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State of one element of a network:
spike/silence from one neuron

expression level of one gene
choice of amino acid at one site in a protein

flight direction and speed of one bird in a flock

σn

{σn}State of the entire network

What do we want to know?

{σn}t → {σn}t+∆t

P ({σn})

How do we get 
from one state to 

another?

Which states of the 
whole system are 

sampled in real life?

State space is too large to 
answer these (and other) 

questions “directly” by 
experiment. 

You can’t measure all the states, but you can measure averages, 
correlations, ... .  Build the minimally structured model that is consistent 
with these measurements.  “Minimally structured” = maximum entropy, 
and this connects the real data directly to statistical mechanics ideas (!).  

With modern electrode arrays one can 
record the activity of > 100 neurons at once.

D Amodei, O Marre & MJ Berry II, in preparation (2011).

Importantly, these are almost all the ganglion 
cells within the radius of connectivity.



Let’s define various function of the state of the system,

and assume that experiments can tell us the averages 
of these functions:

f1({σn}), f2({σn}), · · · , fK({σn}),

〈f1({σn})〉, 〈f2({σn})〉, · · · , 〈fK({σn})〉.

What is the least structured distribution
that can reproduce these measured averages?

P ({σn})

P ({σn}) =
1

Z({gµ})
exp

[
−

K∑

µ=1

gµfµ({σn})
]

Still must adjust the coupling constants
to match the measured expectation values.

{gµ}

This tells us the form 
of the distribution.

Matching expectation values 
= maximum likelihood 

inference of parameters.



Reminder:  Suppose this is a physical system, and 
there is some energy for each state, E({σn})

Thermal equilibrium is described by a distribution 
that is as random as possible (maximum entropy) 
while reproducing the observed average energy:

P ({σn}) =
1

Z
exp [−βE({σn})]]

In this view, the temperature 
is just a parameter we adjust to reproduce               . 〈E({σn})〉

T = 1/(kBβ)



We can think of the maximum entropy construction as 
defining an effective energy for every state,

This is an exact mapping, not an analogy.

E({σn}) =
K∑

µ=1

gµfµ({σn}), with kBT = 1.

{〈fµ〉} =

Examples:
firing rates ⇒ E =

∑

n

hnσn

firing rates +
pairwise correlations 

⇒ E =
∑

n

hnσn +
1

2

∑

nm

Jnmσnσm

probability of M 
cells firing together 

⇒ E = V

(
∑

n

σn

)
this case we can 
do analytically



maximum entropy 
model consistent with 
probability of M cells 

firing together 

⇒ E = V

(
∑

n

σn

)
Find this global 

“potential”
for multiple subgroups 

of N neurons.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

energy per neuron

e
n
tr

o
p
y
 p

e
r 

n
e
u
ro

n

 

 

N=20

40

80

160

extrapolation

S = (0.985 ± 0.008)E

Lots of states with 
the same energy ... 
count them to get 

the entropy.

For large N we 
expect entropy and 

energy both 
proportional to N.

Plot of S/N vs. E/N 
contains all the 

“thermodynamics” 
of the system.

What we see is 
(within errors) S = E.  
This is very weird.



The real problem:  
maximum entropy model 
consistent with mean 
firing rates, pairwise 
correlations, and 
probabilities of M cells 
firing together.

E =
∑

n

hnσn +
1

2

∑

nm

Jnmσnσm + V

(
∑

n

σn

)

There are lots of parameters, but we can find 
them all from ~1 hour of data.  This is a hard 

“inverse statistical mechanics” problem.  

one example 
of 100 neurons

ln[P(data)]

training
segments

test
segments

Correlations reproduced within error bars.

No sign of over-fitting.



For small networks, we can 
test the model by checking the 

probability of every state.

(example w/N=10)

For larger networks, we can 
check connected higher order 

(e.g. 3-cell) correlations.

N=100, matching pairwise correlations
N=100, matching pairwise + P(M)

matching pairwise correlations
matching pairwise + P(M)

mean absolute error 
of predicted 3-cell 

correlations
Seems to be working 

even better for larger N.
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Where are we in parameter space?
One direction in parameter space corresponds to changing temperature ... let’s try this one:

specific heat (per neuron)

The system is poised very close to a point in 
parameter space where the specific heat is 

maximized - a critical point.

Can we do experiments to show that the 
system adapts to hold itself at criticality?

specific heat = variance of energy = variance of log(probability)

Having this be large is exactly the opposite of the usual criteria for efficient coding (!).

Instead, does operation near the critical point maximize the dynamic range for representing surprise?
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Can use the same strategy to make models for ...
the distribution of amino 

acids in a family of proteins,

or the flight velocities of birds in a flock.

Maximum entropy models for antibody diversity.
T Mora, A Walczak, CG Callan Jr & W Bialek, Proc Nat’l Acad Sci (USA) 

107, 5405-5410 (2010); arXiv.org:0912.5175 (2009).

Statistical mechanics for a natural flock of birds.
W Bialek, A Cavagna, I Giardina, T Mora, E Silvestri,  M Viale 
& A Walczak, arXiv.org: 1107.0604 [physics.bio-ph] (2010).
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For protein families (here, antibodies), look 
at the “Zipf plot.”  This is S vs. E, turned on 

its side; unit slope implies S = E (again!). 

For birds, look at the 
correlations directly in real 

space (as usual in stat mech).

ALL of these, as with the specific heat in our neural 
network, are signatures that the real system is 

operating near a critical point in its parameter space.


