Source-level spatiotemporal dynamics and interactions (in human intracranial EEG)

Tim Mullen Zeynep Akalin Acar Jason Palmer

2011 Sloan-Swartz Annual Meeting HHMI Janelia Farm Research Campus

To measure and visualize dynamic changes in neural activity and effective connectivity between spatiallylocalized cortical structures that index and predict both neuropathological states as well as healthy cognitive state and behavior

To measure and visualize dynamic changes in neural activity and effective connectivity between spatiallylocalized cortical structures that index and predict both neuropathological states as well as healthy cognitive state and behavior

Important factors:

- To measure and visualize dynamic changes in neural activity and effective connectivity between spatiallylocalized cortical structures that index and predict both neuropathological states as well as healthy cognitive state and behavior
- Important factors:
 - Accuracy and Validity

- To measure and visualize dynamic changes in neural activity and effective connectivity between spatiallylocalized cortical structures that index and predict both neuropathological states as well as healthy cognitive state and behavior
- Important factors:
 - Accuracy and Validity
 - Spatiotemporal Specificity

- To measure and visualize dynamic changes in neural activity and effective connectivity between spatiallylocalized cortical structures that index and predict both neuropathological states as well as healthy cognitive state and behavior
- Important factors:
 - Accuracy and Validity
 - Spatiotemporal Specificity
 - Scalp and Intracranial EEG

- Post-hoc analyses applied to measured neural activity
- Confirmatory
 - Dynamic Causal Models
 - Structural Equation Models
- Exploratory
 - Granger-Causal methods

Non-Invasive

- Post-hoc analyses applied to measured neural activity
- Confirmatory
 - Dynamic Causal Models
 - Structural Equation Models
- Exploratory
 - Granger-Causal methods

Data-driven

Non-Invasive

- Post-hoc analyses applied to measured neural activity
- Confirmatory
 - Dynamic Causal Models
 - Structural Equation Models
- Exploratory
 - Granger-Causal methods

Data-drivenSimple, but powerful

- Post-hoc analyses applied to measured neural activity
- Confirmatory
 - Dynamic Causal Models
 - Structural Equation Models
- Exploratory
 - Granger-Causal methods

- Data-driven
- Simple, but powerful
- Scalable (Valdes-Sosa, 2005)

- Post-hoc analyses applied to measured neural activity
- Confirmatory
 - Dynamic Causal Models
 - Structural Equation Models
- Exploratory
 - Granger-Causal methods

- Data-driven
- Simple, but powerful
- Scalable (Valdes-Sosa, 2005)
- Extendable to nonlinear and/or nonstationary systems (Freiwald, 1999; Ding, 2001; Chen, 2004; Ge, 2009)

- Post-hoc analyses applied to measured neural activity
- Confirmatory
 - Dynamic Causal Models
 - Structural Equation Models
- Exploratory
 - Granger-Causal methods

- Data-driven
- Simple, but powerful
- Scalable (Valdes-Sosa, 2005)
- Extendable to nonlinear and/or nonstationary systems (Freiwald, 1999; Ding, 2001; Chen, 2004; Ge, 2009)
- Extendable to non-parametric representations (Dhamala, 2009a,b)

- Post-hoc analyses applied to measured neural activity
- Confirmatory
 - Dynamic Causal Models
 - Structural Equation Models
- Exploratory
 - Granger-Causal methods

- Data-driven
- Simple, but powerful
- Scalable (Valdes-Sosa, 2005)
- Extendable to nonlinear and/or nonstationary systems (Freiwald, 1999; Ding, 2001; Chen, 2004; Ge, 2009)
- Extendable to non-parametric representations (Dhamala, 2009a,b)
- Can be (partially) controlled for (unobserved) exogenous causes (Guo, 2008a,b; Ge, 2009)

- Post-hoc analyses applied to measured neural activity
- Confirmatory
 - Dynamic Causal Models
 - Structural Equation Models
- Exploratory
 - Granger-Causal methods

- Data-driven
- Simple, but powerful
- Scalable (Valdes-Sosa, 2005)
- Extendable to nonlinear and/or nonstationary systems (Freiwald, 1999; Ding, 2001; Chen, 2004; Ge, 2009)
- Extendable to non-parametric representations (Dhamala, 2009a,b)
- Can be (partially) controlled for (unobserved) exogenous causes (Guo, 2008a,b; Ge, 2009)
- Equivalent to Transfer Entropy for Gaussian Variables (Seth, 2009)

- Post-hoc analyses applied to measured neural activity
- Confirmatory
 - Dynamic Causal Models
 - Structural Equation Models
- Exploratory
 - Granger-Causal methods

