

In this paper we analyzed neuronal dynamics during
epileptic seizures using adaptive multivariate autoregressive
models applied to ICA sources of intracranial EEG data
recorded from subdural electrodes implanted in a human
patient for presurgical monitoring. We examined the spatial
distribution of time-frequency information flow dynamics in
the source domain using a novel combination of causal flow
metrics and SBL-based source localization. This revealed
that causal source and sink hubs emerged during the seizure.
We observed distinct stages of alternating feedforward and
feedback information flow between adjacent or overlapping
gyral and sulcal sources in a prefrontal network (elements
of which also expressed the primary epileptogenic focus).
This activity might possibly be maintained through short U-
fiber connections. In the final seizure stage this was followed
by a strong asymmetric spread of sustained theta-alpha-beta
ictal activity from this anterior frontal network to a dorsal
parietal/precentral gyrus network, possibly though cortico-
cortical white matter tracts or subcortical U-fibers.

To our knowledge, this preliminary report represents the
first time that these techniques have been combined to an-
alyze spatially-localized information flow dynamics in elec-
trophysiological data. We note that ground-truth validation
of the method will require new multi-resolution electrical
recording methods. We speculate that the temporal resolution
and goodness-of-fit of the VAR model under non-stationary
conditions may be improved through the use of a state-
space representation of the adaptive VAR model. This would
also allow real-time online updating of the VAR coefficient
matrices and thereby possibly improve the robustness of
the method. Finally, our approach may be readily extended
to modeling source dynamics from scalp EEG, broadening
its applicability for clinical monitoring or basic cognitive
neuroscience research applications.
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Figure 1 shows the time course of activations of the
selected ICs around the scattered onset (left) and abrupt
offset (right) of the first seizure. IC12 exhibits earliest onset
of ictal activity, followed closely by ICs 1, 11 and 13.

Fig. 1. Time course of activations of selected ICs during first seizure onset
(left) and offset (right). Time units are in seconds. ICs with red labels are
those with SBL source solutions shown in Figure 2

IC12 accounted for prominent inter-ictal discharges (IEDs)
at the epileptogenic focus, but did not appear to be a strong
causal outflow hub during the seizure. Our analysis revealed
significant spectral power and SdDTF interactions between
IC processes during the seizure in the theta, alpha, and beta
frequency ranges (Figure 2). To visualize the time course and
distribution of sub-networks potentially involved in seizure
propagation (causal hubs), at each time point and for each IC
the spectrum and graph-theoretic measures were integrated
from 4-30 Hz (theta through beta bands) and projected onto
the cortical surface mesh as described in section II-E.

Fig. 2. SBL Solutions for selected components. A representative SdDTF
time-frequency image shown on bottom right. Note the mid-seizure burst
of connectivity in theta, alpha, and beta bands.

Figure 3 shows a sequence of frames from animations
visualizing the projections of outflow, causal flow, causal
asymmetry, and spectral perturbation (all integrated from 4-
30 Hz) during the first seizure. The time-varying amplitudes
of the measures are also plotted for all ICs. At least three
distinct stages appear during each seizure(s). IC1 (blue trace,
Fig. 3(b-d)) and (transiently) IC9 (brown trace) appear to
be the dominant causal sources during the first stage of
the seizure (particularly driving frontopolar IC5, pink trace).
IC5 dominates in the second stage (with some feedback into
IC1,9) and finally joined by other frontal sources in the third,
final stage. This final stage of the seizure is characterized by
strong dorsofrontal → precentral (e.g., IC4, dark blue trace)

synchronization. While the causal flow measure more clearly
delineates the driving causal hubs throughout the seizure, it
does not distinguish between zero flow (network decoupling)
and balanced flow (symmetric information flow) and thus
should be examined in combination with another measure
such as outflow.

The causal asymmetry ratio metric revealed an interesting
spatial motif involving two clusters of dorsal frontal and
precentral sources close to the electrodes identified clinically
as exhibiting epileptiform activity. This motif, involving a
strong positive dorsal frontal causal asymmetry and negative
dorsal parietal asymmetry, is evident throughout the pre-
seizure period in the causal flow measure and then reappears,
more saliently, in the final stage of the seizure, possibly
indicating a susceptibility of cortex in these areas to dynamic
interdependency. In a parallel analysis using adaptive mixture
ICA, these same frontal and parietal regions appear as two
quasi-independent component subspaces, suggesting they are
functionally distinct local processes that may interact as seen
here near seizure end [2]. The second seizure (not shown)
had quite similar multi-stage dynamics.

V. CONCLUSIONS AND FUTURE WORK

In this paper we analyzed neuronal dynamics during
epileptic seizures using adaptive multivariate autoregressive
models applied to ICA sources of intracranial EEG data
recorded from subdural electrodes implanted in a human
patient for presurgical monitoring. We examined the spatial
distribution of time-frequency information flow dynamics in
the source domain using a novel combination of causal flow
metrics and SBL-based source localization. This revealed
that causal source and sink hubs emerged during the seizure.
We observed distinct stages of alternating feedforward and
feedback information flow between adjacent or overlapping
gyral and sulcal sources in a prefrontal network (elements
of which also expressed the primary epileptogenic focus).
This activity might possibly be maintained through short U-
fiber connections. In the final seizure stage this was followed
by a strong asymmetric spread of sustained theta-alpha-beta
ictal activity from this anterior frontal network to a dorsal
parietal/precentral gyrus network, possibly though cortico-
cortical white matter tracts or subcortical U-fibers.

