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Dead Leaves Model
Matheron 1975, Ruderman 1997, Lee, Mumford, Huang 2001
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size
eccentricity
orientation

       can be calculated exactly for some shape ensemblesP (מ��)

Geometry
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e.g. for uniform color + white noise texture:

Correlated gaussians:

CI| מ�� = Ξ11 + Ξ0
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• Applications: Natural Scene Statistics

• marginal wavelet distributions

• joint wavelet distributions

• contour statistics
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raw image filtered image
van hateren 1998 

Haar wavelet featuresf
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− Ī2

2σ2

�

Wednesday, July 21, 2010
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Kotz et al 2001
Gnedenko 1972

Wednesday, July 21, 2010



filtered image

0 f

lo
g-

pr
ob

ab
ili

ty

Haar wavelet features

feature distribution

f
Wednesday, July 21, 2010



filtered image

lo
g-

pr
ob

ab
ili

ty

Haar wavelet features

feature distribution

0 f

f
Wednesday, July 21, 2010



dead leaves images

de
riv

at
iv

e
lo

g-
pr

ob
ab

ili
ty

m
ix

tu
re

co
m

po
ne

nt
s

natural images

... etc.

B C

E F

DA

f0 0

0 0

0 0f f f

ff

Wednesday, July 21, 2010



f1

f2

f1

f2

orthogonal, colocalized Haar wavelets

natural images dead leaves images

joint probability

f1 f2
Wednesday, July 21, 2010



P (f) =
�

מ��

P (f P(מ��| (מ��)
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dead leaves images
conditional feature distributions:

natural images
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W.S. Geisler et al. / Vision Research 41 (2001) 711–724 713

Fig. 2. The geometrical relationship between edge elements. There are
three parameters: the distance between the centers of the elements, d,
the orientation difference between the elements, !, and the direction
of the second element with respect to the orientation of the reference
element, ".

The line segments in Fig. 3B show, at each distance,
the most probable orientation difference for each possi-
ble direction. In other words, for each of the 6 distances
and 36 directions, we located the orientation difference
with the highest probability and plotted, at the given
direction, a line segment with this orientation differ-
ence. The color of the line segment indicates the relative
probability.5 As can be seen, for all distances and all
directions, the most likely edge element is approxi-
mately parallel to the reference element, with greater
probabilities for elements that are nearby and co-linear
with the reference element. This result shows that there
is a great deal of parallel structure in natural images,
presumably due to the effects of growth and erosion
(e.g. the parallel sides of a branch, parallel geological
strata, etc.), perspective projection (e.g. the elongation
of surface markings due to slant), shading (e.g. the
illumination of a branch often produces a shading
contour parallel to the side of the branch), and so on.

The line segments in Fig. 3C show, at each distance,
the most probable direction for each possible orienta-
tion difference. In other words, for each of the 6
distances and 36 orientation differences, we located the
direction with the highest probability and plotted a line
segment with the given orientation difference (tilt) at
the bin location of this most probable direction. As can
be seen, the two horizontal wedge-shaped regions repre-
sent the most likely co-occurring edge elements. Specifi-
cally, for all distances and all moderate differences in
orientation, the most likely edge element is approxi-
mately co-circular with the reference element (i.e., the
two elements are tangent to the same circle), with
greater probabilities for elements that are nearby and
co-linear with the reference element. This result pre-
sumably reflects the relatively smooth shapes of natural
contours, and it provides direct evidence that the
Gestalt principle of good continuation has a general
physical basis in the statistics of the natural world.

The results in Fig. 3B and Fig. 3C are quite robust.
All of the individual images in our sample show the
same basic pattern, and the results for a random selec-
tion of 10 images are very similar to those for the
remaining 10 images. As a control, histograms were
also computed for white noise images; as expected, the
resulting plots were random except for a small effect
near the reference line due to the effect of the band-pass
filtering. Also, a preliminary analysis at a smaller scale
(2 octaves higher) suggests that the edge co-occurrence
statistics are very similar across spatial scales.

2.1.2. Edge co-occurrence probability
The geometrical relationship between any given pair

of edge elements can be described with three parame-
ters: the distance between the element centers, d, the
orientation difference between the elements, !, and the
direction of the second element relative to the orienta-
tion of first (reference) element, " (see Fig. 2). For each
image, we compared every edge element with every
other edge element, giving us a very large set of triplets
(d, !, "), which were then binned into a three-dimen-
sional histogram (bin widths: wd=8 pixels, w!=10°,
and w"=10°).3 We combined the histograms for all 20
images, and then corrected for the variation in bin size
and the effects of the finite circular image aperture (see
Section A.2). The corrected histogram gives the abso-
lute probability, p(d, !, "), of observing an edge ele-
ment at every possible distance, orientation difference,
and direction from a given (reference) edge element.4

2.2. Results

The result of the above statistical analysis is a three-
dimensional probability density function, p(d, !, "),
derived from the 20 images in Fig. 1. Examination of
this three-dimensional function reveals two important
statistical properties of natural images. These properties
are shown in Fig. 3B and Fig. 3C, which summarize the
full probability function. The layout of these plots
corresponds directly to the geometry in Fig. 2, with the
center horizontal line segment representing the refer-
ence element. The radial distance of an element from
the reference represents the distance d, the angular
location around the circle (the azimuth) represents the
direction ", and the tilt of an element represents the
orientation difference !.

3 Each element in a given pair served as the reference elementthus,
each pair of elements entered into the histogram twice.

4 For notational simplicity we let (d, !, ") represent both a real
valued vector and a discrete valued bin. It should be clear from the
context which meaning is intended.

5 To simplify the probability scale, the three-dimensional probabil-
ity density function was normalized so that the peak of the function
is 1.0.

geisler et al, 2001
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L =
�

S∋מ�� Pמ���
D∋מ�� P מ��

D : set of      with different causeמ��

S : set of      with shared causeמ��

Likelihood of shared cause:
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Dead Leaves Model:

• naturalistic yet tractable

• sufficient to explain many non-gaussian 
properties of natural images

• good stimulus for psychophysics and modeling
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