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olshausen & field 1996
bell & sejnowski 1997

non-Linear

karklin & lewicki 2008
wainwright & simoncelli 2000
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Dead Leaves Model

Matheron 1975, Ruderman 1997, Lee, Mumford, Huang 2001
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Object membership function:
which pixels are in which object?

R = {{17 2, 6}7 {3}7 {47 5}}
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Geometry

P(n) can be calculated exactly for some shape ensembles

size
eccentricity
orientation
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Texture

Correlated gaussians:

1
P(I|n) x exp <—§ITCI_§I>

e.g. for uniform color + white noise texture:
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® Applications: Natural Scene Statistics
® marginal wavelet distributions
® joint wavelet distributions

® contour statistics
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van hateren 1998

raw image filtered image

f u Haar wavelet features
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for n’th object:
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for n’th object:

2]
- n,| area
I = g I = E N, |J , ,
J BT J, mean intensity
jICUjEX =1

n

Central limit theorem for random sum:

f:i:]j — P(I) ~ exp (—%)

P(v) o« p”

Kotz et al 2001
Gnedenko 1972
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natural images , dead leaves images
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joint probability

natural images dead leaves images
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P(f) =) P(f[n)P(n)

Probability at high amplitude f is dominated by
object configurations with greatest likelihood
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P(f) =) P(f[n)P(n)

Probability at high amplitude f is dominated by
object configurations with greatest likelihood

1
P(f|n) oc exp (—ifTCf§f>
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object geometry conditional probability contours
gaussian P(f1, fa|n)

ﬂ
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object geometry joint probability contours:
envelope of P(f1, f2|R)
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joint distributions:
orthogonal, colocalized Haar wavelets

joint log-distribution: example object envelope for
natural images dead leaves images configurations large features

Lee, Mumford, Huang 2001
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joint distributions:
parallel, neighboring Haar wavelets

example object

joint log-distribution: configurations envelope for

natural images dead leaves images ~ACOLT large features

— COIT.

Lee, Mumford, Huang 2001
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conditional distributions:
orthogonal, neighboring Haar wavelets

conditional feature distributions:
natural images  dead leaves images
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Simoncelli & Schwartz 1999
Buccigrossi & Simoncelli 1999
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reference

likelihood ratio:

shared cause / different causes
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geisler et al, 2001
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Likelihood of shared cause:

D :set of 1) with different cause

S :set of 1) with shared cause
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I .01
Likelihood ratio:

same vs diff. cause
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edge causes defined by
object membership
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edge causes defined by
object membership
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Likelihood ratio:
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edge causes defined with
depth constraints
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edge causes defined by edge causes defined with
object membership depth constraints
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Dead Leaves Model:

® naturalistic yet tractable

® sufficient to explain many non-gaussian
properties of natural images

® good stimulus for psychophysics and modeling
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