- Data-driven
- Simple, but powerful
- Scalable (Valdes-Sosa, 2005)
- Extendable to nonlinear and/or nonstationary systems (Freiwald, 1999; Ding, 2001; Chen, 2004; Ge, 2009)
- Extendable to non-parametric representations (Dhamala, 2009a,b)
- Can be (partially) controlled for (unobserved) exogenous causes (Guo, 2008a,b; Ge, 2009)
- Equivalent to Transfer Entropy for Gaussian Variables (Seth, 2009)
- Flexibly allows us to examine timevarying (dynamic) multivariate causal relationships in either the time or frequency domain

- First introduced by Wiener (1958). Later reformulated by Granger (1969) in the context of linear stochastic autoregressive models
- Relies on two assumptions:

- First introduced by Wiener (1958). Later reformulated by Granger (1969) in the context of linear stochastic autoregressive models
- Relies on two assumptions:

Granger Causality Axioms

- First introduced by Wiener (1958). Later reformulated by Granger (1969) in the context of linear stochastic autoregressive models
- Relies on two assumptions:

Granger Causality Axioms

1. Causes should precede their effects in time (Temporal Precedence)

- First introduced by Wiener (1958). Later reformulated by Granger (1969) in the context of linear stochastic autoregressive models
- Relies on two assumptions:

Granger Causality Axioms

- 1. Causes should precede their effects in time (Temporal Precedence)
- Information in a cause's past should improve the prediction of the effect, above and beyond the information contained in past of the effect (and other measured variables)

Vector Autoregressive (VAR) Modeling

$x_1(t)$	manne manner	$\mathbf{X}(t) = \sum_{k=1}^{p} \mathbf{A}^{(k)}(t) \mathbf{X}(t-k) + \mathbf{E}(t)$
$\begin{array}{c} x_2(l) \\ \vdots \end{array}$	And MAN AND AND AND AND AND AND AND AND AND A	
$x_M(t)$	mmmmm	

Solution? Source Reconstruction

Solution? Source Reconstruction

 $S(t) = \sum_{k=1}^{p} A^{(k)}(t)S(t-k) + E(t)$

Solution? Source Reconstruction

 $S(t) = \sum_{k=1}^{p} A^{(k)}(t)S(t-k) + E(t)$

Solution? Source Reconstruction

 $S(t) = \sum_{k=1}^{p} A^{(k)}(t)S(t-k) + E(t)$

Solution? Source Reconstruction

 $S(t) = \sum_{k=1}^{r} A^{(k)}(t) S(t-k) + E(t)$

Volume conduction exists for ECoG too!

(c.f. Whitmer, Worrell, ..., Makeig, Frontiers in Neuro, 2010

Solution? Source Reconstruction

Akalin Acar

A Recipe for Reducing Errors:
Anatomically Realistic Forward Model
Appropriately Constrained Inverse Model
Akalin Acar and Makeig, 2010

200 Time (ms)

-31 ms

Group Analysis Visualization

Frequency (Hz)

1:127

Cancel Ok

nDTF [-0.75 0.98828125] [3:7]

{"8", "11", "13", "19", "20",

Cancel

Time (sec)

Make Movie!

Akalin Acar and Makeig, *J. Neurosci. Methods*, 2010 Akalin Acar and Makeig, *IEEE EMBC*, 2008

Subject Folder			
Subject Name	Session Name		
Head Mo	odeling		
nead Modeling			
Resonance Image	Position Data		
Image Segmentation			
Mesh Generation			
	Template Warping		
Source Space Generation			
Electrode Co-Registrati			
FP Solution with BEM	FP Solution with FEM		
Dipole Fitting			

http://sccn.ucsd.edu/nft			
	Subject Folder		
	Subject Name	Session Name	
	Head Modeling		
	From a magnetic Resonance Image	From electrode Position Data	
T1-weighted	Image Segmentation		
	Mesh Generation	Template Warning	
	Source Space Generation	Template traiping	
	Electrode Co-Registrati		
	FP Solution with BEM	FP Solution with FEM	
	Dipole	Fitting	

Subject Folder Subject Name	Session Name	
Head Modeling		
From a magnetic Resonance Image	From electrode Position Data	
Image Segmentation		
Mesh Generation	Template Warning	
Source Space Generation	Template traiping	
Electrode Co-Registrati		
FP Solution with BEM	FP Solution with FEM	
Dipole	e Fitting	