To our knowledge, this preliminary report represents the
first time that these techniques have been combined to an-
alyze spatially-localized information flow dynamics in elec-
trophysiological data. We note that ground-truth validation
of the method will require new multi-resolution electrical
recording methods. We speculate that the temporal resolution
and goodness-of-fit of the VAR model under non-stationary
conditions may be improved through the use of a state-
space representation of the adaptive VAR model. This would
also allow real-time online updating of the VAR coefficient
matrices and thereby possibly improve the robustness of
the method. Finally, our approach may be readily extended
to modeling source dynamics from scalp EEG, broadening
its applicability for clinical monitoring or basic cognitive
neuroscience research applications.
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selected ICs around the scattered onset (left) and abrupt
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Fig. 1. Time course of activations of selected ICs during first seizure onset
(left) and offset (right). Time units are in seconds. ICs with red labels are
those with SBL source solutions shown in Figure 2

IC12 accounted for prominent inter-ictal discharges (IEDs)
at the epileptogenic focus, but did not appear to be a strong
causal outflow hub during the seizure. Our analysis revealed
significant spectral power and SdDTF interactions between
IC processes during the seizure in the theta, alpha, and beta
frequency ranges (Figure 2). To visualize the time course and
distribution of sub-networks potentially involved in seizure
propagation (causal hubs), at each time point and for each IC
the spectrum and graph-theoretic measures were integrated
from 4-30 Hz (theta through beta bands) and projected onto
the cortical surface mesh as described in section II-E.

Fig. 2. SBL Solutions for selected components. A representative SdDTF
time-frequency image shown on bottom right. Note the mid-seizure burst
of connectivity in theta, alpha, and beta bands.

Figure 3 shows a sequence of frames from animations
visualizing the projections of outflow, causal flow, causal
asymmetry, and spectral perturbation (all integrated from 4-
30 Hz) during the first seizure. The time-varying amplitudes
of the measures are also plotted for all ICs. At least three
distinct stages appear during each seizure(s). IC1 (blue trace,
Fig. 3(b-d)) and (transiently) IC9 (brown trace) appear to
be the dominant causal sources during the first stage of
the seizure (particularly driving frontopolar IC5, pink trace).
IC5 dominates in the second stage (with some feedback into
IC1,9) and finally joined by other frontal sources in the third,
final stage. This final stage of the seizure is characterized by
strong dorsofrontal → precentral (e.g., IC4, dark blue trace)

synchronization. While the causal flow measure more clearly
delineates the driving causal hubs throughout the seizure, it
does not distinguish between zero flow (network decoupling)
and balanced flow (symmetric information flow) and thus
should be examined in combination with another measure
such as outflow.

The causal asymmetry ratio metric revealed an interesting
spatial motif involving two clusters of dorsal frontal and
precentral sources close to the electrodes identified clinically
as exhibiting epileptiform activity. This motif, involving a
strong positive dorsal frontal causal asymmetry and negative
dorsal parietal asymmetry, is evident throughout the pre-
seizure period in the causal flow measure and then reappears,
more saliently, in the final stage of the seizure, possibly
indicating a susceptibility of cortex in these areas to dynamic
interdependency. In a parallel analysis using adaptive mixture
ICA, these same frontal and parietal regions appear as two
quasi-independent component subspaces, suggesting they are
functionally distinct local processes that may interact as seen
here near seizure end [2]. The second seizure (not shown)
had quite similar multi-stage dynamics.

V. CONCLUSIONS AND FUTURE WORK

In this paper we analyzed neuronal dynamics during
epileptic seizures using adaptive multivariate autoregressive
models applied to ICA sources of intracranial EEG data
recorded from subdural electrodes implanted in a human
patient for presurgical monitoring. We examined the spatial
distribution of time-frequency information flow dynamics in
the source domain using a novel combination of causal flow
metrics and SBL-based source localization. This revealed
that causal source and sink hubs emerged during the seizure.
We observed distinct stages of alternating feedforward and
feedback information flow between adjacent or overlapping
gyral and sulcal sources in a prefrontal network (elements
of which also expressed the primary epileptogenic focus).
This activity might possibly be maintained through short U-
fiber connections. In the final seizure stage this was followed
by a strong asymmetric spread of sustained theta-alpha-beta
ictal activity from this anterior frontal network to a dorsal
parietal/precentral gyrus network, possibly though cortico-
cortical white matter tracts or subcortical U-fibers.

To our knowledge, this preliminary report represents the
first time that these techniques have been combined to an-
alyze spatially-localized information flow dynamics in elec-
trophysiological data. We note that ground-truth validation
of the method will require new multi-resolution electrical
recording methods. We speculate that the temporal resolution
and goodness-of-fit of the VAR model under non-stationary
conditions may be improved through the use of a state-
space representation of the adaptive VAR model. This would
also allow real-time online updating of the VAR coefficient
matrices and thereby possibly improve the robustness of
the method. Finally, our approach may be readily extended
to modeling source dynamics from scalp EEG, broadening
its applicability for clinical monitoring or basic cognitive
neuroscience research applications.
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AMICA - SBL Solutions

Gyral source Sulcal source

Grid maps

SBL solution

Representative component maps and SBL solutions from the Amica 
model which is dominant in late seizure stage

Akalin Acar, Palmer, et al (2011), IEEE EMBC
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