Electric Fields in the Brain: Bug or Feature?

Christof Koch

California Institute of Technology

Allen Institute for Brain Sciences

July 12. 2011

Acknowledgments

Thanks for Jerry Swartz and Hirsh Cohen for making this study possible by funding Costas Anastassiou

Two distinct problems

- Forward Problem: How do the transmembrane currents across synapses, dendrites, axons & glia add up to give rise to the extracellular potential? That is, how do the micro-variables constitute the macro-variables?
- Inverse Problem: Does the extracellular field influence the electrical properties of individual neurons or is the field useful to the experimentalist but otherwise an epiphenomenon (like the sound made by a beating heart)? That is, do the macrovariables influence the micro-variables?

The forward problem

From neurons to the field

The brain as a physical system

Calculation of extracellular potential due to point source via solution of Poisson's PDE

Recall also the definition of the electric field

$$E = -\nabla \phi$$

Simultaneous intra & extracellular recordings

And histology

We create 3-D reconstruction

Arrows show electrode track visible at 20x (most of track is in next section)

Henze et al. J. Neurophysiol. (2000)

then simulate in NEURON...

Simulating CA1 pyramid D151

Gold et al. J. Neurophysiol. (2006; see also Holt & Koch 1999)

Canonical Extracellular Spike

Three "phases":

- 1. phase is dominated by capacitive current: positive, due to initial membrane depolarization (is often not present)
- 2. phase is dominated by Na⁺ current: negative, due to influx of Na ⁺ during action potential
- 3. phase is dominated by K⁺ current: positive, due to efflux of K⁺ during repolarization

All three currents are simultaneously active. The "phase" is which current is dominant at the time.

Modeling the LFP in Hippocampus

The inverse problem

How does the field influence neurons?

The cable equation

Cable equation (Rall 1962) together with proper boundary conditions

$$-\frac{d^2v_m}{dx^2} + \frac{r_i}{r_m}(v_m - v_{rest}) = \frac{d^2v_e}{dx^2}$$

And an harmonic, stationary external field

$$v_e = v_0 \sin\left(2\pi f_s x + \phi_s\right)$$

Anastassiou, Montgomery, Barahona, Buzsaki & Koch J Neurosci (2010)

The amplitude of ephaptic potentials

In order for the ephaptic potential to become $O(v_0)$

 $\Omega = 2\pi f_s \lambda > 1$ and $\Omega L > 1$

with

 $v_m < 1.5v_0$

Anastassiou et al, J Neurosci (2010)

Computer simulations

July 12, 2011

EPFL-Lausanne - 12 patch rig

Work with Costas Anastassiou, Rodrigo Perin & Henry Markram

Single cell measurements

- 14-16 d old rats
- Somatosensory cortex
- Seal > 2 GOhm; average 4.4 GOhm

Pharmacologically silenced synaptic activity:

- AMPA CNQX
- GABA Gabazine / Bicuculine
- NMDA APV

Subthreshold measurements

Subthreshold analysis

Subthreshold analysis

 I_{ini} = -150 to +150 nA, f =8 Hz (17 cells)

As predicted by our model, the ephaptic potentials in the subthreshold domain are < 1 mV, far away from being able to initiate spikes

Anastassiou et al, Nature Neurosci. (2011)

Ephaptic coupling of spiking

A 9 sec sustained current is injected into the cell

Population vector 1 Hz extracellular stimulation

p-values as calculated by the Rayleigh test

25 cells

Control experiments performed before each extracellular stim. experiment

Field entrainment of spikes leads to a non-uniform spike-phase distribution

Spike-field coherence (SFC) analysis 1 Hz extracellular stimulation

Significance levels as calculated by paired t-test fdr-corrected for multiple comparisons

Anastassiou et al, Nature Neurosci. (2011)

Functional implications - SFC

Phase-locking of monkey V4 neurons to gamma field potential

Womelsdorf, Fried, Mitra & Desimone Nature (2006)

Phase-locking of human MTL neurons to theta field potential

Rutishauser et al. Nature (2010)

Ephaptic coupling in neuronal assemblies

Anastassiou et al, Nature Neurosci. (2011)

Simultaneously injecting 100 nA, 1 Hz current into four neurons

Ephaptic coupling in neural assemblies

Human tetrode recordings

In summary

- Subthreshold field effects < 1 mV, and behave as expected from cable theory
- Supra-threshold field effects on layer 5 pyramidal neurons can be remarkable strong at low frequencies of the LFP
- Such ephaptic effects help to synchronize populations of neurons irrespective of their synaptic interconnectivity