<mark>tp://sccn.ucsd.edu/nft</mark>	Subject Folder Subject Name	Session Name
	Head Mo	odeling
	From a magnetic Resonance Image	From electrode Position Data
	Image Segmentation	
	Mesh Generation	Townlets Woming
	Source Space Generation	l emplate warping
	Electrode Co-Registrati	
	FP Solution with BEM	FP Solution with FEM
	Dipole	Fitting

http://sccn.ucsd.edu/nft	Subject Folder Subject Name	Session Name	
	Head Modeling		
	From a magnetic Resonance Image	From electrode Position Data	
	Image Segmentation		
	Mesh Generation	Template Warping	
	Source Space Generation		
	Electrode Co-Registrati		
	FP Solution with BEM	FP Solution with FEM	
	Dipole	Fitting	

Akalin Acar and Makeig, *J. Neurosci. Methods*, 2010 Akalin Acar and Makeig, *IEEE EMBC*, 2008

Akalin Acar and Makeig, *J. Neurosci. Methods*, 2010 Akalin Acar and Makeig, *IEEE EMBC*, 2008

Akalin Acar and Makeig, *J. Neurosci. Methods*, 2010 Akalin Acar and Makeig, *IEEE EMBC*, 2008

Akalin Acar and Makeig, *J. Neurosci. Methods*, 2010 Akalin Acar and Makeig, *IEEE EMBC*, 2008

Akalin Acar and Makeig, *J. Neurosci. Methods*, 2010 Akalin Acar and Makeig, *IEEE EMBC*, 2008

EEGLAB Software framework

Delorme, Mullen, Kothe, Akalin Acar, Bigdely-Shamlo, Vankov, Makeig, Computational Intelligence and Neuroscience, vol 12, 2011

An Application

Spatiotemporal modeling of seizure causal hubs and propagation dynamics from intracranial EEG

Mullen et al, IEEE EMBC, 2011

Seizure Data

- Pre-Surgical Evaluation
- Rest Data
- 78 ECoG electrodes, 29 Scalp
- Provided by Dr. Greg Worrell, Mayo Clinic

Seizure Data

- Pre-Surgical Evaluation
- Rest Data
- 78 ECoG electrodes, 29 Scalp
- Provided by Dr. Greg Worrell, Mayo Clinic

16 minutes ECoG data, 500 Hz 2 seizures (1.9 min + 1.5 min)

Mullen, Akalin Acar, et al (2011), IEEE EMBC

Mullen, Akalin Acar, et al (2011), IEEE EMBC

ICA Decomposition

channel voltages

Extended Infomax ICA Decomposition X = AS
16 seizure components (ICs) selected

componen activations

Forward Modeling

BEM model

- Plastic sheet (grids)
- Skull (with craniotomy hole)
- Scalp
- Cortex

80 000 source vertices

ICA topographic maps on BEM model

Akalin Acar, et al (2008a,2009) IEEE EMBC

Multi-scale patch-basis source localization with Sparse Bayesian Learning

 $D_{ij} = \text{geodesic_distance}(i, j)$ $D_{ij} = \text{Inf if } D_{ij} > \text{scale}$ $W_{ij}^{(k)} = \text{gauss}(D_{ij}, \sigma_k) = \frac{1}{\sqrt{2\pi\sigma_k^2}} \exp\left(-\frac{D_{ij}^2}{2\sigma_k^2}\right)$ $\sigma_k = \text{scale} / 3$

Three truncated Gaussian patches of different scales

radius	10 mm	6 mm	3 mm		
σ _k	3.33 mm	2 mm	1 mm		
166			66000		
(2)C	MAR.				
	Land?		- Company		
276					
Akalin A	car, et al (200	08a,2009) <i>IEEE EMBC</i>			

nt scales mm	ICA Model	$\begin{aligned} X &= A\hat{S} \\ \hat{S}_q &\coloneqq [1 \times T] \end{aligned}$
	nverse Model	$A_{q} = \tilde{L}\tilde{M}_{q}$ $\tilde{L}^{-1} = SBL(Q)$ $\tilde{M}_{q} = [\tilde{L}^{-1}A]$ $M_{q} = magle a$

Legena					
symb	number of				
т	channels (78)				
V	source voxels (80K)				
С	ICs (16)				
Т	time points (120K)				

 $\begin{array}{l} \text{Poword} \\ X = LS \\ L \coloneqq [m \times v] \text{ Lead Field Matrix} \\ \tilde{L} = [LW^{(1)} \cdots LW^{(3)}]_{m \times 3v} \end{array}$

 $\begin{array}{l} \mbox{POPDOP} & X = A \hat{S} \\ \hat{S}_q \coloneqq [1 \times T] \quad q^{\rm th} \mbox{ IC activation} \\ \end{array} \\ \begin{array}{l} A_q = \tilde{L} \tilde{M}_q + \epsilon_q \\ \tilde{L}^{-1} = {\rm SBL}(A_q, \tilde{L}) \\ \tilde{M}_q = [\tilde{L}^{-1} A_q]_{3\nu \times 1} \\ M_q = reshape(\tilde{M}_q, \nu \times 3) \\ M_q = \sum_{i=1}^3 M_{q(:,i)} \\ P_q = M_q \hat{S}_q \qquad [\nu \times T] \mbox{ cortical surface} \\ potentials \mbox{ for } q^{\rm th} \mbox{ IC} \end{array}$

Ramirez, et al, HBM, 2007

SBL simulation study with MNI model (SNR=50)

Three examples:		Source (x 15)		Max. dis. (mm)	Energy dif.	DF (%)
		Туре	Scale (mm)			
original	reconstructed	Gyral	10	0	1.5	103.8
666		Sulcul	10	1.01	29.8	101.4
		Sulcul	5	2.12	4.1	37.6
		Dual	10	11.6	29.3	89.2
		Gyral	5	1.01	4.7	41.3
		Sulcul	12	1.8	10.6	125.5
		Term		Definition		
		max displacementgeodesic distance between origon reconstructed patch centerenergy difference original energy - reconstructed		original and enters		
				original energy - reconstructed energy		
		degree of focalization (DF) reconstructed energy / or		d energy / origi	nal enegy	
Alcolin Acor at al (INC INC INC INC INC INC INC.		at part part part part part part part pa	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

SBL Localization of Epileptogenic IC Sources

IC maps interpolated on cortical surface mesh

Akalin Acar, et al (2009) IEEE EMBC

SBL Localization of Epileptogenic IC Sources

IC maps interpolated on Equivalent Current cortical surface mesh Dipole solution

Radial dipole

Tangential dipole

Akalin Acar, et al (2009) IEEE EMBC

SBL Localization of Epileptogenic IC Sources

Tangential dipole

Akalin Acar, et al (2009) IEEE EMBC

Sulcal source

left

Cortical surface potentials (16 ICs, SBL solution)

playback at 1/5 actual speed

VAR Model Fitting and Multivariate Granger Causality

- Seizure IC activations down-sampled to 256 Hz
- VAR model of order 7 (selected using Hannan-Quinn information criterion) fit to seizure activations using ARFIT algorithm using a 15-sec sliding window with 1 sec step
- Residual whiteness tests (Portmanteau) and stability analysis
- dDTF and spectral density estimated for each window from 1-70Hz
- Significance determined via phase randomization surrogate test

ERSP (spectrum) on diagonal

Time (sec)

Mullen, et al (2011)

ERSP (spectrum) on diagonal

Time (sec)

Mullen, et al (2011)

C: Asymmetric (e.g. causal) connectivity matrix

C: Asymmetric (e.g. causal) connectivity matrix

Outflow

C: Asymmetric (e.g. causal) connectivity matrix

Outflow

Inflow

C: Asymmetric (e.g. causal) connectivity matrix

C: Asymmetric (e.g. causal) connectivity matrix

Pre-seizure

Pre-seizure

Pre-seizure Seizure Early Stage Seizure Mid Stage

Pre-seizure Seizure Early Stage Seizure Mid Stage Seizure Late Stage

Spatiotemporal Visualization of Causal Flow Dynamics

Mullen, Akalin Acar, Worrell, Makeig (2011), IEEE EMBC

Causal Flow Dynamics (4-25 Hz)

Mullen, Akalin Acar, Worrell, Makeig (2011), IEEE EMBC

Mullen, Akalin Acar, Worrell, Makeig (2011), IEEE EMBC

Acknowledgements

Virginia de Sa Vicente Malave

Ken Kreutz-Delgado

Zeynep Akalin Acar Jason Palmer

Scott Makeig Arnaud Delorme Christian Kothe Nima Bigdely Shamlo Zhilin Zhang

Dr. Gregory Worrell Anonymous Patients Sponsorship

The Swartz Foundation San Diego Fellowship Glushko Fellowship

Wes Thompson

Supplementary Slides

Ongoing Work: AMICA

Adaptive Mixture ICA

(Palmer, Kreutz-Delgado, Rao, Makeig, ICASS, 2007)

- Mixture model allowing for robust ICA decomposition of non-stationary processes.
- Affords automated state segmentation based on model likelihoods
Adaptive Mixture ICA

(Palmer, Kreutz-Delgado, Rao , Makeig, ICASS, 2007)

- Mixture model allowing for robust ICA decomposition of non-stationary processes.
- Affords automated state segmentation based on model likelihoods

Definitions

 $\begin{array}{ll} X(t) & \mbox{multivariate data at time } t \\ A^h(t) & \mbox{mixing matrix for } h^{\mbox{th ICA model}} \\ S^h(t) & \mbox{source activations for } h^{\mbox{th ICA model}} \end{array}$

Adaptive Mixture ICA

(Palmer, Kreutz-Delgado, Rao , Makeig, ICASS, 2007)

- Mixture model allowing for robust ICA decomposition of non-stationary processes.
- Affords automated state segmentation based on model likelihoods

Definitions

X(t)	multivariate data at time t
$A^{h}(t)$	mixing matrix for <i>h</i> th ICA model
$S^{h}(t)$	source activations for <i>h</i> th ICA mode

$$p(X(t)) = \sum_{h=1}^{K} p(M_h) p(X(t) \mid M_h)$$
$$p(X(t) \mid M_h) = \left| \det A_h^{-1} \right| p_h(A_h^{-1}X(t))$$
$$X(t) = A^h S^h(t)$$

Adaptive Mixture ICA

(Palmer, Kreutz-Delgado, Rao , Makeig, ICASS, 2007)

- Mixture model allowing for robust ICA decomposition of non-stationary processes.
- Affords automated state segmentation based on model likelihoods

mixture model

Definitions

 $\begin{array}{ll} X(t) & \mbox{multivariate data at time } t \\ A^h(t) & \mbox{mixing matrix for } h^{\rm th} \, {\rm ICA model} \\ S^h(t) & \mbox{source activations for } h^{\rm th} \, {\rm ICA model} \end{array}$

$$p(X(t)) = \sum_{h=1}^{K} p(M_h) p(X(t) \mid M_h)$$
$$p(X(t) \mid M_h) = \left| \det A_h^{-1} \right| p_h(A_h^{-1}X(t))$$
$$X(t) = A^h S^h(t)$$

Adaptive Mixture ICA

(Palmer, Kreutz-Delgado, Rao , Makeig, ICASS, 2007)

- Mixture model allowing for robust ICA decomposition of non-stationary processes.
- Affords automated state segmentation based on model likelihoods

mixture model

likelihood function

Definitions

 $\begin{array}{ll} X(t) & \mbox{multivariate data at time } t \\ A^h(t) & \mbox{mixing matrix for } h^{\rm th} \, {\rm ICA model} \\ S^h(t) & \mbox{source activations for } h^{\rm th} \, {\rm ICA model} \end{array}$

$$p(X(t)) = \sum_{h=1}^{K} p(M_h) p(X(t) \mid M_h)$$
$$p(X(t) \mid M_h) = \left| \det A_h^{-1} \right| p_h(A_h^{-1}X(t))$$
$$X(t) = A^h S^h(t)$$

Adaptive Mixture ICA

(Palmer, Kreutz-Delgado, Rao , Makeig, ICASS, 2007)

- Mixture model allowing for robust ICA decomposition of non-stationary processes.
- Affords automated state segmentation based on model likelihoods

mixture model

likelihood function

generative model

Definitions

 $egin{aligned} X(t) & ext{multivariate data at time } t \ A^h(t) & ext{mixing matrix for } h^{ ext{th}} ext{ ICA model} \ S^h(t) & ext{ source activations for } h^{ ext{th}} ext{ ICA model} \end{aligned}$

$$p(X(t)) = \sum_{h=1}^{K} p(M_h) p(X(t) \mid M_h)$$
$$p(X(t) \mid M_h) = \left| \det A_h^{-1} \right| p_h(A_h^{-1}X(t))$$
$$X(t) = A^h S^h(t)$$

Seizure segmentation using AMICA model likelihoods

Seizure segmentation using AMICA model likelihoods

AMICA - SBL Solutions

Representative component maps and SBL solutions from the Amica model which is dominant in late seizure stage

Akalin Acar, Palmer, et al (2011), IEEE EMBC

Akalin Acar, Palmer, et al (2011), IEEE EMBC

Akalin Acar, Palmer, et al (2011), IEEE EMBC

2nd cluster

Akalin Acar, Palmer, et al (2011), IEEE EMBC

2011)

Akalin Acar, Palmer, et al (2011), IEEE EMBC

AMICA Dependency Clusters

Seizure clusters

Pre-seizure clusters

4th cluster

Akalin Acar, Palmer, et al (2011), IEEE EMBC

AMICA Dependency Clusters

Akalin Acar, Palmer, et al (2011), IEEE EMBC

Mullen, et al (2011) IEEE EMBC

AMICA Source Activations

3 seconds data from AMICA model which dominates in second seizure period